<table>
<thead>
<tr>
<th>Title</th>
<th>GENERIC STRUCTURES AND CONTROL FUNCTIONS: A COMMENTARY ON EVANS' PREPRINT (Zariski Geometry and Arithmetic Geometry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yoneda, Ikuo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1450: 42-62</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47718</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

KYOTO UNIVERSITY
GENERIC STRUCTURES AND CONTROL FUNCTIONS
(A COMMENTARY ON EVANS' PREPRINT)

東海大学理学部数学科 来柳惟生 (IKUO YONEDA)
DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY

ABSTRACT. We survey the results in "Some remarks on generic structures" [E] written by Evans, and give some detailed proofs which are omitted in his note.

1. INTRODUCTION

In simplicity theory, Hrushovski’s generic constructions yield various results. As in his ω-categorical stable pseudoplane, he constructed an ω-categorical, simple, rank one, non-locally modular theory by amalgamating finite graphs whose local rank is controlled by an increasing unbounded convex function. In [E1], Evans gave a sufficient condition on control functions for constructing ω-categorical simple generic structures. We review this in fifth section. In [E], Evans gave an ω-categorical non-simple generic structure by carefully setting a control function (In this note, sixth section). This non-simple generic structure has 3-strong order property. For any $n \geq 3$, n-strong order property was introduced by Shelah. (See [Sh] and third section in this note.) Strict order property implies n-strong order property, and $n + 1$-strong order property implies n-strong order property for any $n \geq 3$. Evans showed that generic structures given by control functions do not have 4-strong order property, we follow this result in fourth section.

In [P], Pourmahdian conjectured that generic structures without control function, so-called (K_0, \prec)-generic structure, will be non-simple. In [P], Pourmahdian considered a natural expanded inductive (incomplete) theory T_{nat} of a universal theory T_0 only axiomatizing that any finite substructure has non-zero positive local rank. Pourmahdian showed that T_{nat} is a Robinson theory and its universal domain is simple as a structure, and T_{nat} does not have model companion. (Natural expansioned structure of (K_0, \prec)-generic structure is an existentially closed model of T_{nat}.) Evans gave an example of (K_0, \prec)-generic structure having strict order property, we discuss this issue in second section.

Date: August 1, 2005.
I would like to thank David M. Evans for his permission to submit this note.
This note is organized as follows.

Section 2: We will follow the proof that $\text{Th}(M_0)$ has strict order property, where M_0 is $(K_0, <)$-generic structure with one ternary relation.

Section 3: Review of [Sh].

Section 4: We will follow the proof that $\text{Th}(\Lambda I_{0})$ has SOP, where ΛI_{0} is a $(K_0, <)$-generic structure with one ternary relation.

Section 5: Review of [E].

Section 6: We will follow the proof that for some control function f, $\text{Th}(\Lambda I_{f})$ has SOP, where ΛI_{f} is a $(K_f, <)$-generic structure and K_f is the class of finite graph A satisfying with $\delta(A) \geq f(|A|)$ and control function f is a convex increasing unbounded function from \mathbb{N} to \mathbb{R}.

Section 7, 8: Long appendices for Section 6, which are omitted in [E1].

2. $\text{Th}(M_0)$ has SOP. (Definable correspondence between graphs and ternary hypergraphs)

Let \mathfrak{A} be a ternary relation. For finite ternary-hypergraph \mathfrak{A}, we define the predimension as follows.

$$\delta(\mathfrak{A}) = |\mathfrak{A}| - |\mathfrak{A}^\mathfrak{A}|$$

For finite $\mathfrak{A} \subseteq \mathfrak{B}$ we define a partial order $<$ as follows

$$\mathfrak{A} < \mathfrak{B} \iff \delta(\mathfrak{X}) > \delta(\mathfrak{A})(\mathfrak{X} \subset \mathfrak{B}).$$

For possibly infinite $\mathfrak{A} \subseteq \mathfrak{B}$ we define

$$\mathfrak{A} < \mathfrak{B} \iff \mathfrak{X} \cap \mathfrak{A} = \mathfrak{A}(\forall \mathfrak{X} \subseteq \mathfrak{B}).$$

Note that $\mathfrak{A} < \mathfrak{A}$. For possibly infinite $\mathfrak{A} \subseteq \mathfrak{B}$, there exists the $<$-closure $\text{cl}_{\mathfrak{B}}(\mathfrak{A})$ of \mathfrak{A} in \mathfrak{B}. K_0 is the class of finite 3-hypergraphs defined by

$$\mathfrak{A} \in K_0 \iff \emptyset < \mathfrak{A}$$

K_0 is the class of 3-hypergraphs whose finite sub-hypergraph is all in K_0. M_0 denotes the $(K_0, <)$-generic structure.

Notation 2.1. Let (A, R) be a graph, where R is the binary relation for the graph. We define the following ternary graph $(\mathfrak{H}_A, \mathfrak{A})$.

