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On the diffeomorphism group of a smooth orbifold
and its application

阿部 孝順 (信州大・理)

K\={o}jun Abe (Shinshu Univ.)

\S 1. Introduction
Let $D(M)$ denote the group of diffeomorphisms of an $n$-dimensional smooth

manifold $M$ which are istopic to the identity through compactly supported isotopies.
In [TH], Thurston proved that the group $D(M)$ is perfect, which means $D(M)$

coincides with its commutator subgroup. There are many analogous results on the
group of a smooth manifold $M$ preserving a geometric structure of $M$ .

In this note we shall study the case when $M$ is a smooth orbifold. Since a smooth
orbifold is locally diffeomorphic to the orbit space of a smooth $G$-manifold with finite
group $G$ , first we shall consider in the case of a representation space $V$ of a finite
group $G$ . Let $D_{G}(V)$ denote the group of equivariant smooth diffeomorphisms of
$V$ which are $G$-isotopic to the identity through compactly supported equivariant
smooth isotopies. In general the group $D_{G}(V)$ is not perfect. Then we calculate the
first homology group $H_{1}(D_{G}(V))$ .

We shall prove that $\prime D_{G}(V)$ is perfect if $\dim V^{G}>0$ and $H_{1}(D_{G}(V))$ is isomorphic
to $H_{1}(Aut_{G}(V)_{0})$ if $\dim V^{G}=0$ . Here $Aut_{G}(V)_{0}$ is the identity component of the
group of $G$-equivariant linear automorphisms of $V$ , and $V^{G}$ is the fixed point set of
$G$ on $V([\mathrm{A}\mathrm{F}5])$ .

Secondly we apply the above result to the case of smooth orbifold and also
smooth $G$-manifold. Using the result by Biestone [BI1] and Schwarz [SCI], we see
that $H_{1}(D_{G}(V))$ is isomorphic to $H_{1}(D(V/G))$ . Combining those results and the
fragmentation lemma we can determine the structure of $H_{1}(D(N))$ of the difleo-
morphism group $D(N)$ for any smooth orbifold $N$ . Then we see that $H_{1}(D(N))$

describes a geometric structure around the isolated singularities.
Let $M$ be a smooth $G$-manifold for a finite group $G$ . Then $H_{1}(D_{G}(M))$ is

isomorphic to $H_{1}(D(M/G))$ , and we see that $H_{1}(D_{G}(M))$ describes the properties
of the isotropy representations at the isolated fixed points of $M$ . We can also apply
the above results to a smooth $\mathrm{G}$-manifold when $G$ is a compact Lie group. If $M$ is
a principal $G$-manifold with $G$ a compact Lie group, then we proved that the group
$D_{G}(M)$ is perfect for $\dim(M/G)>0$ (Banyaga [BA1] and Abe and Fukui [AF1]). In
[AF2] we calculated $H_{1}(D_{G}(M))$ when $M$ is a smooth $G$ manifold with codimensio
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one orbit. We shall apply the above result to the case of a locally free $U(1)$-action
on the 3-sphere, and calculate $H_{1}(D_{U(1)}(S^{3}))([\mathrm{A}\mathrm{F}5])$ .

Thirdly we shall apply the results to the modular group. Let $\Gamma$ be the modular
group which acts on the the upper half complex plane $H$ by the Mobius transforma-
tions. Then the orbit space $H/\Gamma$ is a smooth orbifold. Let $\mathcal{R}_{\Gamma}$ be the compactified
space of $\mathcal{H}/\Gamma$ by adjoining the point $*$ which corresponds to the $\Gamma$-equivalence class
of the parabolic cusps. With the canonical smooth coordinate around $*$ , we shall
calculate the group $H_{1}(D(\mathcal{R}_{\Gamma})))$ , which describes the elliptic points and the cusp
point. We can also calculate the group for the case of the congruence subgroups of
$\Gamma$ .

