<table>
<thead>
<tr>
<th>Title</th>
<th>Mathematical Analysis of an SIRS Epidemic Model with Delay (Functional Equations and Complex Systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yoshida, Naoki; Hara, Tadayuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1445: 40-45</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47640</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
1 Introduction

Classical epidemic models assume that the total population size is constant. More recent models consider a variable population size in order to take into account a longer time scale with disease causing death and reduced reproduction, see [3, 4].

SIRS epidemic models have been studied by many authors, see [2, 5]. It is our aim to analyze a variable population SIRS epidemic model with a delay. The total (host) population size $N(t)$ is divided into susceptible, infective, and recovered with temporary immunity individuals. The respective numbers are denoted by S, I and R. The flow of individuals can schematically be described as

$$
\begin{align*}
B(N)N & \downarrow \\
S & \xrightarrow{\beta S I/N} I \\
\mu S & \xrightarrow{(\mu+\alpha)I} \mu R \\
\lambda I & \downarrow \\
R & \xrightarrow{\mu R} S.
\end{align*}
$$

We assume that everybody is born as susceptible. $B(N)N$ is a birth rate function with $B(N)$ satisfying the following assumptions for $N \in (0, \infty)$:

(A1) $B(N) > 0$;

(A2) $B(N)$ is continuously differentiable with $B'(N) < 0$;

(A3) $B(0^+) > \mu + \alpha$ and $\mu > B(+\infty)$.

Note that (A2) and (A3) imply that $B^{-1}(N)$ exists for $N \in (B(\infty), B(0^+))$, and (A3) assures that N does not go to extinction and cannot blow up. The parameter $\mu > 0$ is the natural death rate constant, $\alpha \geq 0$ is the disease-related death rate constant, and $\lambda \geq 0$ is rate constant for recovery. The force of infection is assumed to be of standard type, namely $\beta I/N$, with $\beta > 0$, the effective per capita contact rate constant of infective individuals. The time delay τ denotes a constant immune period.

1 Email: yoshida@ms.osakafu-u.ac.jp

2 Email: hara@ms.osakafu-u.ac.jp
Our model thus take the following form:

\[
N(t) = S(t) + I(t) + R(t), \quad (1.1)
\]

\[
S'(t) = B(N(t))N(t) - \mu S(t) - \frac{\beta S(t)I(t)}{N(t)} + \lambda I(t - \tau)e^{-\mu\tau}, \quad (1.2)
\]

\[
I'(t) = \frac{\beta S(t)I(t)}{N(t)} - (\mu + \lambda + \alpha)I(t), \quad (1.3)
\]

\[
R'(t) = \lambda I(t) - \lambda I(t - \tau)e^{-\mu\tau} - \mu R(t), \quad (1.4)
\]

with initial conditions

\[
S(\theta) > 0, \ I(\theta) > 0, \ R(\theta) > 0 \text{ on } [-\tau, 0]. \quad (1.5)
\]

In order to assure continuity of solutions at time 0, we assume that

\[
R(0) = \int_{-\tau}^{0} \lambda I(u)e^\mu du. \quad (1.6)
\]

System (1.1)–(1.4) always has the disease-free equilibrium \(E_0 = (B^{-1}(\mu), 0, 0) \). Furthermore, if the basic reproduction number \(R_0 := \frac{1}{\mu + \lambda + \alpha} > 1 \), then it also has the unique endemic equilibrium \(E_+ = (S^*, I^*, R^*) \) where

\[
S^* = \frac{\mu + \lambda + \alpha}{\beta}N^*, \quad I^* = \left(1 - \frac{\mu + \lambda + \alpha}{\beta}\right)N^*/\left(1 + \frac{\lambda(1 - e^{-\mu\tau})}{\mu}\right), \quad R^* = \frac{\lambda(1 - e^{-\mu\tau})}{\mu}I^*
\]

and

\[
N^* = B^{-1}\left(\mu + \alpha\left(1 - \frac{\mu + \lambda + \alpha}{\beta}\right)\right)/\left(1 + \frac{\lambda(1 - e^{-\mu\tau})}{\mu}\right).
\]

2 Main result

The following basic result for solutions of system is given. The proof is omitted.

Theorem 2.1. Let \(S(t), I(t), R(t) \) be a solution of the delay differential system (1.2)–(1.4) with \(N(t) \) given by (1.1), and initial conditions given by (1.5). In addition, suppose that (1.6) holds. For all \(t \geq 0 \), this solution exists, is unique and has \(S(t) > 0, I(t) > 0 \), \(R(t) > 0 \).

A linear analysis shows the following theorem for disease-free equilibrium.

