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On the diffeomorphism group of a smooth orbifold
and its application

Pt FIE  (EIMK - )
Kojun Abe (Shinshu Univ.)

81. Introduction

Let D(M) denote the group of diffeomorphisms of an n-dimensional smooth
manifold M which are istopic to the identity through compactly supported isotopies.
In [TH], Thurston proved that the group D(M) is perfect, which means D(M)
coincides with its commutator subgroup. There are many analogous results on the
group of a smooth manifold M preserving a geometric structure of M.

In this note we shall study the case when M is a smooth orbifold. Since a smooth
orbifold is locally diffeomorphic to the orbit space of a smooth G-manifold with finite
group @, first we shall consider in the case of a representation space V of a finite
group G. Let Dg(V) denote the group of equivariant smooth diffeomorphisms of
V' which are G-isotopic to the identity through compactly supported equivariant
smooth isotopies. In general the group Dg(V) is not perfect. Then we calculate the
first homology group Hy(Dge(V)).

We shall prove that Do (V) is perfect if dim V& > 0 and H;(Dg(V)) is isomorphic
to Hi{Autg(V)e) if dim VY = 0. Here Autg(V)o is the identity component of the
group of G-equivariant linear automorphisms of V, and V¢ is the fixed point set of
G on V ([AF5)).

Secondly we apply the above result to the case of smooth orbifold and also
smooth G-manifold. Using the result by Biestone [BI1] and Schwarz [SC1], we see
that Hi(Dg(V)) is isomorphic to H1(D(V/G)). Combining those results and the
fragmentation lemma we can determine the structure of Hy(D(N)) of the diffeo-
morphism group D(N) for any smooth orbifold N. Then we see that H;(D(N))
describes a geometric structure around the isolated singularities.

Let M be a smooth G-manifold for a finite group G. Then Hi(Dg(M)) is
isomorphic to H;(D(M/Q@)), and we see that H;(Dg(M)) describes the properties
of the isotropy representations at the isolated fixed points of M. We can also apply
the above results to a smooth G-manifold when G is a compact Lie group. If M is
a principal G-manifold with G a compact Lie group, then we proved that the group
De(M) is perfect for dim(M/G) > 0 (Banyaga [BA1] and Abe and Fukui [AF1]). In
[AF2] we calculated H;(Dg(M)) when M is a smooth G-manifold with codimension



one orbit. We shall apply the above result to the case of a locally free U(1)-action
on the 3-sphere, and calculate Hy(Dy1)(S®)) ([AF5]).

Thirdly we shall apply the results to the modular group. Let I' be the modular
group which acts on the the upper half complex plane H by the Mobius transforma-
tions. Then the orbit space H/T" is a smooth orbifold. Let Rr be the compactified
space of H/T by adjoining the point * which corresponds to the I-equivalence class
of the parabolic cusps. With the canonical smooth coordinate around *, we shall
calculate the group H:(D(Rr))), which describes the elliptic points and the cusp
point. We can also calculate the group for the case of the congruence subgroups of
I

We can apply the above results to the case of foliation preserving diffeomorphism
groups. We studied for the similar problem in the Lipschitz category ([AF3], [AF4],
[AF6], [AFM]).

§2. Recent results on the diffeomorphism grooups on
smooth orbifolds

Let G be a finite group and let M be a smooth connected G-manifold. Let
De(M) denote the group of G-equivariant smooth diffeomorphisms of M which are
G-isotopic to the identity through isotopies with compact support.

First we shall calculate Dg(V) for a finite dimensional G-module V. Let V< be
the subspace of the fixed point set of V. Let Ag(V) denote the set of G-invariant
automorphisms of V and let Ag(V)y be the identitiy component of Ag(V). Then
we have the following.

Theorem 1
(1) If dim VC > 0, then Dg(V) is perfect.
(2) If dim VE =0, then Hi(Dg(V)) = Hi(Ac{V)o)-

We can decompose V' = &% k;V;, where V; runs over the inequivalent irreducible
representation space of G and k; is a positive integer. Let Endg(V;) denote the set
of G-invariant endmorphisms of V;. Then dim Fndg(V;) =1,2 or 4.

Corollary 2 IfdimVC =0, then

d2

.

Hi(Da(V)) 2R x U(1) x -+ x U(1),

where dy is the number of V; with dim Endg(V;) = 2.