We can apply the above results to the case of foliation preserving diffeomorphism
groups. We studied for the similar problem in the Lipschitz category ([AF3], [AF4],
[AF6], [AFM] $)$ .

\S 2. Recent results on the diffeomorphism grooups on
smooth orbifolds

Let $G$ be a finite group and let $M$ be a smooth connected $G$-manifotd. Let
$D_{G}(M)$ denote the group of $G$-equivariant smooth diffeomorphisms of $M$ which are
$G$-isotopic to the identity through isotopies with compact support.

First we shall calculate $D_{G}(V)$ for a finite dimensional $G$ modular $V$ . Let $V^{G}$ be
the subspace of the fixed point set of $V$ . Let $A_{G}(V)$ denote the set of G-invariant
automorphisms of $V$ and let $A_{G}(V)_{0}$ be the identitiy component of $A_{G}(V)$ . Then
we have the following.

Theorem 1
(i) If $\dim V^{G}>0$ , then $D_{G}(V)$ is perfect
(2) if $\dim V^{G}=0$ , then $H_{1}(D_{G}(V))\cong H_{1}(A_{G}(V)_{0})$ .

We can decompose $V=\oplus_{i=1}^{d}k_{i}V_{i}$ , where $V_{i}$ runs over the inequivalent irreducible
representation space of $G$ and $k_{i}$ is a positive integer. Let $End_{G}(V_{i})$ denote the set
of $G$-invariant endmorphisms of $V_{i}$ . Then $\dim End_{G}(V_{i})=1$ , 2 or 4.

Corollary 2 If $\dim V^{G}=0$ , then

$H_{1}(D_{G}(V))$
$\cong \mathrm{R}^{d}\mathrm{x}U\ovalbox{\tt\small REJECT}$(1) $\mathrm{x}$

$d_{2}\cdots)\langle U(1)$

,

where $d_{2}$ is the number of $V_{i}$ with $\dim End_{G}(V_{i})=2$ .
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Definition 3 (smooth orbifold)
A paracompact Hausdorff space $M$ is called a smooth orbifold if there exists an open
covering $\{U_{i}|\mathrm{i}\in\Lambda\}$ of $M$, closed under finite intersections, satistying the following.
(1) There exist an open subset $\tilde{U}_{i}$ in $\mathrm{R}^{n}$ such that a finite group $\Gamma_{i}$ acts effectively
on $\tilde{U}_{i}$ and a homeomorphism $\phi_{i}$ : $\tilde{U}_{i}/\Gamma_{i}arrow U_{i}$ .
(2) Whenever $U_{i}\subset$ Uj, there exixts a smooth embedding $\phi_{ij}$ : $\tilde{U}_{i}arrow\tilde{U}_{j}$ such that

$\phi_{ij}$

$\tilde{U}_{i}$

$\exists$ $\pi_{i}$

$\tilde{U}_{i}/\Gamma_{i}$

$1^{\phi_{i}^{-1}}$

$U_{i}$

$\subset$

$\tilde{U}_{j}$

$1^{\pi_{j}}$

$\tilde{U}_{j}/\Gamma_{j}$

$1^{\phi_{j}^{-1}}$

$U_{j}$ .

{Ui, $\phi_{i}$ ) is called a local chart of $M$ .
Here we define the smooth maps between smooth orbifolds $(\mathrm{c}.\mathrm{f}. [\mathrm{B}\mathrm{I}1])$ . $f$ : $Marrow$

$\mathrm{R}$ is said to be smooth if for any local chart $(U_{i}, \phi_{i})$ of $M$ , $\tilde{U}_{i}arrow\tilde{U}_{i}/\pi_{i}\Gamma_{i}arrow U_{i}arrow \mathrm{R}\phi_{i}f$

is smooth. $h$ : $Marrow M$ is said to be smooth if for any smooth function $f$ : $Marrow \mathrm{R}$ ,
$f\circ h$ is smooth. $h$ : $Marrow M$ is called a diffeomorphism if $h$ and $h^{-1}$ are smooth. Let
$D(M)$ denote the group of diffeomorphisms of $M$ which are isotopic to the identity
through isotopies with compact support.

