A solution of the equation $f'(x)=\lambda^2 f(\lambda x), \lambda > 1$ (Functional Equations and Complex Systems)

Author(s) Yoneda, Tsuyoshi

Citation 数理解析研究所講究録 2005, 1445: 1-11

Issue Date 2005-07

URL http://hdl.handle.net/2433/47621

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University
A solution of the equation \(f'(x) = \lambda^2 f(\lambda x), \lambda > 1 \).

Tsuyoshi Yoneda
Department of Mathematics
Osaka Kyoiku University

1. INTRODUCTION

The purpose of this paper is to give solutions for the functional-differential equation of advanced type

\[
\begin{cases}
 f'(x) = \lambda^2 f(\lambda x), & x \in \mathbb{R} = (-\infty, +\infty), \\
 f(0) = 0,
\end{cases}
\]

where \(\lambda \) is a constant, \(\lambda > 1 \). Our solutions are infinitely differentiable on \(\mathbb{R} \). Moreover, if \(\lambda \geq 2 \), then the solutions are bounded and have arbitrarily large zeros. Our methods give numerical data readily.

Frederickson [1, 2] (1971) investigated functional-differential equations of advanced type

\[
f'(x) = af(\lambda x) + \lambda f(x),
\]

Frederickson [1] provided a global existence theorem for equations

\[
f'(x) = F(f(2x)), \quad x \in \mathbb{R},
\]

where \(F \) is an odd, continuous function with \(F(s) > 0 \) for \(s > 0 \), by application of the Schauder fixed point theorem. He showed that the absolute value of the solution \(|f(x)| \) is periodic for \(x \geq 0 \). Frederickson [2] also provided a constructive method for solutions for equations

\[
f'(z) = af(\lambda z) + bf(z),
\]
where \(a, b \in \mathbb{C}\) and \(\lambda > 1\). He further gave solutions in the form of a Dirichlet series
\[
\varphi(z, \beta) = \sum_{n \in \mathbb{Z}} c_ne^{\beta \lambda^n z}, \quad \Re(\beta z) \leq 0,
\]
where \(\beta\) is allowed to vary as a parameter. In the case of \(b = 0\) and \(\beta = i\), the solution is analytic in the upper half plane \(\Im z > 0\), continuous on \(\Im z \geq 0\), and the line \(\Im z = 0\) is a natural boundary. From his result it follows that our solutions of (1.1) cannot be real analytic.

Ivanov, Kitamura, Kusano and Shevelo [3] (1982) investigated the higher order functional-differential equations of the form
\[
f^{(n)}(x) = p(x)F(f(g(x))),
\]
where \(p, F\) and \(g\) satisfy appropriate conditions. Kusano [6] (1984) also investigated the functional differential equation
\[
f^{(n)}(x) = p(x)f(g(x))
\]
where \(n\) is even, \(p : [0, \infty) \to \mathbb{R}\) and \(g : [0, \infty) \to \mathbb{R}\) are continuous, \(p(t) > 0\), \(g(t)\) is nondecreasing and \(\lim_{t \to \infty} g(t) = \infty\). They [3, 6] gave sufficient conditions that the solutions are oscillatory.

If \(f\) is a solution of (1.1), then \(f\) is also a solution of the equations
\[
f''(x) = \lambda^4 \lambda f(\lambda^2 x), \quad x \in \mathbb{R},
\]
and
\[
f'''(x) = \lambda^6 \lambda^3 f(\lambda^3 x), \quad x \in \mathbb{R}.
\]
However, (1.5) and (1.6) don't satisfy the sufficient conditions in [3, 6].

Recently, the author [9] constructed solutions of (1.1) with \(\lambda = 2\) by using a little different method from this paper.

We state the main theorem (Theorem 2.3) and application in next section. We can easily apply the solution for the case \(\lambda = 2\) to Friedrichs' mollifier theorem and we can rewrite differential operator. For the proof of main theorem, see [10]. In the third section, we give graphs of solutions for the case of \(\lambda = 4, 3, 2, 31/16, 15/8, 7/4, 2/3, 5/4\).
In the last section, we will give Mathematica programs.