Definition 3 (smooth orbifold)

A paracompact Hausdorff space M is called a smooth orbifold if there exists an open
covering {U;| i € A} of M, closed under finite intersections, satistying the following.
(1) There ezist an open subset U; in R™ such that a finite group T'; acts effectively
on 5’, and a homeomorphism ¢; : ﬁ,-/l} — U;.

(2) Whenever U; C Uy, there exizts a smooth embedding ¢;; : U, — (}j such that

~ ¢1;j ~
U; U;
Kir3 g
Ui/T; U;/T;
#7t &7
U; = U;.

(U;, ¢;) is called & local chart of M.
Here we define the smooth maps between smooth orbifolds (c.f. [BI1]). f: M —

R is said to be smooth if for any local chart (U;, ¢;) of M, U, = l':Ti/Fi N U; LR
is smooth. h: M — M is said to be smooth if for any smooth function f: M — R,
fohissmooth. h: M — M is called a diffeomorphism if 4 and A~! are smooth. Let
D(M) denote the group of diffeomorphisms of M which are isotopic to the identity
through isotopies with compact support.

p € M is said to be an isolated singular point of M if there exists a local chart
(Us, ¢;) around p such that 7 is the isolated fixed point of U; with m;(§) = p. Here
¢; Uy — U, /T; and m; : U, — Uj; are the maps defined in Definition 3.

Let (Ui, ¢:), (U;, ¢;) be local charts of M around an isolated singular point p of
M. Then we can assume that U; and U, ; are invariant open neighborhoods around the
origin of linear representation spaces of ['; and I';, respectively. By the result of Strub
[ST], the groups I'; and I'; are isomorphic and the corresponding representaions are
equivalent. Then the isolated singular point p determines the equivalence class of
the linear representation space V, of a finite group I';.

Theorem 4 If a smooth orbifold M has {p1,...,pr} as the isolated singular point

set, then
Hi(D(M)) = Hy(Ar, (Vo )o) X -+ x Hi(Ar,, (Vi )o)-



We can apply Theorem 4 to the case of smooth G-manifold with finite group G.

Theorem 5 Let G be a finite group and M a smooth G-manifold. If the orbit
space M/G has {G - p1,...,G - pr} as the isolated singular points, then

Hy(Da(M)) & Hy(Ag,, (Tp, M)o) x -+ x Hy(Ag,, (TpM)o).

Corollary 6 Let R be the non-trivial one dimensional representation space of Z,.
Then 3 3
H\(Dz,(R™)) = Hi(D(R"/Z,)) = R.

We can apply Corollary 6 to a smooth U(1)-action on S3. Let
5% = {(w1, wp) € C*| [wr[* + |wol* = 1}
with U(1)-action given by
7 (wy,we) = (zwy, 22w), 2z € U(1).

Then it has two orbit types {(1), (Z3)} and the orbit space S3/U(1) is homeomorphic
to the space known as the tear drop which is the two dimensional sphere with one
isolated singular point.

Theorem 7  Hi(Dy)(S*)) = R x U(1).

Remark 8  If we restrict the above action to Z,, then Dy, (S®) is perfect.

§3. Application to the modular group

In this section we shall apply the results to the modular group. Let H be the
upper half complex plane. Let SL(2,R) be the group of real matrix with determi-
nant 1. Then SL(2,R) acts on H as follows.

az+b a b
= for g—(c d)EI‘,ze’H.
Then SL{2,R) acts transitively on H and the isotropy subgroup at i = +/—1 is
SL(2,R); = SO(2). The kernel of the action is Zy = {£1} and PSL(2,R) =
SL(2,R)/{£1} acts effectively on H = SL(2,R)/SO(2).




The action can be extended to the Riemannian sphere: C = C U {oc}.

a b =
gu(c d)el",zec,

e (23’5—5300)
g-z=¢ 0 (z=~-% 2=d=0)
¢ (z = 00)

Set

Rlz{i<g aﬂ)[wo},
el (11) (1)

Then each g € SL(2,R) is conjugate to one of the elements of SO(2) UR, U R,, and
g # %1 is called elliptic, hyperbolic and parabolic if g is conjugate of an element in
SO(2), Ry and Ry, respectively.

Let I' = SL(2, Z) be the group of the integral matrices with determinant 1. Then
I' = I'/{=£1} acts properly on H (i.e. for each z € H, there exists open neighborhood
U of z such that Ty = {g € | g- U = U} is & finite group and if v- U NU # ¢ for
v €T, then v € Ty).

z € H is called elliptic point if there exits an ellipic element ¢ € I" such that
g-z=1z x € RU{oo} is called cusp point if there exists a parabolic element g € T
such that g-z = 2.