$p\in M$ is said to be an isolated singular point of $M$ if there exists a local chart
$(U_{l)}\phi_{i})$ around $p$ such that $\tilde{p}$ is the isolated fixed point of $\tilde{U}_{i}$ with $\pi_{i}(\tilde{p})=p$. Here

$\phi_{i}$ : $U_{i}arrow\tilde{U}_{i}/\Gamma_{i}$ and $\pi_{i}$ : $\tilde{U}_{i}arrow U_{i}$ are the maps defined in Definition 3.
Let {Ui, $\phi_{i}$ ), $(U_{j}, \phi_{j})$ be local charts of $M$ around an isolated singular point $p$ of

$M$ . Then we can assume that $\tilde{U}_{i}$ and $\tilde{U}_{j}$ are invariant open neighborhoods around the
origin of linear representation spaces of $\Gamma_{i}$ and $\Gamma_{j}$ , respectively. By the result of Strub
[ST], the groups $\mathrm{F}_{i}$ and $\Gamma_{j}$ are isomorphic and the corresponding representaions are
equivalent. Then the isolated singular point $p$ determines the equivalence class of
the linear representation space $V_{p}$ of a finite group $\Gamma_{p}$ .

Theorem 4 if a smooth orbifold $M$ has $\{p_{1}, \ldots,p_{k}\}$ as the isolated singular point
set, then

$H_{1}(D(M))$ $\cong H_{1}(A_{\Gamma_{\mathrm{p}_{1}}}(V_{\mathrm{p}_{1}})_{0})\mathrm{x}\cdots \mathrm{x}$ $H_{1}(A_{\Gamma_{p_{k}}}(V_{\mathrm{P}k})_{0})$ .
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We can apply Theorem 4 to the case of smooth $G$-manifold with finite group G.

Theorem 5 Let $G$ be a finite group and $M$ a smooth $G$ -manifold. if the orbit
space $M/G$ has $\{G\cdot p_{1}, \ldots, G. p_{k}\}$ as the isolated singular points, then

$H_{1}(D_{G}(M))$ $\cong H_{1}(A_{G_{p[perp]}}(T_{p1}M)_{0})\mathrm{x}$ $\cdots$ $\mathrm{x}$ $H_{1}(A_{G_{\rho_{k}}}(T_{\mathrm{P}k}M)_{0})$ .

Corollary 6 Let $\tilde{\mathrm{R}}$ be the non-trivial one dimensional representation space of $\mathrm{Z}_{2}$ .
Then

$H_{1}(D_{\mathrm{Z}_{2}}(\tilde{\mathrm{R}}^{n}))\cong H_{1}(D(\tilde{\mathrm{R}}^{n}/\mathrm{Z}_{2}))\cong$ R.

We can apply Corollary 6 to a smooth {$/(1)$ -action on $S^{3}$ . Let

$S^{3}=\{(w_{1}, w_{2})\in \mathrm{C}^{2}||w_{1}|^{2}+|w_{2}|^{2}=1\}$

with U( 1 )-action given by

$z\cdot(w_{1}, w_{2})=(zw_{1}, z^{2}w_{2})$ , $z\in U(1)$ .

Then it has two orbit types $\{(1), (\mathrm{Z}_{2})\}$ and the orbit space $S^{3}/U(1)$ is homeomorphic
to the space known as the tear drop which is the two dimensional sphere with one
isolated singular point.

Theorem 7 $H_{1}(D_{U(1\rangle}(S^{3}))\cong \mathrm{R}\mathrm{x}U(1)$ .

Remark 8 if we restrict the above action to $\mathrm{Z}_{n}$ , then $D_{\mathrm{Z}_{n}}(S^{3})$ is perfect.

