<table>
<thead>
<tr>
<th>Title</th>
<th>Logarithmic truth-table reductions and minimum sizes of forcing conditions: preliminary draft (Proof Theory and Computation Theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kumabe, Masahiro; Suzuki, Toshio; Yamazaki, Takeshi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1442: 42-47</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47573</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Logarithmic truth-table reductions and minimum sizes of forcing conditions (preliminary draft)

Masahiro Kumabe\(^1\), Toshio Suzuki\(^2\)*, Takeshi Yamazaki\(^3\)

1): University of the Air,
31-1, Ōoka, Minami-ku, Yokohama 232-0061, Japan
kumabe@u-air.ac.jp
2),3): Department of Mathematics and Information Sciences
Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
toshios@acm.org, yamazaki@mi.s.osakafu-u.ac.jp

April 5, 2005

Abstract

In our former works, for a given concept of reduction, we study the following hypothesis: "For a random oracle \(A \), with probability one, the degree of the one-query tautologies with respect to \(A \) is strictly higher than the degree of \(A \)." In our former works, the following three results are shown: (1) the hypothesis for polynomial-time Turing reduction is equivalent to the assertion that the probabilistic complexity class \(R \) is not equal to \(\text{NP} \); (2) the hypothesis for polynomial-time truth-table reduction implies that \(\text{P} \) is not \(\text{NP} \); (3) (to appear in Arch. Math. Logic) the hypothesis holds for polynomial-time bounded-truth-table reduction. In this note, we show that the hypothesis holds for \((\log n)^{O(1)} \)-question truth-table-reduction (without polynomial-time bound). As applications of this result, we show a lower bound and an upper bound of forcing complexity (i.e., the minimum size of forcing condition that forces a given formula) of the one-query tautologies with respect to a random oracle. We show that if \(A \) is a random oracle then with probability one, the forcing complexity of the one-query tautology with respect to \(A \) is greater than polynomial of \(\log |F| \), and it is at most \(O(|F|^2) \), where \(|F| \) denotes the length of a formula.

*The author was partially supported by Grant-in-Aid for Scientific Research (No. 14740082), Japan Society for the Promotion of Science.
1 Preface

In our former works [Su98, Su99, Su00, Su01, Su02, Su05], by extending the work of Ambos-Spies [Am86] and related works, we consider the relationships with the canonical product measure of Cantor space and complexity of one-query tautologies. A formula \(F \) of the relativized propositional calculus is called a one-query formula if \(F \) has exactly one occurrence of a query symbol. For example,

\[
(q_0 \Leftrightarrow \xi^3(q_1, q_2, q_3)) \Rightarrow (q_1 \Rightarrow q_0)
\]

is a one-query formula, where \(q_0, q_1, q_2, q_3 \) are usual propositional variables. We assume that each propositional variable takes the value 0 or 1 (0 denotes false and 1 denotes true). And, \(\xi^3 \) in the above formula is a query symbol. For a given oracle \(A \), a function \(A^3 \) is defined as follows, where \(\lambda \) is the empty string, and the query symbol \(\xi^3 \) is interpreted as the function \(A^3 \).

\[
\begin{align*}
A^3(000) &= A(\lambda), & A^3(001) &= A(0), & A^3(010) &= A(1), & A^3(011) &= A(00), \\
A^3(100) &= A(01), & A^3(101) &= A(0), & A^3(110) &= A(1), & A^3(111) &= A(00).
\end{align*}
\]

Thus, more informally, the following holds for each \(j = 0, 1, \ldots, 2^3 - 1 \), where the order of strings is defined as the canonical length-lexicographic order.

\[
A^3(\text{the} (j + 1)\text{st} 3\text{-bit string}) = A(\text{the} (j + 1)\text{st} \text{string}).
\]

For each \(n \), an \(n \)-ary Boolean function \(A^n \) is defined in the same way, and an interpretation of the query symbol \(\xi^n \) is defined in the same way. For an oracle \(A \), the concept of a tautology with respect to \(A \) is defined in a natural way. If a one-query formula \(F \) is a tautology with respect to \(A \), then we say \(F \) is a one-query tautology with respect to \(A \). The set of all one-query tautologies with respect to \(A \) is denoted by \(1\text{TAUT}^A \).

In [Su02], for a given concept \(\leq_\alpha \) of reduction, we study the following hypothesis, where \(1\text{TAUT}^X \) denotes the set of all one-query tautologies with respect to an oracle \(X \).

One-query-jump hypothesis for \(\leq_\alpha \): The class \(\{ X : 1\text{TAUT}^X \leq_\alpha X \} \) has measure zero.

For a given reduction \(\leq_\alpha \), we denote the corresponding one-query-jump hypothesis by \([\leq_\alpha] \).

In [Su98], it is shown that the one query-jump hypothesis for \(p\text{-T} \) reduction is equivalent to \("R \neq \text{NP}."

And, in [Su02], it is shown that the one query-jump hypothesis for \(p\text{-tt} \) reduction implies \("P \neq \text{NP}."