Proposition 9 (1) If z is a elliptic point, then T, is a cyclic group which is conju-
gate to a cyclic subgroup of SO(2).
(2) If z is a cusp point, then I'y is isomorphic to Z which is conjugate to the group

rwz{(é ’f)mez}.

(3) T acts transitively on the set of cusp points which is coincides with Q U {co},
where @ s the set of rational numbers.

Set
H*=HUQ, Rpr=H/T=H/TU{x}
We give the set
{3} UUeso{z € H| Sz > ¢}

as a fundamental system of open neighborhood of the point *. Then Ry is homeo-
morphic to S2.



Proposition 10  There ezists a T -invariant open neighborhood U of * satisfying
the following.

(1) T ={9€T| g-UNU #¢}.

(2) Let @: U/Ts — C be the map given by (T - 2) = exp(2my/—12) for z € U.
Then @ is a homeomorphism into an open set U of C.

Let v+ U/To — Rp be the natural map. Put U = (U/Tw). By Proposztzon i0U
is an open neighborhood of * and the homeomorphism ¢ = o™ : U — U/T is
regarded as a local coordinate of Rp.

We call h : Rr — Rr to be a diffeomorphism if the following conditions
(1),(2),(3) is satisfied.

(1) Al(H/T) is a diffeomorphism of H /T as a smooth orbifold.

(2) pohog™!is a diffeomorphism of U.

(3) There exists [w-equivariant diffeomorphism h of H such that the induced
diffeomorphism on H/T" coinsides with h on U \ {x}.

Theorem 11
(1) Hi(Dr(H?)) = H{(D(H?)T)) 2 R?> x U(1).
(2) Hi(D(Rr)) = U(1) x R3.

The orbifold H?/T" has two isolated singular points which correspond to the ellip-
tic subgroups of I" with orders 2 and 3, which induces the isomorphism in Theorem
11, (1). In addtion to those singular points, Rr has the singular point * correspond-
ing to the cusp point, which induces the isomorphism in Theorem 11, (2).

Let T(N) denote the principal congruence subgroup of level N. Then

T(N) = @0 crla=d=1b=c=0 mod NZ}.
c d

Similarly to the case of the modular group, we have the following.

Theorem 12  H,(D(Rr(N))) & RM, where t(N) is the number of cusps of
H/T(N).

The number #(N) is known as:

H1) =1, #2)=3,



1
2N
(VW) = N[ (1 - 515).

piN

HN) = 5N T(N)) (N 23),

We can also apply Theorem 1 to calculate the first homology group of the foliation
preserving diffeomorphism group for a compact Hausdorff foliation.

§4. Outline of the proof of Theorem 1

First we prove Theorem 1 (1). Let G be a finite group and let V' be a G-module
with dim V¥ > 0. Then there exists a G-module W with dim W = 0 such that
V = W@R?. We prove Dg(V) is perfect by induction of the order of G. If G = {1},
then Dg(V) is perfect by the result of Thurston [TH]. Assume that Theorem 1 (1)
holds for any finite subgroup H with |H| < |G].

To investigate the group structure of Dg(V), we give C®-topology on Dg(V).
For the proof we need the following fragmentaion lemma.

Lemma 13 ( fragmentation lemma)
Let M be a smooth G-manifold and let {U;} be a G-invariant open covering of M.
Let N be a neighborhood of the identity in Dg(M). Then, for any f € De(M) ,
there exist {f; € N| 1 < j <k} such that

(1) f; is equivariantly isotopic to the identity through G-diffeomorphisms with
the support contained in Uj,

(2)f=f10”'0fk-

Let f € Dg(V). In order to prove f € [Dg(V),Dg(V)], by the fragmentation
lemma, we can assume f is sufficiently close to the identity. Then we can find
g1, 92 € De(V) satisfying

(1) gu(z,y) = (z, 41(x)(y)) with §:(z) € D(RT),

(2) go(z, y) = (92(y)(2),y) with §(2) € De(W) for z € W, y € RY,

(3) f=g200.

By the result of Tsuboi [TS], we see that g; € [Dg(V), Da(V)].