\S 3. Application to the modular group
In this section we shall apply the results to the modular group. Let $H$ be the

upper half complex plane. Let $SL(2, \mathrm{R})$ be the group of real matrix with determi-
nant 1. Then $SL(2, \mathrm{R})$ acts on $?t$ as follows.

$g \cdot z=\frac{az+b}{cz+d}$ for $g=(\begin{array}{ll}a bc d\end{array})$ $\in\Gamma$ , $z\in H$ .

Then $SL(2, \mathrm{R})$ acts transitively on $\mathcal{H}$ and the isotropy subgroup at $\mathrm{i}=\sqrt{-1}$ is
$SL(2, \mathrm{R})_{i}=SO(2)$ . The kernel of the action is $\mathrm{Z}_{2}=\{\pm 1\}$ and $PSL(2, \mathrm{R})=$

$SL(2, \mathrm{R})/\{\pm 1\}$ acts effectively on $\prime \mathcal{H}\cong SL(2, \mathrm{R})/SO(2)$ .
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The action can be extended to the Riemannian sphere: $\overline{\mathrm{C}}=\mathrm{C}\cup\{\infty\}$ .

$g=(\begin{array}{ll}a bc d\end{array})$ $\in\Gamma$ , $z\in\overline{\mathrm{C}}$ ,

$g$ . $z=\{$

$\frac{az+b}{cz+d}$ $(z \neq-\frac{d}{\mathrm{c}}, \infty)$

$\frac{\infty a}{\mathrm{c}}$

$(z=\infty)$

$(z=- \frac{d}{c}, z=d=0)$

Set
$R_{1}=\{\pm(\begin{array}{ll}a 00 a^{-1}\end{array})$ $|a>0\}$ ,

$\pm(\begin{array}{l}1-101\end{array})$ $\}$ .$R_{2}=\{\pm$ $(\begin{array}{ll}1 10 1\end{array})$ ,

Then each $g\in SL(2, \mathrm{R})$ is conjugate to one of the elements of $SO(2)\cup R_{1}\cup R_{2}$ , and
$g\neq\pm 1$ is called elliptic, hyperbolic and parabolic if $g$ is conjugate of an element in
SO(2), $R_{1}$ and $R_{2}$ , respectively.

Let $\Gamma=SL(2, \mathrm{Z})$ be the group of the integral matrices with determinant 1. Then
$\overline{\Gamma}=\Gamma/\{\pm 1\}$ acts properly on $’\kappa$ (i.e. for each $z\in H$ , there exists open neighborhood
$U$ of $z$ such that $\overline{\Gamma}_{U}=\{g\in\overline{\Gamma}|g\cdot U=U\}$ is a finite group and if $\gamma$

. $U\cap U\neq\phi$ for
$\gamma\in\overline{\Gamma}$ , then $\gamma\in\overline{\Gamma}_{U}$).

$z\in H$ is called elliptic point if there exits an ellipic element $g\in\Gamma$ such that
$g\cdot z=z$ . $x\in \mathrm{R}\cup\{\infty\}$ is called cusp point if there exists a parabolic element $g\in\Gamma$

such that $g\cdot$ $z=z$ .

Proposition 9 (1) if $z$ is $a$ elliptic point, then $\Gamma_{z}$ is a cyclic group which is conju-
gate to a cyclic subgroup of SO(2).
(2) if $x$ is a cusp point, then $\Gamma_{x}$ is isomorphic to $\mathrm{Z}$ which is conjugate to the group

$\Gamma_{\infty}=\{$ $(\begin{array}{ll}1 n0 1\end{array})$ $|n\in \mathrm{Z}\}$ .

(3) $\Gamma$ acts transitively on the set of cusp points which is coincides with $Q\mathrm{U}$ $\{\infty\}$ ,
where $Q$ is the set of rational numbers.

