タイムラグをもつ SIRS 伝染病モデルの数理解析 Mathematical Analysis of an SIRS Epidemic Model with Delay

大阪府立大学大学院工学研究科 吉田 直樹 (Naoki Yoshida) 1 原 惟行 (Tadayuki Hara) 2

Graduate School of Engineering, Osaka Prefecture University

1 Introduction

Classical epidemic models assume that the total population size is constant. More recent models consider a variable population size in order to take into account a longer time scale with disease causing death and reduced reproduction, see [3, 4].

SIRS epidemic models have been studied by many authors, see [2, 5]. It is our aim to analyze a variable population SIRS epidemic model with a delay. The total (host) population size N(t) is divided into susceptible, infective, and recovered with temporary immunity individuals. The respective numbers are denoted by S, I and R. The flow of individuals can schematically be described as

$$\begin{array}{cccc} B(N)N \downarrow & & & & \\ S & \xrightarrow{\beta SI/N} & I & \xrightarrow{\lambda I} & R^{\tau} & \longrightarrow & S. \\ \mu S \downarrow & (\mu + \alpha)I \downarrow & \mu R \downarrow & & & \\ \end{array}$$

We assume that everybody is born as susceptible. B(N)N is a birth rate function with B(N) satisfying the following assumptions for $N \in (0, \infty)$:

- (A1) B(N) > 0;
- (A2) B(N) is continuously differentiable with B'(N) < 0;
- (A3) $B(0^+) > \mu + \alpha \text{ and } \mu > B(+\infty).$

Note that (A2) and (A3) imply that $B^{-1}(N)$ exists for $N \in (B(\infty), B(0^+))$, and (A3) assures that N does not go to extinction and cannot blow up. The parameter $\mu > 0$ is the natural death rate constant, $\alpha \geq 0$ is the disease-related death rate constant, and $\lambda \geq 0$ is rate constant for recovery. The force of infection is assumed to be of standard type, namely $\beta I/N$, with $\beta > 0$, the effective per capita contact rate constant of infective individuals. The time delay τ denotes a constant immune period.

¹Email: yoshida@ms.osakafu-u.ac.jp

²Email: hara@ms.osakafu-u.ac.jp

Our model thus take the following form:

$$N(t) = S(t) + I(t) + R(t), (1.1)$$

$$S'(t) = B(N(t))N(t) - \mu S(t) - \frac{\beta S(t)I(t)}{N(t)} + \lambda I(t - \tau)e^{-\mu\tau},$$
 (1.2)

$$I'(t) = \frac{\beta S(t)I(t)}{N(t)} - (\mu + \lambda + \alpha)I(t), \tag{1.3}$$

$$R'(t) = \lambda I(t) - \lambda I(t - \tau)e^{-\mu\tau} - \mu R(t), \qquad (1.4)$$

with initial conditions

$$S(\theta) > 0, \ I(\theta) > 0, \ R(\theta) > 0 \text{ on } [-\tau, 0].$$
 (1.5)

In order to assure continuity of solutions at time 0, we assume that

$$R(0) = \int_{-\tau}^{0} \lambda I(u) e^{\mu u} du.$$
 (1.6)

System (1.1)–(1.4) always has the disease-free equilibrium $E_0 = (B^{-1}(\mu), 0, 0)$. Furthermore, if the basic reproduction number $\mathcal{R}_0 := \frac{1}{\mu + \lambda + \alpha} > 1$, then it also has the unique endemic equilibrium $E_+ = (S^*, I^*, R^*)$ where

$$S^* = \frac{\mu + \lambda + \alpha}{\beta} N^*, I^* = \left(1 - \frac{\mu + \lambda + \alpha}{\beta}\right) N^* \bigg/ \left(1 + \frac{\lambda(1 - e^{-\mu\tau})}{\mu}\right), R^* = \frac{\lambda(1 - e^{-\mu\tau})}{\mu} I^*$$
and
$$N^* = B^{-1} \left(\mu + \alpha \left(1 - \frac{\mu + \lambda + \alpha}{\beta}\right) \bigg/ \left(1 + \frac{\lambda(1 - e^{-\mu\tau})}{\mu}\right)\right).$$

2 Main result

The following basic result for solutions of system is given. The proof is omitted.

Theorem 2.1. Let S(t), I(t), R(t) be a solution of the delay differential system (1.2) – (1.4) with N(t) given by (1.1), and initial conditions given by (1.5). In addition, suppose that (1.6) holds. For all $t \geq 0$, this solution exists, is unique and has S(t) > 0, I(t) > 0, R(t) > 0.

A linear analysis shows the following theorem for disease-free equilibrium.

Theorem 2.2. If $\mathcal{R}_0 < 1$, then the disease-free equilibrium is locally asymptotically stable.

A global stability result can be given by using the following results. Consider the systems:

$$x' = f(t, x) \tag{2.1}$$

$$y' = g(y) \tag{2.2}$$

where f and g are continuous and locally Lipschitz in x in \mathbb{R}^n and solutions exist for all positive time. (2.1) is called asymptotically autonomous with limit equation in \mathbb{R}^n .