In the next we shall prove that g, € [Da(V), Da(V))]. Let ay, : R? — Auta{W)o
be a group homomorphism defined by a,, (y) = dgs(y)o, where dga(y)o is the differen-
tial of §2(y) at 0. Then ay, is a smooth map with compact support {p € R ay,(p) # e},
where e is the unit element in Autg(W)o.

If we take f close to the identity, then oy, is sufficiently close to the constant
map e. Then applying [AF1], Lemma 4, we have




(a) gp; € D(R"), a; € C*(RY, Autg(W)g) (i=1,..,r = dim Auta(W)o),

(b) ag, = (7" - (ar 0 p1)) - (o7t - {ar 0 ¢0y)).
Let | - | be a G-invariant norm of W. Let p: W — [0,1] be a G-invariant smooth
function satisfying

(1) ule) =1 for |z < 3,
(i) p(z) =0 for |z] > L.

Define by, F; € Dg(V) (i=1,..,7) by

hi(z,y) = (u(@)oi(y)(z) + (1 — p(z))z, v),
Fi(z,y) = (=, p(z)poily) + (1 — p(z))y)

for z €W, y € R

Lemma 14

(hit o F o hyo Fy)(z,y) = ({057 - (s 0 03)) (w)(=), w),
forz e W, y € R? with |z| < 3.

Set .
=[] (' oF oo ) og,
i=1
Then gs is written of the form g3(z,y) = (93(z)(y), v) with g3(z) € Dg(W) and
Qgy = €.

For 0 < ¢ < 1, let 9. € Dg(V) such that, for z € W, y € R,

o[y (d<,
vel ’y)‘{(m, W (2 >2)

Applying the result of Sternberg [S2], there exists R € D(V) such that

(1) Ris of the form R(z,y) = (R(y)(z), y)
with R(y) € D(W,0) and af =e.

(2) Ro(gs o) o R™! =1, on a neighborhood U of {0} x R
Set

R(z,y) = Zg R(g-z,y) forzeW, ye R4
9ec
Then
.o R=Rogsotp, on Uy



Since R is G-equivariant diffeomorphic on a neighborhood of {0} x R?, we can
find R; € Dg(V') such that R; = R on a neighborhood U C Uy of {0} x R%. Put

ga=gso (R oo Ryoyp; )L,

Then gy =1on U.
There exist a finite point {p; € V\U|1 < i < k} and an open disk neighborhood
U(p:) at p; (1 <4< k) such that
(1) U(p;) is a slice at p;,
k
(2) supp(gs) | G- Um).
i=1
By the fragmentation lemma there exist h; € Da(V) (1 < j < £) such that
(a) h; is equivariantly isotopic to the identity through G-diffeomorphisms with
the support contained in G - U(p;),
(b) gs = hlo"'Oh[.

Since U(p;) is a slice at p;, the isotropy subgroup Gy, acts on U(p;) and G - U(p;)
is a disjoint union of [G/G),| disks. Then from the above condition (a)

hi(g-Ulp;)) =9-Ulp;) forgeG.

We assumed that Dg(V) is perfect when H is a finite group with |H| < |G|
and dim V¥ > 0. Therefore each A; can be written as a commutator in Dg(V) and
Theorem 1 (1) follows.

Secondary we prove Theorem 1 (2). Let V be a G-module with dim V¢ = 0
Let & : Dg(V) — Aute(V)o be a group homomorphism defined by ®(f) = (df )s.

Since
1 — Ker® 2 Dg(V) S Autg(V)e — 1

is a short exact sequence, we have the exact sequence.

Ker®/[Ker®, Da(V)] S Hi(Da(V) 3 Hi(Autg(V)e) — 1
Then Theorem 1 (2) follows from the following.
Proposition 15  Ker® = [Dg(V), De(V)]

Proof. ' Let f € Kerd®. For 0 < ¢ <1, let 9, € Autg(V)y as before. Applying
the result by Sternberg [S2] there exists R € D(V,0) such that (dR)o = 1y and
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o fot.0 R™! =1, on a neighborhood of 0. Set

R(z) = Zg'l (g-z) forzeR",

QEG

where |G/ is the order of G. Since Ris equivariant diffeomorphism on a neighborhood
U of 0, we can find R € Dg(V) such that R = R on an open neighborhood U; C U
of 0. Then A R

f: R O¢CORO¢;1 on Uy,
Put ) X

g=fo(R oo Roy, )™
Then g = 1 on U;. By the parellel way as in the proof of the case Theorem 1, (1),
we can prove that g is written as a commutator in Dg(V).
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