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1 Introduction

Let Q be an open and bounded set in R® with sufficiently smooth boundary I'. We will study
optimal control problems (cf. Lions [6]) for the second order integro-differential equation with
a nonlinear kernel. This may give just abstract meaning, so we will represent more concretive
model which is the following simplified viscoelastic system with long memory:

62;(20) - alAy(v) - /Ot k(t— s)div(

y(v) =0 on X =(0,T) xT,

0
y(v;0) = € HY(Q), 5 (w:0)=p € I(@) in O,

Vy(v; 5)
1+ [Vylv;s

; )ds=Bv+f in Q=(0,T) x4,

(L)
where a > 0, f € L2(0,T; L?(Q)) are fixed, integral kernel k() € C[0,7] and B is a controller
such that

B € L(U; L*(0,T; L*())),

where U is a Hilbert space of control variables. Especially it is meaningful that « represents the
velocity of deformation. The integral kernel k(-} in (1.1) represents the fading rate of memory
effect. And for the background of the nonlinear term of (1.1), we refer to (2} and [5]. The
purpose of this paper is to solve the quadratic cost optimal control problems for (1.1) by giving
the existence and the necessary conditions on optimal controls.

The well posedness of less regular solutions, called the weak solutions of (1.1) is proved
in the framework of variational method in Dautray and Lions {1] under Dirichlet boundary
conditions. This result enables us to study the optimal control problems associated with (1.1)
in the standard manner due to the theory of Lions [6]. The main contribution of this paper is to
establish the necessary conditions of optimality for distributive and terminal value observation
cases by transposition method. For this we prove the Gateaux differentiability of the nonlinear
mapping v — y(v), which is used to define the associate adjoint system.
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2 Solutions of viscoelastic system with long nonlinear memory

We consider the following Dirichlet boundary value problem for the equation of viscoelastic

equation with long nonlinear memory:

9%y t . Vy(s) . .

oY _ - _ YUY \gs = ,

5 aly /0 k(t s)dlv( T [Vy(s)lz) s=f in @

y=0 on X, (2.1)
_ oy(o) _ .

y(O) = Yo, 9t =un m Qv

where @ > 0 and f is a external forcing term. We will state the notations used in this paper.
We give scalar products and norms on L2(Q2), H} () as (¢,¥)12(q) = (6,9) = fo d¥dz, |¢| =

(¢,¢)%: (6, V) mzy = (Vo VY), @l ) = |V|. Related to the nonlinear term in (2.1), we
define the function G : R® — R™ by G(z) = \/_1-lw-_£——Tl2’ z € R™. Then it is vertified that

|G(z) - G(y)| < 2lz—y|, Ve,y €R™ (2.2)

The nonlinear operator G{V-) : H}(Q) — [L*(Q)]™ is introduced by
V¢

_ 1
G(V¢)(z) = NG ae T€Q, Vo€ Hy(9Q). (2.3)‘
We have the following properties on G(V-) :
GV < IV4l, |G(V4) - G(V¥)| < 2[Vé— VI, Yo,¢ € Hy(Q). (24)

Definition 2.1 A function y is said to be a weak solution of (2.1) if y € W(0,T') and y satisfies

W"(-), ) + (Vy(-), Vo) + (k* G(Vy)}(-), V) = (F(-), )
for all ¢ € H}(Q) in the sense of D'(0,T) (2.5)

y(0) =yo € H3(Q),  9'(0) =v1 € L*(Q),
where
W(0,T) = {glg € L*(0, T; Hy (), ' € L*(0,T; LA(R)), ¢" € L*(0, T; H—H ()}
with norm
Igllweor) = Ul Zaom;may + 1912201020 + l]gnl[%z(D,T;H*l(Q)))%’
where ¢’ and ¢ denote the first and second order distributive derivatives of g.

Theorem 2.1 Assume that f € L?(0,T; L3(Q)), yo € HZ(Q) and y1 € L*(Q). Then the prob-
lem (2.1) has a unique weak solution y in W(0,T). Further we have the regularity y €
C([0, T; H5(2)) n C*([0, T]; L*(9)). |

Proof. For the proof of this theorem we use the Galerkin finite approximation method and
the technique of regularization based on the energy equality. Since HJ(f)) is separable, there
exists a basis {wpn }X.; in HF(Q) such that



(1) {wm}S is a complete orthonomal system in L%((),
(ii) {wm}S_, is free and total in H} ().