Lemma 2.1 ([6]). Let e be a locally asymptotically stable equilibrium of (2.2) and ω be the ω -limit set of a forward bounded solution x(t) of (2.1). If ω contains a point y_0 such that the solution of (2.2) with $y(0) = y_0$ converges to e as $t \to \infty$, then $\omega = \{e\}$, i.e. $x(t) \to e$ as $t \to \infty$.

Corollary 2.1. If solutions of system (2.1) are bounded and the equilibrium e of the limit system (2.2) is globally asymptotically stable, then any solution x(t) of system (2.1) satisfies $x(t) \to e$ as $t \to \infty$.

Theorem 2.3. For $\mathcal{R}_0 < 1$ all solutions of the system (1.2)-(1.4) with (1.1) approach the disease free equilibrium as $t \to \infty$.

Proof. By (1.3), we have $I' \leq (\beta - \mu - \lambda - \alpha)I$, hence I(t) has limit zero as $t \to \infty$ if $\beta - \mu - \lambda - \alpha < 0$. Then $R(t) \to 0$ as $t \to \infty$ from (1.4).

Add equations (1.2)–(1.4), and use (1.1) to obtain

$$N' = (B(N) - \mu)N - \alpha I. \tag{2.3}$$

This equation has the limit equation

$$N' = (B(N) - \mu)N. (2.4)$$

By Corollary 2.1,
$$N(t) \to B^{-1}(\mu)$$
 as $t \to \infty$. Hence $S(t) \to B^{-1}(\mu)$ as $t \to \infty$.

A global property of the endemic equilibrium for a restricted set of parameter values can be given as follows.

Theorem 2.4. Suppose that $\alpha = 0$ and $\mathcal{R}_0 > 1$. If $\tau < \frac{1}{\lambda}$, all solutions of system (1.2)-(1.4) with (1.1) approach the endemic equilibrium as $t \to \infty$.

Proof. Define i(t) = I(t)/N(t). Let $i^* = I^*/N^*$. System (1.2)–(1.4) leads to the following system

$$i'(t) = \beta \left\{ i^* - i(t) + \frac{\lambda}{\mu} (1 - e^{-\mu \tau}) i^* - \frac{\lambda}{N(t)} \int_{t-\tau}^t i(u) N(u) e^{-\mu(t-u)} du \right\} i(t)$$

$$- (B(N) - \mu) i(t)$$

$$N'(t) = (B(N(t)) - \mu) N(t).$$
(2.5)

This system has a unique internal equilibrium $(i^*, B^{-1}(\mu))$ corresponding to the endemic equilibrium E_+ .

By the second equation of (2.5), if $N(0) \leq B^{-1}(\mu)$, N(t) is monotone increasing and $N(t) \leq B^{-1}(\mu)$, whereas if $N(0) > B^{-1}(\mu)$, N(t) is monotone decreasing and $N(t) > B^{-1}(\mu)$.

Derivative of V_1 along a solution is

$$\begin{split} \dot{V_1}(t) &= \beta \left\{ i^* - i(t) + \frac{\lambda}{\mu} (1 - e^{-\mu \tau}) i^* - \frac{\lambda}{N(t)} \int_{t-\tau}^t i(u) N(u) e^{-\mu(t-u)} du \right\} i(t) \left(1 - \frac{i^*}{i(t)} \right) \\ &- (B(N(t)) - \mu) \left(i(t) - i^* \right) \\ &= -\beta \left(i(t) - i^* \right)^2 + \beta \lambda \left(i(t) - i^* \right) \int_{t-\tau}^t \left(i^* e^{-\mu(t-u)} - i(u) \frac{N(u)}{N(t)} e^{-\mu(t-u)} \right) du \\ &- (B(N(t)) - \mu) \left(i(t) - i^* \right) \\ &= -\beta \left(i(t) - i^* \right)^2 - \beta \lambda \int_{t-\tau}^t \left(i(t) - i^* \right) \left(i(u) - i^* \right) e^{-\mu(t-u)} du \\ &+ \beta \lambda \int_{t-\tau}^t \left(i(t) - i^* \right) \left(1 - \frac{N(u)}{N(t)} \right) i(u) e^{-\mu(t-u)} du - \left(B(N(t)) - \mu \right) \left(i(t) - i^* \right) \\ &\leq -\beta \left(i(t) - i^* \right)^2 + \frac{1}{2} \beta \lambda \int_{t-\tau}^t \left\{ \left(i(t) - i^* \right)^2 + \left(i(u) - i^* \right)^2 e^{-2\mu(t-u)} \right\} du \\ &+ \beta \lambda \int_{t-\tau}^t \left(i(t) - i^* \right) \left(1 - \frac{N(u)}{N(t)} \right) i(u) e^{-\mu(t-u)} du - \left(B(N(t)) - \mu \right) \left(i(t) - i^* \right) \\ &\leq -\beta \left(i(t) - i^* \right)^2 + \frac{1}{2} \beta \lambda \tau \left(i(t) - i^* \right)^2 + \frac{1}{2} \beta \lambda \int_{t-\tau}^t \left(i(u) - i^* \right)^2 du \\ &+ \beta \lambda \int_{t-\tau}^t \left(i(t) - i^* \right) \left(1 - \frac{N(u)}{N(t)} \right) i(u) e^{-\mu(t-u)} du - \left(B(N(t)) - \mu \right) \left(i(t) - i^* \right) \end{aligned}$$