Set
$H^{*}=H$ $\cup Q$ , $\mathcal{R}_{\Gamma}=H^{*}/\Gamma=H/\Gamma\cup\{*\}$ .

We give the set
$\{*\}\cup\bigcup_{c>0}\{z\in H| s^{\infty}z>c\}$

as a fundamental system of open neighborhood of the point $*$ . Then $\mathcal{R}_{\Gamma}$ is homeo-
morphic to $S^{2}$ .
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Proposition 10 There exists a $\Gamma_{\infty}$ -invariant open neighborhood $\tilde{U}$ $of*$ satisfying
the following.
(1) $\Gamma_{\infty}=\{g\in\Gamma|g\cdot\tilde{U}\cap\tilde{U}\neq\phi\}$ .

(2) Let $\varphi$ : $\tilde{U}/\Gamma_{\infty}arrow \mathrm{C}$ be the map given by $\varphi(\Gamma_{\infty}\cdot z)=\exp(2\pi\sqrt{-1}z)$ for $z\in\tilde{U}$ .
Then $\varphi$ is a homeomorphism into an open set $U$ of C.

Let $\iota$ : $\tilde{U}/\overline{\Gamma}_{\infty}arrow$ $\mathcal{R}_{\Gamma}$ be the natural map. Put $U=\iota(\tilde{U}/\overline{\Gamma}_{\infty})$ . By Proposition 10 $U$

is an open neighborhood of $*$ and the homeomorphism $\phi=\varphi$ $\circ\iota^{-1}$ : $Uarrow\tilde{U}/\overline{\Gamma}_{\infty}$ is
regarded as a local coordinate of $\mathcal{R}_{\Gamma}$ .

We call $h$ : $\mathcal{R}_{\Gamma}arrow \mathcal{R}_{\Gamma}$ to be a diffeomorphism if the following conditions
(1), (2) , (3) is satisfied.

(1) $h|(H/\overline{\Gamma})$ is a diffeomorphism of $\mathcal{H}/\overline{\Gamma}$ as a smooth orbifold.
(2) $\phi \mathrm{o}h\mathrm{o}\phi^{-1}$ is a diffeomorphism of $U$ .
(3} There exists $\overline{\Gamma}_{\infty}$-equivariant diffeomorphism $\tilde{h}$ of $\mathcal{H}$ such that the induced

diffeomorphism on $H/\overline{\Gamma}$ coinsides with $h$ on $U\backslash \{*\}$ .

Theorem 11
(1) $H_{1}(D_{\Gamma}(H^{2}))\cong H_{1}(D(H^{2}/\Gamma))\cong \mathrm{R}^{2}\mathrm{x}$ $U(1)$ .
(2) $H_{1}(D(\mathcal{R}_{\Gamma}))\cong U(1)\mathrm{x}$

$\mathrm{R}^{3}$ .

The orbifold $H^{2}/\Gamma$ has two isolated singular points which correspond to the ellip-
tic subgroups of $\Gamma$ with orders 2 and 3, which induces the isomorphism in Theorem
11, (1). In addtion to those singular points, $\mathcal{R}_{\mathrm{F}}$ has the singular point $*$ correspond
ing to the cusp point, which induces the isomorphism in Theorem 11, (2).

Let $\Gamma(N)$ denote the principal congruence subgroup of level $N$ . Then

$\Gamma(N)$ $=$ $\{$ $(\begin{array}{ll}a bc d\end{array})\in\Gamma|a\equiv d\equiv 1$ , $b\equiv c\equiv 0$ $\mathrm{m}\mathrm{o}\mathrm{d} N\mathrm{Z}\}$ .

Similarly to the case of the modular group, we have the following.

Theorem 12 $H_{1}(D(\mathcal{R}_{\Gamma}(N)))$
$\cong \mathrm{R}^{t(N)}$ , where $t(N)$ is the number of cusps of

$\}t/\Gamma(N)$ .

