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Mathematical Analysis of an SIRS Epidemic Model with Delay
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1 Introduction

Classical epidemic models assume that the total population size is constant. More recent
models consider a variable population size in order to take into account a longer time scale
with disease causing death and reduced reproduction, see [3, 4].

SIRS epidemic models have been studied by many authors, see {2, 5]. It is our aim
to analyze a variable population SIRS epidemic model with a delay. The total (host)
population size N(t) is divided into susceptible, infective, and recovered with temporary
immunity individuals. The respective numbers are denoted by S, I and R. The flow of

individuals can schematically be described as

B(N)Nl

BSI/N M

S I » R™ S.

#Sl (p+a)l l uRl

We assume that everybody is born as susceptible. B(N)N is a birth rate function with

B(N) satisfying the following assumptions for N € (0, c0):

(A1) B(N) >0,

(A2) B(N) is continuously differentiable with B'(N) < 0;

(A3) B(0") > p+a and p > B(+0).
Note that (A2) and (A3) imply that B1(N) exists for N € (B(c0), B(0")), and (A3)
assures that N does not go to extinction and cannot blow up. The parameter p > 0 i3
the natural death rate constant, o > 0 is the disease-related death rate constant, and
A > 0 is rate constant for recovery. The force of infection is assumed to be of standard
type, namely BI/N, with 8 > 0, the effective per capita contact rate constant of infective

individuals. The time delay 7 denotes a constant immune period.
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Our model thus take the following form:

N(t) = S(t) + I(t) + R(®), )
§'(t) = BUV())N(2) — uS(t) - Q‘S%I)(t) ALt = 7)e (1.9)
I'(t) = ?igj-f[f(%@ — (u+ A+ QI(2), (1.3)
R(t) = M(t) — M(t — 7)e™  — pR(t), (1.4)

with initial conditions

S(8) >0, I(6) >0, R(6)>0on [-7,0]. (1.5)
In order to assure continuity of solutions at time 0, we assume that
0
R(0) = M {u)e* du. (1.6)

-7
System (1.1)—(1.4) always has the disease-free equilibrium Eg = (B~(1),0,0). Fur-
thermore, if the basic reproduction number Rg := m > 1, then it also has the unique

endemic equilibrium E, = (S*,I*, R*) where

e emHT
S*zp—i-)\—i—aN*,I*:(1_u+)\+a>N*/(1+)\(1 e )>,R*=/\(1 e )I*
g B p o

and N*:B*(#+a(y-ﬁi%ig)/(L+51%§ﬁ3>).

2 Main result

The following basic result for solutions of system is given. The proof is omitted.

Theorem 2.1. Let S(£), I(t), R(t) be a solution of the delay differential system (1.2) -
(1.4) with N(t) given by (1.1), and initial conditions given by (1.5). In addition, suppose
that (1.6) holds. For allt > 0, this solution ezists, is unique and has S{t) >0, I(t) >0,
R(t) > 0.

A linear analysis shows the following theorem for disease-free equilibrium.
Theorem 2.2. If Ry < 1, then the discase-free equilibrium is locally asymptotically stable.

A global stability result can be given by using the following results. Consider the
systems:

' = f(t,z) (2.1)

¥ = g(y) | (2.2)
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where f and g are continuous and locally Lipschitz in z in R and solutions exist for all

positive time. (2.1) is called asymptotically autonomous with limit equation in R™.

Lemma 2.1 ([6]). Let e be a locally asymptotically stable equilibrium of (2.2) and w be
the w-limit set of a forward bounded solution z(t) of (2.1). If w contains & point yo such
that the solution of (2.2) with y(0) = yo converges to e as t — 0o, then w = {e}, i.e.

z(t) — e as t — oo.

Corollary 2.1. If solutions of system (2.1) are bounded and the equilibriumn e of the
limit system (2.2) is globally asymptotically stable, then any solution z(t) of system (2.1)

satisfies z(t) — e as t — oo.

Theorem 2.3. For Ro < 1 all solutions of the system (1.2)-(1.4) with (1.1) approach the

disease free equilibrium ast — co.