For each m = 1,2, - -+ we define an approximate solution of the equation (2.1) by
m
ym(t) = Zgjm(t)wja
j=1

where yn, () satisfies

(ym(8), w5) + A(Vym(t), V) + (k * G(Vym)(t), Vw;)
=(f(t),’w3‘), te [O>T]7 1<j<m,
Ym(0) = Yoms  ¥(0) = Yim-

By (i) and (ii) we can deduce for i =1,2,---,m,m € N such that

m
Yom = Z(y(),wi)wi — Yo in H&(Q) as m - 00,
i=1
m
Yim = Z(thz’)wi — Y1 in LZ(Q) as m =+ oC.

g=1

31

(2.6)

(2.7)

(2.8)

To derive a priori estimates of y,(t). We multiply both sides of the equation (2.6) by gj,,(t)

and sum over j to have

{ (Y (£), Ui (8)) + (Vym(t), Vi (1))
+(k * G(Vym) (), V(1) = (F(1), ym(t)).

Using
.

(U, Yn 1)) = 5 Itk (0

(Tt (), V(1)) = 5 5Vt (6, Vum(8),

(k % G (V) (), Vil (1) = 505+ G (T} (8), V(1)
| —k(0)(@TUn(8)), Tum(8)) = (K G(Vain) O, Vom(2),

(2.9) can be written as

= — (VY (1), Vm () + lym @B + 2(k x G(Vyn)(1), Vym(t))]
= (f(), Y (®)) + k(0)(G(Vym(2)), Vym (D)
+(& * G(Vym)(t), Vym(t)).

Let us integrate it on [0,¢) then we have

| Vym(8) 2 + lym (B)1?
= | Vyom|? + lyiml® — 2(k x G(Vym) (1), Vym (1))

t t
+2 [[(7(5),Yn(5))ds +2 | KOG(Tym(s)): Vam(s))ds
0 0

t
+2 /0 (K % (Vo) (5), Vym(s))ds,

(2.9)

(2.10)

(2.11)

(2.12)
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and estimate it to obtain a priori estimates of {y,,}. Let € > 0 be an arbitrary positive real

number. First we have
t
@k 5 G(TYm) B, V)] < 20l Tin )] [ [Vim(s)lds
| 4R3T
< AVun@F + == [ [Ty (219

We can deduce:

|/ (2K G(Tym) (5), Tyt ()] < 20 / thym(s)Eds)2, »
2.14

¢ t
| [ 26 0) (G (Tuin(s)), Vuim(s))ds| < 2h0 | [Fum(s) .
Therefore by using the above inequalities (2.13) and (2.14), we can obtain the following

W +alVyn@F < lyiml® + alVyoml* + e Vyn ) + 1132075200

4k0T

4 (ko + 0L 4 ogyT) / Vym(s)[2ds

+ 2 /0 [yt (5)|ds. (2.15)

Thus it follows by the Bellman-Gronwall’s inequality that
[Vym @) + [y (O < K, (2.16)

for some positive constant K > 0.
Hence by the extraction theorem of Rellich’s, we can extract a subsequence {ym, } of {ym}
and find z € L™(0,T; H3(Q)), 2’ € L*®(0,T; L*(Q)) and F(.) € L>(0,t; [L*(2)]") such that

i) Ym, — z weakly-star in L*(0,T; H3(Q)),
and weakly in L%(0,T; Hy (Q)),
ii) Y, — 7 weakly-star in L(0,T;L*()),
and weakly in L*(0,T; L*(Q)),
i) aAym, — alz weakly in L2(0,T; H-1(2)),
weakly-star in L*(0,#; H1(Q)),
iv) G(Vym) — F(-) weakly-star in L*(0,t;[L*(Q)]"),

and weakly in L2(0,¢; [L2()]™), (2.17)
as k — oco. Therefore by the same manipulations of Dautray and Lions [1], z is a weak solution
satisfying