The number $t(N)$ is known as:

$t(1)=1$ , $t(2)=3$ ,
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$t(N)= \frac{1}{2N}(N : \Gamma(N))$ $(N\geq 3)$ ,

$(N : \Gamma(N))=N^{3}\prod_{p|N}(1-\frac{1}{p^{2}})$ .

We can also apply Theorem 1 to calculate the first homology group of the foliation
preserving difTeomorphism group for a compact Hausdorff foliation.

\S 4. Outline of the proof of Theorem 1
First we prove Theorem 1 (1). Let $G$ be a finite group and let $V$ be a G-module

with $\dim V^{G}>0$ . Then there exists a $G$-module $W$ with $\dim W^{G}=0$ such that
$V=W\oplus \mathrm{R}^{q}$ . We prove $D_{G}(V)$ is perfect by induction of the order of $G$ . If $G=\{1\}$ ,
then $\prime D_{G}(V)$ is perfect by the result of Thurston [TH]. Assume that Theorem 1 (1)
holds for any finite subgroup $H$ with $|H|<|G|$ .

To investigate the group structure of $D_{G}(V)$ , we give $C^{\infty}$ -topology on $D_{G}(V)$ .
For the proof we need the following fragmentaion lemma.

Lemma 13 ( fragmentation lemma)
Let $M$ be a smooth $G$ -manifold and let $\{U_{i}\}$ be a $G$ -invariant open covering of $M$ .
Let $N$ be a neighborhood of the identity in $D_{G}(M)$ . Then, for any $f\in D_{G}(M)$ ,
there exist $\{f_{J}\in N|1\leq j\leq k\}$ such that

(1) $f_{j}$ is equivariantly isotopic to the identity through $G$ -diffeomomphisms with
the support contained in $U_{j}$ ,

(2) $f=f_{1}\mathrm{o}\cdots \mathrm{o}f_{k}$ .

Let $f$ $\in D_{G}(V)$ . In order to prove $f\in[D_{G}(V), D_{G}(V)]$ , by the fragmentation
lemma, we can assume $f$ is sufficiently close to the identity Then we can find
$g_{1}$ , $g_{2}\in D_{G}(V)$ satisfying

(1) $g_{1}(x, y)=(x,\hat{g}_{1}(x\backslash ,(y))$ with $\hat{g}_{1}(x)$ $\in D(\mathrm{R}^{q})$ ,
(2) $g_{2}(x, y)=(\hat{g}_{2}(y)(x), y)$ with $\hat{g}_{2}(2)\in D_{G}(W)$ for $x\in W$, $y\in \mathrm{R}^{q}$ ,
(3) $f=g_{2}\mathrm{o}g_{1}$ .

By the result of Tsuboi [TS] , we see that $g_{1}\in[D_{G}(V)7D_{G}(V)]$ .
In the next we shall prove that $g_{2}\in[D_{G}(V),D_{G}(V)]$ . Let $\alpha_{\mathit{9}2}$ : $\mathrm{R}^{q}arrow Autc(W)_{0}$

be a group homomorphism defined by $\alpha_{g2}(y)$ $=d\hat{g}_{2}(y)_{0}$ , where $d\hat{g}_{2}(y)_{0}$ is the differen-
tial of $\hat{g}_{2}(y)$ at 0. Then $\alpha_{g_{2}}$ is a smooth map with compact support $\overline{\{p\in \mathrm{R}^{q}|\alpha_{g_{2}}(p)\neq e\}}$,
where $e$ is the unit element in $Aut_{G}(W)_{0}$ .

