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This is an excerpt of our recent paper [Ter05]. See [Ter05] for the
details.

1 Introduction

Gentzen’s original sequent calculus contains three structural rules:

Exchange: Weakening: Contraction:
F,a,,@,Aﬁve A=y I‘,oe,oa,A:>w/c
B, a0, A =y o, A=y Mo, A=y

where «, 8 and + stand for formulas and I" and A stand for sequences of for-
mulas (we only consider intuitionistic sequents in this paper). In addition, one
can also consider other non-standard structural rules such as:

Expansion (cf. [vB91]): Mingle (cf. [OM64]):
Ia,A 2 A IeA
,Od, j’y exp 1 Y :>Py 793 :>7 min
Lo 0, A=y [Y0,A=y

(See also [HOS94, Kam02] for a detailed account.) Among them, some are
harmless but others cause failure of cut elimination. In fact, the availability of
cut elimination is very sensitive to the choice of structural rules:

e In general, sequent calculi with Contraction but without Exchange do
not enjoy cut elimination. One way to recover cut elimination is to gen-
eralize Contraction to the one for sequences of formulas:

X, A=y
NE,A=q

seq-C
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¢ Expansion and Mingle are derivable from each other. However, Mingle
admits cut elimination whereas Expansion does not.

In view of these intricacies, it is natural to look for some general criteria for a
set of structural rules to admit cut elimination. The aim of this paper is to give
such a criterion for cut elimination by using algebraic semantics,

We consider (the 0-free fragment of) full Lambek calculus (F L+, [Ono90,
Ono%4, Ono03})), i.e., intuitionistic logic without any structural rules, as our
basic framework. We then introduce structural rules on FLt in a general for-
mat, Residuated lattices are the algebraic structures corresponding to FL T (see
[JT02, Ono03]). In this setting, we introduce a criterion, called the propagation
property, that can be stated both in syntactic and algebraic terminologies. Itis a
refinement of Girard’s naturality test, which appears in an informal discussion
in Appendix C.4 of [Gir99].

We then show that, for any set R of structural rules, the cut elimination
theorem holds for FL* enriched with R if and only if R satisfies the propaga-
tion property. To show the ‘if” direction, the phase structures ([Abr90, Tro92,
Ono941) as well as Okada’s cut elimination technique {Oka96, Oka99, Oka02]
are essentially used.

As an application, we show that any set R of structural rules can be ”com-
pleted” into another set R*, so that the cut elimination theorem holds for FL*

enriched with R*, while the provability remains the same.

2 Full Lambek Calculus and Structural Rules

The formulas of FLT are built from propositional variables @, b, c,. .. and
constants 1 (unit), T (true) and L (false) by using binary logical connectives -
(fusion), \ (right implication), / (left implication), A (conjunction) and V (dis-
junction). The set of formulas is denoted by F. Small Greek letters ¢, 3, .. .
range over . For simplicity, we do not consider negation nor 0 in this paper.
We use — as synonym for \.

A sequent of FL* is of the form ovy , . . ., &, = 8. Here, formulas avq, . . ., ay,
are called antecedents and 3 is called a succedent. In the sequel, I', A, . .. stand
for finite sequences of formulas, and ) stands for the empty sequence.

A sequent I' = « is said to be provable in FL* if it is derivable by using
the inference rules in Figure 1. A formula « is provable if the sequent = «
is provable. Given a (possibly infinite) set {2 of sequents, a sequent [' = ~ is
said to be deducible from Q if T' = + is provable in FLT enriched with the
additional axioms €2 (see [Ono94, Ono03] for more information).
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T, avil=d Y Tsavg " Fsavp "
I'i,o, Ty =46 Al r,8,Ts=>4 Al I'=a I‘:}ﬁ/\
I AYE T Thanfl, =0 2 " T=anp '
1: Inference Rules of FLT
When it is necessary to indicate variables ay,...,a,, that might possibly
oceur in a formula o, we shall use the notation ofay, ..., an], of ald] for
short. The formula obtained from ofas, . . ., @y, ] by substituting 3; for each a;
is denoted by a[B1, ..., Bm], Or oz[,@]. Similar notation is used for sequences

of formulas (and structural rules introduced below).
For ¥ = o4,...,0, (n > 1), we define

XY = o Ol s

\/E = o V- Vo,

FL* is entirely free from structural rules. Various systems of so-called sub-
structural logics are obtained by enriching it with a suitable set of structural
rules. Formally, a structural rule R is an n + 1 tuple (©1;...;0, > o),
where n > 1 and each ©; is a finite sequence of variables, that satisfies the

following condition:
(*) any variable occurring in 1. .., ©y, also occurs in Op.