Theorem 2.2. If \(R_0 < 1 \), then the disease-free equilibrium is locally asymptotically stable.

A global stability result can be given by using the following results. Consider the systems:

\[
x' = f(t, x) \quad (2.1)
\]

\[
y' = g(y) \quad (2.2)
\]
where \(f \) and \(g \) are continuous and locally Lipschitz in \(x \) in \(\mathbb{R}^n \) and solutions exist for all positive time. (2.1) is called asymptotically autonomous with limit equation in \(\mathbb{R}^n \).

Lemma 2.1 ([8]). Let \(e \) be a locally asymptotically stable equilibrium of (2.2) and \(\omega \) be the \(\omega \)-limit set of a forward bounded solution \(x(t) \) of (2.1). If \(\omega \) contains a point \(y_0 \) such that the solution of (2.2) with \(y(0) = y_0 \) converges to \(e \) as \(t \to \infty \), then \(\omega = \{ e \} \), i.e. \(x(t) \to e \) as \(t \to \infty \).

Corollary 2.1. If solutions of system (2.1) are bounded and the equilibrium \(e \) of the limit system (2.2) is globally asymptotically stable, then any solution \(x(t) \) of system (2.1) satisfies \(x(t) \to e \) as \(t \to \infty \).

Theorem 2.3. For \(R_0 < 1 \) all solutions of the system (1.2)-(1.4) with (1.1) approach the disease free equilibrium as \(t \to \infty \).

Proof. By (1.3), we have \(I' \leq (\beta - \mu - \lambda - \alpha)I \), hence \(I(t) \) has limit zero as \(t \to \infty \) if \(\beta - \mu - \lambda - \alpha < 0 \). Then \(R(t) \to 0 \) as \(t \to \infty \) from (1.4).

Add equations (1.2)-(1.4), and use (1.1) to obtain

\[
N' = (B(N) - \mu)N - \alpha I.
\]

This equation has the limit equation

\[
N' = (B(N) - \mu)N.
\]

By Corollary 2.1, \(N(t) \to B^{-1}(\mu) \) as \(t \to \infty \). Hence \(S(t) \to B^{-1}(\mu) \) as \(t \to \infty \). \(\square \)

A global property of the endemic equilibrium for a restricted set of parameter values can be given as follows.

Theorem 2.4. Suppose that \(\alpha = 0 \) and \(R_0 > 1 \). If \(\tau < \frac{1}{\lambda} \), all solutions of system (1.2)-(1.4) with (1.1) approach the endemic equilibrium as \(t \to \infty \).

Proof. Define \(i(t) = I(t)/N(t) \). Let \(i^* = I^*/N^* \). System (1.2)-(1.4) leads to the following system

\[
i'(t) = \beta \left\{ i^* - i(t) + \frac{\lambda}{\mu} (1 - e^{-\mu \tau}) i^* - \frac{\lambda}{N(t)} \int_{t-\tau}^{t} i(u)N(u)e^{-\mu(t-u)}du \right\} i(t) \\
- (B(N) - \mu)i(t)
\]

\[
N'(t) = (B(N(t)) - \mu)N(t).
\]

(2.5)
This system has a unique internal equilibrium \((i^*, B^{-1}(\mu))\) corresponding to the endemic equilibrium \(E_+\).

By the second equation of (2.5), if \(N(0) \leq B^{-1}(\mu)\), \(N(t)\) is monotone increasing and \(N(t) \leq B^{-1}(\mu)\), whereas if \(N(0) > B^{-1}(\mu)\), \(N(t)\) is monotone decreasing and \(N(t) > B^{-1}(\mu)\).

Derivative of \(V_1\) along a solution is

\[
\dot{V}_1(t) = \beta \left\{ i^* - i(t) + \frac{\lambda}{\mu} (1 - e^{-\mu t}) i^* - \frac{\lambda}{N(t)} \int_{t-\tau}^{t} i(u) N(u) e^{-\mu (t-u)} du \right\} i(t) \left(1 - \frac{i^*}{i(t)} \right) \\
- (B(N(t)) - \mu) (i(t) - i^*) \\
= -\beta (i(t) - i^*)^2 + \beta \lambda \int_{t-\tau}^{t} (i(t) - i^*) (i(u) - i^*) e^{-\mu (t-u)} du \\
+ \beta \lambda \int_{t-\tau}^{t} (i(t) - i^*) \left(1 - \frac{N(u)}{N(t)} \right) i(u) e^{-\mu (t-u)} du - (B(N(t)) - \mu) (i(t) - i^*) \\
\leq -\beta (i(t) - i^*)^2 + \frac{1}{2} \beta \lambda \int_{t-\tau}^{t} \left\{ (i(t) - i^*)^2 + (i(u) - i^*)^2 e^{-2\mu (t-u)} \right\} du \\
+ \beta \lambda \int_{t-\tau}^{t} (i(t) - i^*) \left(1 - \frac{N(u)}{N(t)} \right) i(u) e^{-\mu (t-u)} du - (B(N(t)) - \mu) (i(t) - i^*) \\
\leq -\beta (i(t) - i^*)^2 + \frac{1}{2} \beta \lambda \tau (i(t) - i^*)^2 + \frac{1}{2} \beta \lambda \int_{t-\tau}^{t} (i(u) - i^*)^2 du \\
+ \beta \lambda \int_{t-\tau}^{t} (i(t) - i^*) \left(1 - \frac{N(u)}{N(t)} \right) i(u) e^{-\mu (t-u)} du - (B(N(t)) - \mu) (i(t) - i^*)
\]