2. Main Results

First, we state two lemmas. Let

\[f(\xi) = \mathcal{F}[f](\xi) = \int_{\mathbb{R}} f(x) e^{-ix\xi} \, dx, \quad \mathcal{F}^{-1}[f](\xi) = \frac{1}{2\pi} \int_{\mathbb{R}} f(x) e^{ix\xi} \, dx, \]

and

\[\text{sinc}\, \xi = \begin{cases} \frac{\sin(\pi\xi)}{(\pi\xi)}, & \xi \neq 0, \\ 1, & \xi = 0. \end{cases} \]

Lemma 2.1. The product

\[\prod_{k=1}^{\infty} \text{sinc} \left(\frac{\xi}{2\lambda^k \pi} \right), \quad \xi \in \mathbb{R} \]

is converges pointwise and in \(L^1(\mathbb{R}) \).

Lemma 2.2. Let

(2.1) \quad u = \mathcal{F}^{-1}[U], \quad U(\xi) = \exp\left(-\frac{i\xi}{2(\lambda-1)} \right) \prod_{k=1}^{\infty} \text{sinc} \left(\frac{\xi}{2\lambda^k \pi} \right). \]

Then \(u \) has the following properties:

\[u \in C^\infty(\mathbb{R}), \]
\[u(x) > 0 \quad \text{for} \quad x \in \left(0, \frac{1}{\lambda-1} \right), \quad u(x) = 0 \quad \text{for} \quad x \notin \left(0, \frac{1}{\lambda-1} \right), \]
\[u(x) = u(1/(\lambda-1) - x), \]
\[\int_{\mathbb{R}} u(x) \, dx = 1, \]

and

(2.2) \quad u'(x) = \lambda^2 u(\lambda x) \quad \text{for} \quad x \in \left[0, \min\left(\frac{1}{\lambda}, \frac{1}{\lambda(\lambda-1)} \right) \right]. \]

Let we define the operator \(T : L^1 \to L^1 \) as follows.

(2.3) \quad Tf(x) = \lambda \left(\chi_{[0,1]} * f \right)(\lambda x), \quad f \in L^1. \]

Then the function \(u \) in Lemma 2.2 is given by the following equation.

(2.4) \quad u = \lim_{k} T^k \chi_{[0,1]}.
Secondly, we define sequences \(\{n_k\}_{k=1}^{\infty} \) and \(\{y_k\}_{k=1}^{\infty} \) as follows:

\[
\begin{align*}
&n_1 = 0, \quad n_2 = 1, \\
&n_{2k-1} = 1, \quad n_{2k} = 0, \quad \text{if} \quad n_k = 1 \quad (k \geq 2), \\
&n_{2k-1} = 0, \quad n_{2k} = 1, \quad \text{if} \quad n_k = 0 \quad (k \geq 2),
\end{align*}
\]

and

\[
y_k = \sum_{l=1}^{\infty} C_{k,l} \lambda^{l-1}, \quad k = 1, 2, 3, \ldots,
\]

where \(C_{k,l} \in \{0, 1\} \) \((l = 1, 2, 3, \ldots) \) are coefficients of the binary system such that

\[
k - 1 = \sum_{l=1}^{\infty} C_{k,l} 2^{l-1}, \quad k = 1, 2, 3, \ldots.
\]

Then we have the following relations.

\[
\begin{align*}
&(-1)^{n_{2k-1}} = (-1)^{n_k}, \\
&(-1) \cdot (-1)^{n_{2k}} = (-1)^{n_k},
\end{align*}
\]

and

\[
\begin{align*}
&y_{2k-1}/\lambda = y_k, \\
&y_{2k}/\lambda = y_k + 1/\lambda,
\end{align*}
\]

and

\[
y_k \geq \lambda^j \quad \text{if} \quad k - 1 \geq 2^j, \quad j = 0, 1, 2, \ldots.
\]

Hence \(\lim_{k \to \infty} y_k = \infty \). If \(\lambda \geq 2 \), then \(y_k \) is strictly increasing. For example,

\[
\begin{align*}
&\{n_k\}_{k=1}^{\infty} = \{0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, \ldots\}, \\
&\{y_k\}_{k=1}^{\infty} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, \ldots\} \quad \text{for} \quad \lambda = 2, \\
&\{y_k\}_{k=1}^{\infty} = \{0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, \ldots\} \quad \text{for} \quad \lambda = 4, \\
&\{y_k\}_{k=1}^{\infty} = \{0, 1, 3/2, 4/4, 5/8, 9/16, 13/32, 15/64, 19/128, 27/256, 35/512, 39/1024, 47/2048, 45/4096, \ldots\} \quad \text{for} \quad \lambda = 3/2.
\end{align*}
\]