The last condition will be referred to as the non-erasing condition.
Let R[] be a structural rule (01 [d]; . . . ; ©,[a]>Oq[d]), and /3 be a sequence

- —

of formulas. Then the result of substitution R[3] = (©1[8];...;0.[8] >
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©g[f)), is called an instance of R. When @ is a set of formulas and formulas
{3 belong to ®, R[] is called a ®-instance. Each instance R[] codifies an
inference scheme of the form:

[e18,A=v - TI,0,8,4 =7~

-

F: @OLB]: A= v

with ', A and + arbitrary.
For example, the structural rules mentioned in the introduction can be for-
mally specified as follows:

o e (a,b>>b,a)
s W (@DCL)
o c:(a,aD>a)

exp: (a > a,a)

o min: {(ay,...,ag;by,.... by >ay, ... a5, b1,...,0) | 1<k, 1<}
o seq-c: {(ay,...,ar,a1,...,ax > a1,...,a5) | 1 < &k}

Notice that min and seq-c are speified by a countable set of structural rules.

Given a set R of structural rules, the system FL* (R) is defined to be FL*
enriched with all instances of the additional structural rules . For instance,
FL* ({e}) amounts to FL¢{ (intuitionistic linear logic without modality), while
FL*({e, w,c}) is nothing but intuitionistic logic.

Due to the non-erasing condition, our structural rules satisfy the following
property: any formula occurring in the upper sequents of a structural rule also
occurs in the lower sequent. It follows that the cut elimination theorem always
implies the subformula property.

Given a sequent, the positive subformulas and negative subformulas are de-
fined as usual. We then have:

Lemma 2.1 Let R be a set of structural rules. Suppose that FL (R) enjoys
cut elimination. Then it satisfies the (polarized) subformula property: if a
sequent I' = « is provable in FL*(R), then it has a derivation © in which
only subformulas of ' = « occur. Moreover, any antecedent (succedent, resp.)
Sformula of a sequent in 7 is a negative (positive, resp.) subformula of T' = .



To study the properties of structural rules, it is convenient to represent them
as formulas. Given a structuralrule R = (©y;...; 0, >0y), define its formula

representation R by
R=+0,— (x©; V-V x0,).

For instance, 8 = b-a — a - b and W = ¢ — 1. The formula representation of
min; = (a;b> a,b)isa-b—aVb.

If R is of the form Rlay,...,a,] and a4,..., oy, belong to a set @ of for-
mulas, then R[Ozl, ..., Q] is called a $-instance of K. When R is a set of

structural rules, R denotes the set {R | R € R}.
As expected, there is an instance-wise correspondence between structural

rules and their formula representations:

Lemma 2.2 Let R[d] be a structural rule. Then an instance R[] is derivable

from R[&] and vice versa.

3 Syntactic Propagation

Let us now introduce a syntactic version of the propagation property. To
motivate the notion, consider the contrast between FLT ({c}) and FL (seq-c).
As is mentioned in the introduction, the former does not enjoy cut elimination.

For instance, the cut below cannot be eliminated:

a-B=a-f a-B=>a-f

asa B=p afo-f=(ap)(ap)

a,f=a-p a-B=(a-B) (o B)
o, f=(a- ) (o B)

On the other hand, if ¢ is generalized to seq-c, the cut can be easily eliminated:

cut

asa B=p a=sa =P
a,B=a-B o,f=>a-fB
o froB=(af) (@ f) e
04,6:?(04&)(045)

Now our question is this: what is the essential difference between ¢ and seq-c?

A distinctive feature of seq-c is that it propagates from variable instances to
fusion instances. Namely, a fusion instance (a - b, a-b1> a-b) is derivable from
a variable instance (a, b, a, b > a, b) as follows:
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Tya-ba-b,A =y
Ia,b,a,b,A = v
a,b,A =7
Ma-b,A =vy

seq-c

(Pedantically speaking, an instance R[a] = (0:[a];...;0,[d] > Opld]) is
derivable from a set ) of instances of some structural rules if for arbitrary
I, A and v, the sequent I, ©¢[d], A = C' is deducible from the sequents
I',0;[@], A = yfor1 < i < nin FL* enriched with the rule instances 2.)
In contrast, one can observe that ¢ does not propagate to fusion instances.
Next, consider the contrast between FL+ ({exp}) and FL* (min). The for-
mer does not enjoy cut elimination, as witnessed by:

a=Sa aVp=aVp

e

B=p a=aVp aVpaVB=aVvp Xf

B=aVp o, aVp=aVp ' cu
a,f=aVp i

Notice that one cannot obtain a cut-free proof even if exp is generalized to a
sequence version as above. On the other hand, when exp is replaced with min,
a cut-free proof is obtained:

a=a B=p
a=aVp pf=aVp
a,B=aVp

min

Therefore, we may again ask what is the essential difference between exp
and min. This time, our answer is that min propagates from variable in-
stances to disjunction instances. Namely, a disjunction instance (a; V by;aq V
by > a; V by, ag V by) is derivable from variable instances (ay;a; > a1,a32),
(a13b2 > a1, b2), (bi;az > by, az) and (by; by > b1, b2) as follows:

Foar Vb, A=y T a3 Vby, A=y Tiag Vi, A=y T,as3Vhy, A=~
T,a1,A = v T,a3,A =~ T,by,A =7 T, by, A =5
T,a1,a9,A = 5 min T b, by, A=~
Lyay Vby,aaVby, A= v

min

In contrast, exp does not propagate to disjunction instances.
These observations bring us to the following definition. A set R of structural
rules satisfies the syntactic propagation property if the following holds:

e Forevery Rlay,...,an,] € R andevery Xy,...,2,,, where each 33; is a
sequence of variables, both R[xXy,...,%%,,] and R[\/ %1,...,V £,,]



are derivable from the ®-instances of the structural rules in X, where ®
is the set of variables occurring in ¥y, ..., X,

In view of Lemma 2.2, this is equivalent to say that

o the formulas B[+, ...,*5,] and B/ %1,...,V Z,,] are deducible
from the ®-instances of the formulas in 7%

The syntactic propagation property does not explicitly refer to, but is actually
closely related to cut elimination. In fact, we have:

Proposition 3.1 Let R be a set of structural rules. If FLT(R) enjoys cut
elimination, then R satisfies the syntactic propagation property.

4 Residuated lattices and semantic propagation

AnalgebraP = (P, AV, -\, /, 1) is called a (bounded) residuated lattice if

1. (P, A, V) is a lattice with the greatest element T and the least element
L.

2. {P,-,1) is a monoid.

3. The operations \ and / are right and lefi residuals of -. Namely, for any
z,y,z € P,

g y<zé=a<z/ye=y<r\z

(See [JT02, Ono03] for general introductions to residuated lattices.)

A valuation f on P maps each variable to an element of P. Given a set
X C P, fis called an X-valuation if the range is a subset of X. As usual, f
can be extended to a map from the formulas F to P as follows:

fih) =1 fort € {T, 1,1},
flaxpB) = Floyxf(B) forxe{AV,-\,/}

A formula o is said to be frue under valuation f in P if f(«) > 1. Inparticular,
o = B,ie., o\Bis true iff f(a) < f(B). Aformula a is valid (X-valid, resp.)
in P if it is true under all valuations (X -valuations, resp.) on P.

The residuated lattices are algebraic models of FL*. In particular, the fol-
lowing strong form of soundness holds for them:
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Lemma 4.1 Let P be a residuated lattice and f be a valuation on it. If o is
deducible from ® and all formulas in ® are true under f in P, then o is also

true under f.

Given a set R of structural rules, an R-residuated lattice is a residuated lat-
tice in which all formulas in R are valid. By the previous lemma, any formula
provable in FL™(R) is valid in all R-residuated lattices.

Coming back to the residuated lattices in general, we may observe that the

monoid multiplication - is continuous in the following sense:
Lemma4.2 Let qo,...,qm € P andlet
6(P1se s Pm) =G0 P1 Q1 " Gm—1 " Pm * G,

forany pi,...,pm € P. Let also 6(p) = &(p,...,p). Suppose that X is a
subset of P for which \/ X exists. We then have:

Vo= \ AV,
YCsinX

where Y C g, X holds iff'Y is a finite subset of X.

Given X C P, the multiplication closure [ [ (X)), the join closure [ [(X') and
the finite join closure [] . (X) are defined by

[[(X) = {pr--paln>0,p1,....pn € X},

[[x) = {\VY|Y CX,\/Y exists},
[JX = (VYIYy Chn X}

fin
A set R of structural rules satisfies the semantic propagation property if for
any residuated lattice P and X C P, the following holds:

o if all formulas in % are X -valid, then they are also [ [(J](X))-valid.

We have:

Proposition 4.3 If a set R of structural rules satisfies the syntactic propaga-
tion. property, it also satisfies the semantic propagation property.