8z t
O aAz- / k(¢ — s)divF(s)ds = f in @,
ot 0

z=0 on X, (2.18)
z((}) =1yy € H (), Bz(O) 1€ LEQ) in Q.
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The main difficulty is showing F(-) = G(Vz). We shall show

ym(t) = z(t) strongly in H}(Q) (2.19)
Yl (t) — 2(t) strongly in L2%(Q). (2.20)

Integrating an approximate equation (2.11) on [0, ], we obtain

o Vim () + lym ()]
= | Vyom|” + [y1m|” = 2(k * G(Vym)(t), Vym (1))

+2 [ KO)(G(Vym(s)), Fun(s))ds
22 [0« G(Tu)0), Vum(o)ds +2 [ () win(sDds. (220
As shown in the [4], for the weak solution z of (2.18), we can show the following energy equality
o V(B + | (O
= IVl + [ f? ~ 20k F(8), Va(8) + 2 [ (HOF(s), Vo(s))ds
+2 fo " F(s), Va(s))ds + 2 fo (), 2 s)ds. 22)
If we sum the above equalities, then we have
eIV () ~ DI+ o) = 4O (2.23)
= Z‘DZ ) + &V (yom ~ 40)|* + lyim — 91/
~2(k + (G(Vym) — G(V2)) (), V(ym(t) — 2(1)))
42 [ HONG(Tum(s)) = G(V2(5), Vium(s) — 2(5))es

+2 [0 (G(Tum) - GV2))(5) Vlum(s) = ()i, 224)
where
3L, = 20(Vyjom, Vo) + 2(¥1m, y1), (2.25)
o7, = “za(Vym(f) V(t)) = 2(ym (1), 2’ (8)), (2.26)
o3 =2 ] #(s))ds +2 / (F(s), 5 (5))ds, (2.27)
of, = —2(k* G(Vym)(t) Vz(t))
_9(k + G(V2)(t), Vigm(t) — 2(£))) — 2(k x F(£), V2(2), (2.28)

#3, =2 [ HO)(@(Vum(s)), V2()ds
42 [ KO)(E(T2(6)), Vlum(s) - 2())ds
+2 /0 1 (0)(F(s), V(s))ds, (2.29)
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o8 =2 /0 " % G(Vym)(s), Va(s))ds
+2 /Ot(ic’ * G(Vz)(s), V(ym(s) — z(s)))ds + 2/;(19’ x F(8),Vz(s))ds. (2.30)

For simplicity we set

6
P(t) = Z éﬁn(t)'

i=1

Then we can derive the following estimation
|V (gm () = 2(D)* + lym () = 2 (D)2
< CBp(t) + C(IV (yom — 10)* + lyim ~ 1)
+0 [ (9 m(s) = (D + o) = ), 231
where C is some positive constant. It is followed from (2.25) to (2.30) and ultimately from (2.22)

that
®pm(t) >0 when m — oo forall t€[0,T]

Therefore by applying the Bellmann Gronwall’s lemma to (2.31), we can obtain
ym(t) — 2z(t) strongly in H}(Q) forall ¢€[0,T], (2.32)
yl (1) — Z'(t) strongly in L*(2) for all ¢ € [0,T]. (2.33)
Moreover by (2.32) and (2.4), it is readily followed that
F(-) = G{Vz). (2.34)

This proves that z is a weak solution of (2.1). The uniqueness of weak solutions follows by the
standard manner using the energy equality {2.22) with (2.34).

3 Quadratic cost optimal control problems

The observation of the state is assumed to be given by 2(v) = Cy(v), C € L(W(0,T), M),
where C is an operator called the observer, and M is a Hilbert space of observation variables.
The quadratic cost function associated with the control system (1.1) is given by

J(v) = |Cy(v) — 23 + (Rv,v)u forv €U, (3.1)

where zg € M is a desired value of 2(v) and R € L(U,U) is a regulator satisfying the sym-
metrity and positivity. Assume that an admissible subset ¢,q of ¢ is convex and closed. The
optimal control problems for (1.1) subject to the cost (3.1) are the following the existence and
characterizations of them.

i) Find an element u € U,g such that

ot J(0) = J(u). (3.2)

il) Give a characterization of such the w.