Our main result is the following:

Theorem 2.3. Let \(\lambda > 1 \). Then a solution \(f \) of (1.1) can be found as

\[
f(x) = \sum_{k=1}^{\infty} (-1)^{n_k} u(x - y_k),
\]

where \(u \), \(\{n_k\}_{k=1}^{\infty} \) and \(\{y_k\}_{k=1}^{\infty} \) are as in (2.1), (2.5) and (2.6), respectively. The solution \(f \) is in \(C^\infty(\mathbb{R}) \) and \(f(x) = 0 \) for \(x \leq 0 \). If \(\lambda \geq 2 \), then \(f \) is bounded.
Let we define a function space $L^{1,\nu}(\mathbb{R})$.

$$L^{1,\nu} = \{ f \in L_{loc}^{1}; ||f||_{L^{1,\nu}} < \infty \}$$

$$||f||_{L^{1,\nu}} = \sup_{r>0} \frac{1}{r^\nu} \int_{-r}^{+r} |f(x)| dx$$

Theorem 2.4. The solution f of (1.1) is in $C^\infty \cap L^{1,1/\log_{2}\lambda}$.

Remark 2.1. The solution of (1.1) is tempered distribution.

Remark 2.2. A constant times f is also a solution.

Theorem 2.5. Let f be the solution in Theorem 2.3 for $\lambda = 2$ and

$$G_{k,\epsilon}(x) = (2^{k(k-1)/2} \epsilon^{k+1})^{-1} (f \chi_{[0,2^k]})(x/\epsilon).$$

If $v \in C^k(\mathbb{R})$ or $v \in L^p(\mathbb{R})$ ($k \geq 0$, $1 \leq p < \infty$), then

$$\frac{d^k v}{dx^k} = \lim_{\epsilon \to 0} v * G_{k,\epsilon},$$

uniformly on each compact subset in \mathbb{R} or in $L^p(\mathbb{R})$, respectively.

Remark 2.3. $G_{k,\epsilon}$ is in $C^\infty(\mathbb{R})$ with compact support. To prove the theorem we use Friedrichs' molifier $\frac{d^k v}{dx^k} * u_\delta = v * \frac{d^k u_\delta}{dx^k}$, where $u_\delta = u(x/\delta)/\delta$, $\delta > 0$, and u is the function in Lemma 2.2 ($\lambda = 2$).

3. Examples

In this section we give graphs for $\lambda = 4, 3, 2, 31/16, 15/8, 7/4, 3/2, 5/4$.

If $\lambda = 2$, then $\{ x > 0 : f(x) = 0 \} = \{ 1, 2, 3, \cdots \}$. If $\lambda > 2$, then $\{ x > 0 : f(x) = 0 \} = \bigcup_{k=1}^{\infty} [y_k + 1/(\lambda - 1), y_{k+1}]$ and its measure is infinity, since $1/(\lambda - 1) < 1 < y_{k+1} - y_{k}$, $k = 1, 2, 3, \cdots$.
4. Program of $u(x)$

Mathematica program (Part 1): The function u [by using $u_{n+1} = T(u_n)$]
FIGURE 4. $f'(x) = 2^2 f(2x)$

FIGURE 5. $f'(x) = (31/16)^2 f(31x/16)$

FIGURE 6. $f'(x) = (15/8)^2 f(15x/8)$

FIGURE 7. $f'(x) = (7/4)^2 f(7x/4)$

* Setting lambda ($i < \text{lam} < 9$)

In[1]: \[\text{lam} = 1.75;\]

* Calculation of the data; \[u\{0\}, \ldots, u\{50\}\]

In[2]: \[\text{udata}[0] = \text{Table}[\text{If}[0 < i - 10000 \leq 1000, \text{lam} - 1, 0], \{i, 1, 20000\}];\]

In[3]: \[\text{Timing[Do[udata}[k] = \text{Table}[\text{If}[1 \leq j - 10000 \leq 1000, \text{lam} \cdot \text{Sum}[\text{udata}[k = 1]][i + 10000], \{i, \text{Round}[\text{lam} \cdot (j - 10000)] - \text{Round}[\text{(lam} - 1) \cdot 1000] + 1,\]