5 Phase structures and semantic cut elimination

We now introduce a special class of residuated lattices, sometimes called
(intuitionistic noncommutative) phase structures (see [Abr90, Tro92, Ono94]).
Let M = (M,-,1) be a monoid. Denote the powerset of M by (), and
define for X, Y € p(M),

XeY = {z-ylzeX, yeY}.

A function C : p(M) — p(M) is said to be a closure operator on p(M) if
forall X, Y € p(M),

1. X C C(X),

2. C(C(X)) CCX),

3. X C Y implies C(X) C C(Y),
4. C(X) e C(Y) C C(X e Y).

Aset X ¢ p(M) is closed if X = C(X). The set of all closed sets in p(M)
is denoted by Cps. Define for any closed sets X, Y € Cjs and for any family
A of closed sets,
XUcY = C(XUY),
Ued = CUR),
XecY = C(XeY),
X\Y = {y|VzeX,z-yeV},
Y/X = {y|VeeX,y-z€Y}.
We then have:

Lemma 5.1 If M is a monoid and C' is a closure operator on p(M), then the

algebra
Cypp = (Cur, Ny Vg 00\, /, C({1}),

is a complete residuated lattice with infinite join | .
In every phase structure, the following hold:
1. Cliz - y}) = C({s}) oo C({y}) forany o,y € M,

2. C(X) =Ug pex C{z}) forany X C M.
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As a consequence, phase structures satisfy the following remarkable property
which plays a key role in connecting the semantic propagation property to cut

elimination:

Lemma 5.2 Suppose that M is finitely generated by a set A, ie., any el-
ement © of M can be written as yy - -- Yy for some yi,...,y, € A. Let

C' = {C({y}) | y € A}. Then we have Cpr = [J(T1(C}))-

We now describe a specific construction of a phase structure due to [Oka96,
Oka99] (and slightly remedied by [OT99]), which is quite useful for proving
the cut elimination theorem. (See also [BOJO1], where Okada’s construction
is reformulated as algebraic quasi-completion and quasi-embedding.)

Let F* be the free monoid generated by the formulas F of FL*; the ele-
ments of F* are sequences of formulas, the moneid multiplication is concate-
nation, and the unit element is the empty sequence {.

Let us fix a set R of structural rules. The operator (' is defined on the basis
of cut-free provability in FL*+(R):

[l_A=~] = {|I[,5,A =1 is cut-free provable in FL* (R)},
D = {[I_A=~]|T,A, arbitrary},
cxy = [) v

XCYeD
Then one can show that C is indeed a closure operator on p(F*) (for an arbi-
trary %). Hence by Lemma 5.1, the algebra

Cj:* = <C}‘*,m,UOa.Ca \\7//70({®})>

is a residuated laftice.
Let f, be a valuation on Cr» defined by fo(a) = C'({a}). In this setting,
we have Okada’s lemma:

Lemma 5.3 For every formula o, o € fy(a) C [ = o]. In particular, for
every sequent I' = a, if (+I') — « is true under fy, then I' = o is cut-free
provable in FL* (R).

It is worth noting that Okada’s lemma holds independently of which struc-
tural rules R we adopt. It only concerns with the properties of logical inference
rules. What depends on the choice of R is the following:

Lemma 5.4 If R satisfies the semantic propagation property, then Cxx is an
R-residuated lattice.



‘We have thus arrived at:

Proposition 5.5 If R satisfies the semantic propagation property, then FLT(R)

enjoys cut elimination.

By putting Propositions 3.1, 4.3 and 5.5 together, we obtain our main theo-

rem

Theorem 5.6 Let R be a set of structural rules. Then the following are equiv-

alent:
1. FL* (R) enjoys cut elimination.
2. R satisfies the syntactic propagation property.

3. R satisfies the semantic propagation property.

6 Completion of Structural Rules

Recall that Contraction ¢ can be generalized to its sequence version seq-c
without changing provability so that the cut elimination theorem holds for
FLT (seq-c). We say that ¢ can be completed into seq-c. Likewise, Expansion
exp can be completed into Mingle min. The completion techniques implicitly
used there are by no means specific to ¢ and exp. In fact, we can show that an
arbitrary set of structural rules can be completed by using those techniques.

Theorem 6.1 Given a set R of structural rules, one can obtain another set R*
of structural rules such that the following hold.

e FLT(R) and FL* (R*) are equivalent.

o R* satisfies the syntactic propagation property. Hence FL™ (R*) enjoys

cut-elimination.

To prove this, we use our characterization of cut elimination by the syntactic

propagation property.
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