We shall call such the u the optimal control and y(u) the optimal state.
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3.1 Gateaux differentiability of solution map

We assume the existence of an optimal contro! u for the cost (3.1). For example, if B €
L(U, L?(0,T; L?(2)) is a compact operator, then there exists at least one optimal control u.

In order to solve the characterization problem ii) we need to show that the map v — y(v) of
U — W(0,T) is Gateaux differentiable at v = u. The solution map v — y(v) of U — W(0,T) is
said to be Gateaux differentiable if any w € U there exists a Dy(w) € L(U, W(0,T)) such that
—+0 as A—=0.

| ((w + A = w)) = y(w) - Dy()o —w)|

The operator Dy(w) is called the Géateaux derivative of y(w) at v = w and the function
Dy(w)(v — w) € W(0,T) is called the Giteaux derivative in the direction v —w € U.

Theorem 3.1 The solution map v —+ y{v) of U into W(0,T) is Gateaux differentiable at v = u
and such the Gateaux derivative of y(v) at v = u in the direction v—u € U, say z = Dy{u)(v—u)
is a unique weak solution satisfying the following equation

(( 0%z [t i Vz B Vy(u) - Vz
v alz /0 k(t — s)di (—-——-—1 o Vy{u) T [Vy(u)[z)% )ds
) =B{v—u) in Q, (3.3)
z=0 on I,
oz .
| z(O) fard O, -é—t'(O) =0 m Q.

Theorem 3.1 means that the cost J(v) is Géateaux differentiable at » in the direction v — u and
the optimality condition is rewritten by

(Cy(u) — 24, C(Dy(u) (v — u)))u + (Ru,v — u)y
= (C*Am{(Cy(u) = 24), Dy(w)(v — w))wio,ry,W(O.T)
+(Ru,v —u)y >0, Yo € Ug, (3.4)

where A,/ is the canonical isomorphism M onto M'.
In deriving the optimality condition by formal calculations, we will derive some adjoint
system for the above observation. In this case, the formal adjoint system must have the term of

YT Vo(u; s) Uy Vylu;t) - Vp(u; s) :
o A e vy A

where the integral kernel is not differentiable in ¢. So that we can not verify the existence of
a weak solution for the formal adjoint system. To overcome this difficulty, we will introduce
transposition method to represent a proper adjoint system.

3.2 Transposition method
Let g € L2(0,T; L(2)). Then we have a unique weak solution ¢ € W(0, T) of the following
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equation
(5% ¢ . Vi i Vy(u) - V¢ s
o = [ M- )av( g — YY) (1+ !Vy(u)m%)d
: =g in @, (3.5)
=0 on X, |
o g
| ’lp(O) - 01 8t (0) =0 1 Q'

Therefore we can define the space
X = {¢|¢ satisfies (3.5) with g € L*(0,T; L*(Q))}.

It is seen in Theorem 2.1 that X ¢ W(0,T) n C([0,T); Hi () N C*([0,T]; L*(2)). We give a
inner product (-,-)x on X by

(1, %2)x = (91,92) L2 (0,7;L2()> (3.6)

where 11, 12 are the weak solutions of (3.5) for given g = g1, g2 € L%(0, T; L*(2)), respectively.
We can know that (X, (+,-)x) is a Hilbert space. And we can see that the map

_ 8%y t . Vi Vylu) - V9
T g = e = [ k(e e)div( ey — Vil mramEHAN

of X onto L*(0,T;L3(§))) is an isomorphism. Hence for each continuous linear functional L :
X — R, there exists uniquely a p = py, € L*(0,T; L?(2)) such that

[ 60, T = 1), e x. (3.