\]}]}
FIGURE 8. \(f'(x) = (3/2)^2 f(3x/2) \)

FIGURE 9. \(f'(x) = (5/4)^2 f(5x/4) \)

Round[\text{lam} \times (j - 10000)]; \{0.001/(\text{lam} - 1), 0]\,
\{j, 1, 20000\}, \{k, 1, 50\}]

Out[3]: \{121.14 \text{ Second, Null}\}

* Graph of \(u_{50} \)

In[4]: \text{ulist}[k_] := \text{Table}[\{(i - 10000) \times 0.001/(\text{lam} - 1),}
\text{Part[udata}[k], i]}\}, \{i, 10000, 11000\}]

In[5]: \text{ListPlot[ulist[50], PlotJoined -> True,}
\text{PlotRange} \rightarrow \{0, 1.1 \times \text{lam}\}]

* Save the data
In[6]: udata[50] >> c:/mda/u7ov4-50
In[7]: ulist[50] >> c:/mda/ulist7ov4-50
In[8]: Export["c:/mda/u7ov4.eps",
 ListPlot[ulist[50], PlotJoined -> True,
 PlotRange -> {0, 1.1 * lam}]]

5. PROGRAM OF F(X)

Mathematica program (Part 2): The solution f on the interval [0,tau]

* Setting lambda (1<lam<9) and tau
In[1]: lam = 1.75; tau = 30;
In[2]: kk = Round[Log[lam, tau] + 0.5]
Out[2]: 7

* Load the data
In[3]: udata = << c:/mda/u7ov4-50;
In[4]: ud = Table[Part[udata, i], {i, 10000, 11000}];

* Sequences m_{k} and y_{k}
In[5]: m[1] = 0; m[2] = 1;
 Do[m[k] = If[Mod[k, 2]==0, Mod[m[k /2]+ 1, 2], m[(k + 1)/2]],
 {k, 3, 2^kk + 1}]
In[6]: Do[b[k, 1] = k - 1; Do[c[k, l] = Mod[b[k, l], 2];
 b[k, l + 1] = (b[k, l] - c[k, l])/2, {l, 1, kk + 1}],
 {k, 1, 2^kk + 1}]
In[7]: Do[y[k] =
 Sum[c[k, l]* lam^(l - 1), {l, 1, kk + 1}], {k, 1, 2^kk + 1}]

* Calculation of the solution
 as the sum of (-1)^{m_{k}}u(x-y_{k}), k=1, 2, ..., 2^kk.
In[8]: Do[yy[k] = Round[y[k]*1000*(lam - 1)], {k, 1, 2^kk + 1}]

In[9]: zz[1] = Table[0, {i, 1, yy[2^kk]}]; Do[z[k] =
 Table[0, {i, 1, yy[k]}], {k, 2, 2^kk}];
 Do[zz[k] = Table[0, {i, 1, yy[2^kk] - yy[k]}], {k, 2, 2^kk}];

In[10]: udy[1] = Join[ud, zz[1]]; Do[udy[k] =
 Join[z[k], ud* (-1)^m[k], zz[k]], {k, 2, 2^kk}]

In[11]: fd = Sum[udy[k], {k, 1, 2^kk}];

* Save the graph of the solution

In[12]: ii = tau*(lam - 1)*1000;
In[13]: flist = Table[{i*0.001/(lam - 1),
 Part[fd, i]}, {i, 1, ii}];
In[14]: Export["c:/mda/7ov4.eps",
 ListPlot[flist, PlotJoined -> True, AspectRatio -> Automatic]];

6. Acknowledgement

The author would like to thank Professors Eiichi Nakai and Hiroyuki Usami for their useful comments and the author also would like to thank Professor Eiichi Nakai for their useful Mathematica program.

References

[7] Zhi-cheng Wang, Ionannis P. Stavroulakis, Xiang-zheng Qian

[8] Hiroshi Onose

[10] T. Yoneda, *On the functional-differential equation of advanced type* $f'(x) = af(\lambda x), \lambda > 1$ with $f(0) = 0$, preprint.

DEPARTMENT OF MATHEMATICS, OSAKA KYOIKU UNIVERSITY, KASHIWARA, OSAKA 582-8582, JAPAN

E-mail address: bkajoj300@rinku.zaq.ne.jp