If we take $f$ close to the identity, then $\alpha_{g2}$ is sufficiently close to the constant
map $e$ . Then applying [AF1], Lemma 4, we have
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(a) $\exists\varphi_{i}\in D(\mathrm{R}^{q})$ , $\alpha_{i}\in C^{\infty}(\mathrm{R}^{q}, Aut_{G}(W)_{0})$ ( $\mathrm{i}=1$ , ..., $r=\dim$ Auto $(W)_{0}$ ) ,
(b) $\alpha_{\mathit{9}2}=(\alpha_{1}^{-1}\cdot(\alpha_{1}0\varphi_{1}))\cdot$ . . $(\alpha_{r}^{-1}\cdot(\alpha_{r}0\varphi_{r}))$ .

Let $|$ . $|$ be a $G$-invariant norm of $W$ . Let $\mu$ : $Warrow[0, 1]$ be a $G$-invariant smooth
function satisfying

(i) $\mu(x)=1$ for $|x| \leq\frac{1}{2}$ ,
(ii) $\mu(x)=0$ for $|x|\geq 1$ .

Define $h_{i}$ , $F_{i}\in\prime D_{G}(V)$ ( $\mathrm{i}=1$ , .., r) by

$h_{i}(x, y)$ $=$ $(\mu(x)\alpha_{i}(y)(x)+(1-\mu(x))x, y)$ ,
$F_{i}(x, y)$ $=$ $(x, \mu(x)\varphi_{i}(y)+(1-\mu(x))y)$

for $x\in W$, $y\in \mathrm{R}^{q}$ .

Lemma 14

$\backslash (h_{i}^{-1}\mathrm{o}F_{i}^{-1}\mathrm{o}h_{i}oF_{i})(x, y)=(\langle\alpha_{i}^{-1}\cdot(\alpha_{l}0\varphi_{i}))(y)(x)$ , $y)$ ,

for $x\in W$, $y\in \mathrm{R}^{q}$ with $|x| \leq\frac{1}{2}$ .

Set
$g_{3}= \prod_{i=1}^{r}(h_{i}^{-1}\circ F_{i}^{-1}\mathrm{o}h_{i}\mathrm{o}F_{i})^{-1}\circ g_{2}$ .

Then $g_{3}$ is written of the form $g_{3}(x, y)=(\hat{g}_{3}(x)(y), y)$ with $\hat{g}_{3}(x)\in D_{G}(W)$ and
$\alpha_{g3}=e$ .

For $0<’$. $<1$ , let $\psi_{c}\in D_{G}(V)$ such that, for $x\in W$, $y\in \mathrm{R}^{q}$ ,

$\psi_{c}(x, y)=\{$
$(cx, y)$ $(|x|\leq 1)$ ,
$(x, y)$ $(|x|\geq 2)$ .

Applying the result of Sternberg [S2], there exists $R\in D(V)$ such that
(1) $R$ is of the form $R(x, y)=(R(y)(x), y)$

$\mathrm{w}$ ith $\hat{R}(y)\in D(W, 0)$ and $\alpha_{R}=e$ .
(2) $R\circ$ (ya $\circ\psi_{c}$ ) $\circ R^{-1}=\psi_{\mathrm{c}}$ on a neighborhood $U_{0}$ of {0} $\mathrm{x}$

$\mathrm{R}^{q}$ .

Set
$\tilde{R}(x, y)=\frac{1}{|G|}\sum_{g\in G}g^{-1}\cdot R(g\cdot x, y)$ for $x\in W$, $y\in \mathrm{R}^{q}$ .

Then
$\psi_{c}0\tilde{R}=\tilde{R}\mathrm{o}g_{3}\mathrm{o}\psi_{c}$ on $U_{0}$ .
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Since $\tilde{R}$ is $G$-equivariant diffeomorphie on a neighborhood of {0} $\mathrm{x}$
$\mathrm{R}^{q}$ , we can

find $\tilde{R}_{1}\in D_{G}(V)$ such that $\tilde{R}_{1}=\tilde{R}$ on a neighborhood $U\subseteq U_{0}$ of {0} $\mathrm{x}\mathrm{R}^{q}$ . Put

$g_{4}=g_{3}\circ(\tilde{R}_{1}^{-1}0\psi_{c}0\tilde{R}_{1}0\psi_{c}^{-1})^{-1}$ .