Proof. By (1.3), we have I’ < (8 — p — A — a)I, hence I(t) has limit zero as ¢t — oo if
B —pu—X—a<0. Then R(t) — 0 as t — oo from (1.4).
Add equations (1.2)—(1.4), and use (1.1) to obtain

N' = (B(N) — u)N - al. (2.3)
This equation has the limit equation
N' = (B(N) - p)N. (2.4)

By Corollary 2.1, N(t) — B~(n) as t — co. Hence S(t) — B~1{(u) as t — oo. O

A global property of the endemic equilibrium for a restricted set of parameter values

can be given as follows.

1
Theorem 2.4. Suppose that @ = 0 and Rg > 1. If 7 < % all solutions of system
(1.2)-(1.4) with (1.1) approach the endemic equilibrium as t — oo.

Proof. Define i(t) = I(t)/N(t). Let ¢* = I*/N*. System (1.2)-(1.4) leads to the following

system

() =8 {z —it) + 2(1 _ ey -A% /t i i(u)N(u)e‘“(t‘“)du} i(t)

— (B(N) - p)i(t) (25)
N'(t) = (B(N(E)) — )N (2).



This system has a unique internal equilibrium (i*, B~1(u)) corresponding to the endemic
equilibrium E.

By the second equation of (2.5), if N(0) < B~(u), N(¢) is monotone increasing and
N(t) < B71(u), whereas if N(0) > B~!(y), N(t¢) is monotone decreasing and N(t) >
B~ ().

Derivative of V; along a solution is

t

A . —lteu , i*
NGO t-Tz(u)N(u)e et )du} i(t) (1 - @>

Vi(t) = 8 {z — i)+ -2(1 ey
~ (B(N(t)) — ) (i(t) - 1%)
= —B(i(t) —i*)* 4 BA(i(t) — ) /t iT (f,;*e—#(t W) _ i) (U)) _”(t_u)> i
— (BIN()) = w) (i(®) — %)

= —B(i(t) - i*) 2 A /t (i(t) — i) (i(u) — i*)e——p(t—u)du

+6) /< - (1= o) e - (BV() = ) () )

—B(i(t) — )+ 552 f {60) = 70 + i) — #2672} d

t—7

(
+ BA lir<2(t) - 2’*) ( ?:))) z(u)e n(t— u)du (B(N(f,)) . lu) (z(t) _ Z*)

< ~B(i(t) ~ ) + SO (i(t) —i°)? + 29X /t“ (i(w) - *)2du

§ . % N(U) —up{t—u _ i —*
son [ - (1- N(t)) (e = du — (BINH) ~ 1) () 1"
(2.6)
If N(0) < B~}(u), we have from (2.6),
Vi(t) < ~B((0) — i) + 50N (5(6) — ) + 367 / (i(u) — i*)2du
t N(u)
=y (1 N(t))d +it (BN() — ). @.7)

In addition, define

Valt) o= 29A f: /9 ((6) — 4*)2dedd + B /: fg (1 - %) dedd.  (2.8)

Then (2.7) and (2.8) lead to

(Vi 5) < —B (1) — 8% + 37 ((8) = 8% + 5BAT(Elt) i)’
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cor [ [ MO8 Dagap v B -

< —B(1~ M) (i(t) — i*)?

N'(t) tON(E)
+ BN / (e o+ (BINE) =

= =1 = A7) (i(t) — )

¥ [ Mo
o L N B ©) -
G,

~B(1 — A7) (i(t) - )+ﬂ)\2 NOM

—-B(1 = A7) (i(t) - *) + (BT +14%) NI((:))

+ BAr

"(B(N(1) — p)

Note that N :( ) 1( )
* N'(u B~ {u
T\ gy =1 .

o N@ T TTNQ)

If 1 > Ar, we have

+00
/0 (i(u) — i*)%du < +oo. (2.9)

From (2.5), we see that (i(t) — i*)? is uniformly continuous on [0, c0). It follows from the

well-known Barbilat’s lemma (see [1]),

lim i(t) ="

t—+o0
From (1.4),
im R(t) =R,
=00
which implies
lim S{t) = S*.
t—+oco

In a similar manner, we can show that F, is globally attractive if N(0) > B~1(u).

This completes the proof. |

3 Summary

In this paper, we considered stability of the few variable population SIRS epidemic model
with a delay. We showed that if Ry < 1, the disease-free equilibrium is globally asymptot-
ically stable, whereas if Ry > 1, the endemic equilibrium is globally attractive for small
delay.
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