For g € L'(0,T; H1(Q)), po € L*(Q) and p; € H1(Q), let us define the functional L =
L(g7p0ap1) by

1) = [ (o0 (0t + (p1, D) — (s (7). (3.9)

Then this L is linear on X. Next we shall show the boundedness of L. It is easily checked from
the fact ¥ € X C C([0, T); H}(92)) n C*([0, T]; L2(2)) that

L) < (gll o2y + ol a-2(0) + oD (¥l oo sz @y + V(D] + [9/(T)))-

Proposition 3.1 For g € LY(0,T; H1(Q)), py € L*(Q) and p; € H1(), there is a unique
solution p € L2(0,T; L2(Q)) such that

[ w0, Toenar
T
= [ (0®).(®)dt + o1, YD) ~ (b0, ¥(T), V€ X.
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3.3 Necessary optimality conditions

We consider the following type of distributive and terminal value observations. For simplicity,
we regard identity operator Ij as observation operator and U,q C U. We take

I € L(L(0,T; () x LX), L*(0, T; L*(Q)) x L*(Q))
and observe z(v) = (y(v),y(v; T)).
Since y € W(0,T) 1 C([0, T]; H} () n CH([0, T); L?(2)), the above observation is meaningful.
In this case the cost functional is expressed by
J(w) = ly(®) — 2arlf32 0 myz2ay + 190 T) = 2aall oy + (RO, v)us Vo € Uagy (3.10)

where (2zg1, 242) € L2(0,T; L2(Q)) x L?() are desired values. Let u be the optimal control for
the cost (3.10). Then the optimality condition is rewritten as

/{}T((y(u) — zg1){(t), 2(£))dt + (y(w; T) — 242, 2(T)) + (Ru,v — u)y 2 0, Yv € Upa, (3.11)

where z is the weak solution of the equation (3.3). Now we will formulate the adjoint sys-
tem to describe the optimality condition by applying Proposition 3.1. Since y(u) — zg1 €
L2(0,T; L2(9)) ¢ M0, T; H-1(Q)) and y(u; T)— 243 € L?(Q). There exists a p(u) € L2(0, T; L*(Q))
satisfying

/OT (P(M t), T¢(t))dt = /OT((y(U) ~ 241)(8),¥(8))dt + (y(w; T) — za2,%(T)),
) Vi such that T4 € L2(0,T; L3(Q)),

p=0 on I,
oy .
{ $(0) =0, —(%(G) =0 in O
In fact the Gateaux derivative ¥ = z = Dy(u){v — u) satisfies

_ %Y ‘ , VY gy VU VY
T = G [ k(=) = Wl e
= B(v —u) € L%(0,T; L*(%)), (3.12)

#(0) = 0, %—f(mzo m O

Therefore, if we taking % = 2 = Dy(u)(v — u), then we have
(y(w) — za1, 2) p2(0,mL20)) + W T) — zaz, 2(T))
= [ () = 20) @), 200t + (o5 T) 2, 2(T)
[ (ol 8,790

= /0 ! (p(u; t), B(v — u)(2)) dt = (A;;'B*p(u),v — wu-

Therefore we can conclude that the optimality condition is equivalent to

It

(A&lB*p(u) + Ru,v —u)y >0, Vv € Uyq.

Hence we can show the following theorem.
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Theorem 3.2 The optimal control u for the cost (3.10) is characterized by the following system

of equations and inequality:

Py _ ayu /kt_s)dw(__.__w_)ds=f+3u in Q,

a2 1+ [Vy(u)l?

y(u) =0 on X,
y(u; 0) = yolu), %%(u;ﬂ) =y(u) in Q.

___V_w'__“__ — Vy(u) - VY dsdxzdt
1+ [Vy(u)] vyl (1+ |Vy(u)12)%) )
= [ ) - 20) - 2datt+ [ W T) = z2) - 2D,
Q 0

Y1y such that

% _ vy _ Yy Ve

5 alp — / s)dN RO Vy(U)(l—i-IVy(u)P)%) s
€ L*(Q),

Pp=0 on 3,

{ ¥(0) =0, %D(O) =0 in (.

A B*p(u) + Ru,v —uw)y > 0, Yv € Ugg
U

— | k(t - s)div(

P

Finally we note that the adjoint state p satisfies formally

. 82p(u
ié%gfl—aAp(u)
R P G2 IR 4 | C 1) R 2 CL)
/k( a (\/1+1Vy(mt)12 u ’t)(1+i‘7y(u;t)(2)%)ds
Zy(u)_zdl in @Q,

p(u)=0 on X,

puT) =0, L@wT)=—ywT) +zm in
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