In [Su05], we show that the one query-jump hypothesis for \(p\text{-btt} \) reduction holds, where \(p\text{-btt} \) denotes polynomial-time bounded-truth-table reduction. The
anonymous referee of [Su05] noticed that the one query-jump hypothesis holds for bounded-truth-table reduction without polynomial-time bound, and Kumabe independently noticed the same result. The referee’s proof, which may be found in [Su05], uses some concepts of resource-bounded generic oracles in [AM97]. Kumabe’s proof is more simple.

In §3 of this note, we introduce Kumabe’s proof of the above result. In §4, we extend the result, and show that the one query-jump hypothesis holds for \((\log n)^{O(1)}\)-question tt-reduction (without polynomial-time bound). In §5, as applications of the result in §4, we show a lower bound and an upper bound of forcing complexity (i.e., the minimum size of forcing condition that forces a given formula) of the one-query tautologies with respect to a random oracle. We show that if \(A\) is a random oracle then with probability one, the forcing complexity of the one-query tautologies with respect to \(A\) is greater than \((\log |F|)^{O(1)}\), and it is at most \(O(|F|^2)\).

The three of authors had a meeting at July 22nd 2004, at the office of T.S. in Osaka Prefecture University. This note is a research memo on the meeting, and is an extension of [Su05].

2 Notation

Most of our notation is the same as that of [Su02] and [Su05], and almost all undefined notions may be found in these papers. An article by Kawanishi and Suzuki [KS05] in this volume of Sūrikaisekikenkyūshō Kōkyōroku contains basic definitions on the relativized propositional calculus and Dowd-type generic oracles. The journal version of [Su02] may be purchased at Science Direct.

\texttt{http://www.sciencedirect.com/science/journals}

\(\omega\) stands for \(\{0, 1, 2, 3 \cdots\}\), while \(\mathbb{N}\) stands for \(\{1, 2, 3 \cdots\}\). In some textbooks, the complexity class \(\mathbf{R}\) is denoted by \(\mathbf{RP}\). For the detail of the class \(\mathbf{R}\), see for example [BDG88].

The definition of polynomial-time truth-table reduction and its variant may be found in [LLS75].

3 Bounded truth table reduction

In this section, we show the following.

\textbf{Proposition 1} The Lebesgue measure of the set

\[\{X : \text{ITAUT}^X \leq_{\text{btt}} X\} \]

is zero. In other words, one-query jump hypothesis [Su02, Su05] for btt-reduction (without polynomial-time bound) holds.
Sketch of proof (due to Kumabe):
For each oracle X, let $L^X := \bigcup_n \{(u,v,w) \in \{0,1\}^n : |u| = |v| = |w| = n \text{ and } X^n(u) = X^n(v) = X^n(w)\}$. It is easy to see that $L^X \leq^m_{\text{tt}} \text{1TAUT}^X$. Suppose that f is a recursive function such that for each string x, it holds that $f(x)$ is of the form $(\varphi_x, s_{x,1}, s_{x,2})$, where φ_x is a function from $\{0,1\}^2$ to $\{0,1\}$, and $s_{x,1}, s_{x,2}$ are strings.

It is enough to show the following class has measure zero.
$$\{X : L^X \text{ is not 2tt-reducible to } X \text{ via } f\}$$

For each forcing condition S, there exists strings $x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, x^{(5)}$ and a forcing condition T such that

1. $\text{dom} T = \text{dom} S \cup \{x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, x^{(5)}\}$, and
2. for any oracle X extending T, it holds that L^X is not 2tt-reducible to X via f.

Therefore, the class $\{X : L^X \text{ is 2tt-reducible to } X \text{ via } f\}$ has measure zero. \square

4 \textbf{(log }n)^{O(1)}\text{-question tt-reduction}

\textbf{Theorem 2} \ The Lebesgue measure of the following set is zero.
$$\{X : \text{1TAUT}^X \leq_{(\log n)^{O(1)}-\text{tt}} X\}$$

In other words, one-query jump hypothesis for $(\log n)^{O(1)}$-tt-reduction (without polynomial-time bound) holds.

5 \textbf{Lower and upper bounds to forcing complexity}

\textbf{Theorem 3} \ Let D_{\log} be the class of all oracles D such that there exists a positive integer c (c may depend on D) of the following property. For any $F \in \text{1TAUT}^D$, there exists a forcing condition $S \subseteq D$ such that S forces F to be a tautology and
$$|\text{dom} S| \leq (\log |F|)^c.$$

Then D_{\log} has measure zero.

Question: Is D_{\log} empty?

\textbf{Theorem 4} \ Let D_{quad} be the class of all oracles D such that there exists a positive integer c (c may depend on D) of the following property. For any $F \in \text{1TAUT}^D$, there exists a forcing condition $S \subseteq D$ such that S forces F to be a tautology and
$$|\text{dom} S| \leq |F|^2 + c,$$

where $|F|$ denotes the length of the binary code of F.

Then D_{quad} has measure one.
Question: Let D_{linear} be the class defined similarly to D_{quad} by using a linear formula $c|F| + c$ instead of a quadratic $c|F|^2 + c$. Then, is D_{linear} empty? If non-empty, does it have positive measure?

References