Then $g_{4}=1$ on $U$ .
There exist a finite point $\{p_{i}\in V\backslash U|1\leq i\leq k\}$ and an open disk neighborhood

$U(p_{i})$ at $p_{i}(1\leq \mathrm{i}\leq k)$ such that
(1) $U(p_{i})$ is a slice at $p_{i}$ ,

(2) $supp(g_{4})\subseteq\cup^{k}i=1G\cdot U(p_{i})$ .

By the fragmentation lemma there exist $h_{j}\in D_{G}(V)$ $(1\leq j\leq P)$ such that
(a) $h_{j}$ is equivariantly isotopic to the identity through $G$-diffeomorphisms with

the support contained in $G\cdot U(p_{j})$ ,
(b) $g_{4}=h_{1}\circ\cdots\circ h_{\ell}$ .

Since $U(p_{j})$ is a slice at $pj$ , the isotropy subgroup $G_{p_{j}}$ acts on $U(p_{j})$ and $G$ . $U(p_{j})$

is a disjoint union of $|G/G_{p_{j}}|$ disks. Then from the above condition (a)

$h_{j}(g\cdot U(p_{j}))=g\cdot U(p_{j})$ for $g\in G$ .

We assumed that $D_{H}(V)$ is perfect when $H$ is a finite group with $|H|<|G|$
and $\dim V^{H}>0$ . Therefore each $h_{I}$ can be written as a commutator in $D_{G}(V)$ and
Theorem 1 (1) follows.

Secondary we prove Theorem 1 (2). Let $V$ be a $G$-module with $\dim V^{G}=0$

Let $\Phi$ : $D_{G}(V)arrow Aut_{G}(V)_{0}$ be a group homomorphism defined by $\Phi(f)$ $=(df)_{0}$ .
Since

$1arrow Ker\Phiarrow D_{G}(\iota V)arrow Aut_{G}(V)_{0}\Phiarrow 1$

is a short exact sequence, we have the exact sequence.

$Ker\Phi/[Ker\Phi, \prime D_{G}(V)]\iota_{*}arrow H_{1}(D_{G}(V))arrow H_{1}(Aut_{G}(V)_{0})\Phi_{*}arrow 1$

Then Theorem 1 (2) follows from the following.

Proposition 15 $Ker\Phi=[D_{G}(V), \prime D_{G}(V)]$

Proof Let $f\in Ker\Phi$ . For $0<c<1$ , let $\psi_{\mathrm{c}}\in Aut_{G}(V)_{0}$ as before. Applying
the result by Sternberg [S2] there exists $R\in D(V, 0)$ such that $(dR)_{0}=1_{V}$ and
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$R\circ f\circ\psi_{c}\circ R^{-1}=\psi_{c}$ on a neighborhood of 0. Set

$\tilde{R}(x)=\frac{1}{|G|}\sum_{g\in G}g^{-1}\cdot R(g\cdot x)$ for $x\in \mathrm{R}^{n}$ ,

where $|G|$ is the order of $G$ . Since $\tilde{R}$ is equivariant diffeomorphism on a neighborhood
$U$ of 0 we can find $\hat{R}\in D_{G}(V)$ such that $\hat{R}=\tilde{R}$ on an open neighborhood $U_{1}\subseteq U$

of 0. Then
$f=\hat{R}^{-1}\mathrm{o}$ Q. $0\hat{R}0\psi_{c}^{-1}$ on $U_{1}$ .

Put
$g=f\circ(\hat{R}^{-1}0\psi_{c}0\hat{R}0\psi_{c}^{-1})^{-1}$ .

Then $g=1$ on $U_{1}$ . By the parellel way as in the proof of the case Theorem 1, (1),
we can prove that $g$ is written as a commutator in $\prime D_{G}(V)$ .
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