If $N(0) \le B^{-1}(\mu)$, we have from (2.6),

$$\dot{V}_{1}(t) \leq -\beta \left(i(t) - i^{*}\right)^{2} + \frac{1}{2}\beta \lambda \tau \left(i(t) - i^{*}\right)^{2} + \frac{1}{2}\beta \lambda \int_{t-\tau}^{t} (i(u) - i^{*})^{2} du + \beta \lambda \int_{t-\tau}^{t} \left(1 - \frac{N(u)}{N(t)}\right) du + i^{*} \left(B(N(t)) - \mu\right).$$
(2.7)

In addition, define

$$V_2(t) := \frac{1}{2}\beta\lambda \int_{t-\tau}^t \int_{\theta}^t (i(\xi) - i^*)^2 d\xi d\theta + \beta\lambda \int_{t-\tau}^t \int_{\theta}^t \left(1 - \frac{N(\xi)}{N(t)}\right) d\xi d\theta. \tag{2.8}$$

Then (2.7) and (2.8) lead to

$$\frac{d}{dt}(V_1 + V_2) \le -\beta (i(t) - i^*)^2 + \frac{1}{2}\beta \lambda \tau (i(t) - i^*)^2 + \frac{1}{2}\beta \lambda \tau (i(t) - i^*)^2$$

$$+ \beta \lambda \int_{t-\tau}^{t} \int_{\theta}^{t} \frac{N(\xi)N'(t)}{N^{2}(t)} d\xi d\theta + i^{*} (B(N(t)) - \mu)$$

$$\leq -\beta (1 - \lambda \tau) (i(t) - i^{*})^{2}$$

$$+ \beta \lambda \frac{N'(t)}{N(t)} \int_{t-\tau}^{t} \int_{t-\tau}^{t} \frac{N(\xi)}{N(t)} d\xi d\theta + i^{*} (B(N(t)) - \mu)$$

$$= -\beta (1 - \lambda \tau) (i(t) - i^{*})^{2}$$

$$+ \beta \lambda \tau \frac{N'(t)}{N(t)} \int_{t-\tau}^{t} \frac{N(\xi)}{N(t)} d\xi + i^{*} (B(N(t)) - \mu)$$

$$\leq -\beta (1 - \lambda \tau) (i(t) - i^{*})^{2} + \beta \lambda \tau^{2} \frac{N'(t)}{N(t)} + i^{*} (B(N(t)) - \mu)$$

$$= -\beta (1 - \lambda \tau) (i(t) - i^{*})^{2} + (\beta \lambda \tau^{2} + i^{*}) \frac{N'(t)}{N(t)} .$$

Note that

$$\int_0^{+\infty} \frac{N'(u)}{N(u)} du = \ln \frac{B^{-1}(\mu)}{N(0)}.$$

If $1 > \lambda \tau$, we have

$$\int_{0}^{+\infty} (i(u) - i^{*})^{2} du < +\infty.$$
 (2.9)

From (2.5), we see that $(i(t) - i^*)^2$ is uniformly continuous on $[0, \infty)$. It follows from the well-known Barbălat's lemma (see [1]),

$$\lim_{t \to +\infty} i(t) = i^*.$$

From (1.4),

$$\lim_{t \to +\infty} R(t) = R^*,$$

which implies

$$\lim_{t \to +\infty} S(t) = S^*.$$

In a similar manner, we can show that E_+ is globally attractive if $N(0) > B^{-1}(\mu)$. This completes the proof.

3 Summary

In this paper, we considered stability of the few variable population SIRS epidemic model with a delay. We showed that if $R_0 < 1$, the disease-free equilibrium is globally asymptotically stable, whereas if $R_0 > 1$, the endemic equilibrium is globally attractive for small delay.

References

- I. Barbălat, Systèmes d'équations différentielles d'oscillations non linéaires. Rev. Math. Pures Appl. 4 (1959), 267–270.
- [2] K. L. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays. J. Math. Biol. **35** (1996), 240–260.
- [3] K. L. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol. **39** (1999), 332–352.
- [4] L. Q. Gao and H. W. Hethcote, Disease transmission models with density-dependent demographics. J. Math. Biol. **30** (1992) 717–731.
- [5] H. W. Hethcote, H. W. Stech and P. van den Driessche, Nonlinear oscillations in epidemic models. SIAM J. Appl. Math. 40 (1981), 1–9.
- [6] H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30 (1992), 755–763.