(2.6)

If \(N(0) \leq B^{-1}(\mu)\), we have from (2.6),

\[
\dot{V}_1(t) \leq -\beta (i(t) - i^*)^2 + \frac{1}{2} \beta \lambda \tau (i(t) - i^*)^2 + \frac{1}{2} \beta \lambda \int_{t-\tau}^{t} (i(u) - i^*)^2 du \\
+ \beta \lambda \int_{t-\tau}^{t} \left(1 - \frac{N(u)}{N(t)} \right) i(u) e^{-\mu (t-u)} du + i^* (B(N(t)) - \mu).
\]

(2.7)

In addition, define

\[
V_2(t) := \frac{1}{2} \beta \lambda \int_{t-\tau}^{t} \int_{\theta}^{t} (i(\xi) - i^*)^2 d\xi d\theta + \beta \lambda \int_{t-\tau}^{t} \int_{\theta}^{t} \left(1 - \frac{N(\xi)}{N(t)} \right) d\xi d\theta.
\]

(2.8)

Then (2.7) and (2.8) lead to

\[
\frac{d}{dt} (V_1 + V_2) \leq -\beta (i(t) - i^*)^2 + \frac{1}{2} \beta \lambda \tau (i(t) - i^*)^2 + \frac{1}{2} \beta \lambda \tau (i(t) - i^*)^2
\]
44

\begin{align*}
&+ \beta \lambda \int_{t-	au}^{t} \int_{t-	au}^{t} \frac{N(\xi)N'(t)}{N^2(t)} d\xi d\theta + i^*(B(N(t)) - \mu) \\
&\leq -\beta(1 - \lambda \tau) (i(t) - i^*)^2 \\
&+ \beta \lambda \frac{N'(t)}{N(t)} \int_{t-	au}^{t} \int_{t-	au}^{t} \frac{N(\xi)}{N(t)} d\xi d\theta + i^*(B(N(t)) - \mu) \\
&= -\beta(1 - \lambda \tau) (i(t) - i^*)^2 \\
&+ \beta \lambda \frac{N'(t)}{N(t)} \int_{t-	au}^{t} \frac{N(\xi)}{N(t)} d\xi + i^*(B(N(t)) - \mu) \\
&\leq -\beta(1 - \lambda \tau) (i(t) - i^*)^2 + \beta \lambda \tau \frac{N'(t)}{N(t)} + i^*(B(N(t)) - \mu) \\
&= -\beta(1 - \lambda \tau) (i(t) - i^*)^2 + (\beta \lambda \tau + i^*) \frac{N'(t)}{N(t)}. \\
\end{align*}

Note that
\[\int_{0}^{+\infty} \frac{N'(u)}{N(u)} du = \ln \frac{B^{-1}(\mu)}{N(0)}. \]

If \(1 > \lambda \tau\), we have
\[\int_{0}^{+\infty} (i(u) - i^*)^2 du < +\infty. \quad (2.9) \]

From (2.5), we see that \((i(t) - i^*)^2\) is uniformly continuous on \([0, \infty)\). It follows from the well-known Barb"{a}lat's lemma (see [1]),
\[\lim_{t \to +\infty} i(t) = i^*. \]

From (1.4),
\[\lim_{t \to +\infty} R(t) = R^*, \]
which implies
\[\lim_{t \to +\infty} S(t) = S^*. \]

In a similar manner, we can show that \(E_+\) is globally attractive if \(N(0) > B^{-1}(\mu)\).

This completes the proof. \(\square\)

3 Summary

In this paper, we considered stability of the few variable population \(SIRS\) epidemic model with a delay. We showed that if \(R_0 < 1\), the disease-free equilibrium is globally asymptotically stable, whereas if \(R_0 > 1\), the endemic equilibrium is globally attractive for small delay.
References