- $\mathfrak{H}_A = A \cup R^A \cup \{x_A, y_A\}$, where x_A, y_A are new elements.
- $(\mathfrak{A})^{\mathfrak{H}_A} = \{(x_A, y_A, a) : a \in A\} \cup \{(a, b, (a, b)) : (a, b) \in R^A\}$

$(\mathfrak{H}_A, \mathfrak{A})$ is definable in (A, R) with two new constants.

Lemma 2.2. Let (A, R) be a graph. Then

1. $\mathfrak{H}_A \subseteq \overline{K_0}$.
2. $\mathfrak{H}_A = \text{cl}_{\mathfrak{H}_A}(x_A, y_A)$.

Proof. Let $\mathfrak{X} \subseteq \mathfrak{H}_{A}$, and let $V(\mathfrak{X})$ be the vertex set of \mathfrak{X}. Then $V(\mathfrak{X}) \subseteq A \cup R^{A} \cup \{x_{A}, y_{A}\}$ follows. If $x_{A}, y_{A} \in \mathfrak{X}$, then $\delta(\mathfrak{X}) = |V(\mathfrak{X})| - (|V(\mathfrak{X}) \cap R^{A}| + |V(\mathfrak{X}) \cap A|) > 0$, since $V(\mathfrak{X}) = \{x_{A}, y_{A}\} \cup (V(\mathfrak{X}) \cap R^{A}) \cup (V(\mathfrak{X}) \cap A)$. Otherwise, $\delta(\mathfrak{X}) = |V(\mathfrak{X})| - (|V(\mathfrak{X}) \cap R^{A}|) > 0$, since $|V(\mathfrak{X}) \cap R^{A}| > 0$ implies $|V(\mathfrak{X}) \cap A| > 0$.

Let $c \in A$. Then $\delta(c/x_{A}, y_{A}) = 0$. So, if $c \not\in \text{cl}_{A}(x_{A}, y_{A})$, then $0 < \delta(c/\text{cl}_{A}(x_{A}, y_{A})) \leq \delta(c/x_{A}, y_{A}) = 0$, a contradiction. Next, let $c = (a, b) \in R^{A}$. Then $\delta(c/a, b) = 0$. By the above argument, we see $c \in \text{cl}_{A}(a, b)$. As $a, b \in \text{cl}_{A}(x_{A}, y_{A})$, we see that $c \in \text{cl}_{A}(x_{A}, y_{A})$.

Next, for any symmetric 3-hypergraph having at least two vertices, we construct a graph as follows.

Notation 2.3. Let $(\mathfrak{A}, \mathfrak{R})$ be a symmetric 3-hypergraph having at least two vertices. Fix two vertices $a, b \in \mathfrak{A}$. We define the following graph $G_{(\mathfrak{A}, a, b)} = (G_{\mathfrak{A}}, R)$ as follows.

- $G_{\mathfrak{A}} = \{c \in \mathfrak{A} : \mathfrak{A} \models \mathfrak{R}(c, a, b)\}$
- $R^{\mathfrak{A}} = \{(c, d) \in \mathfrak{A}^{2} : \mathfrak{A} \models \mathfrak{R}(c, a, b) \cap \mathfrak{R}(d, a, b) \cap \exists x \mathfrak{R}(x, c, d)\}$

$G_{(\mathfrak{A}, a, b)} = (G_{\mathfrak{A}}, R)$ is definable in $(\mathfrak{A}, \mathfrak{R})$ with parameters $a, b \in \mathfrak{A}$.

Remark 2.4. (1) $\mathfrak{A} \not\models \mathfrak{R}(c, a, b)$, where $a, b \in \mathfrak{A}$. (If $\mathfrak{A} \models \neg\mathfrak{R}(d, a, b)$, d will not appear in the righthand.)

(2) $A \simeq G_{(\mathfrak{A}, a, b)}$.

Proof. Clearly, $G_{\mathfrak{A}} = A$ and $R^{\mathfrak{A}} = R^{A}$, as desired.

Lemma 2.5. Let $(\mathfrak{A}, \mathfrak{R})$ be a symmetric 3-hypergraph having at least two vertices. Then

1. $a, b \not\in G_{\mathfrak{A}} \subseteq \text{cl}_{\mathfrak{A}}(a, b)$
2. If $(c, d) \in R^{\mathfrak{A}}$, then $\mathfrak{R}^{\text{cl}_{\mathfrak{A}}(a, b)} \models \exists x \mathfrak{R}(x, c, d)$
3. If $\mathfrak{A} < \mathfrak{B}$, then $G_{(\mathfrak{B}, a, b)} = G_{(\mathfrak{A}, a, b)}$

Proof. If $\mathfrak{A} \models \mathfrak{R}(c, a, b)$, then $c \in \text{cl}_{\mathfrak{A}}(a, b)$. (1),(2) follow. If $\mathfrak{A} < \mathfrak{B}$, then $\text{cl}_{\mathfrak{A}}(a, b) = \text{cl}_{\mathfrak{B}}(a, b)$. So, (3) follows.

Notation 2.6. Let φ be a sentence in the language of graphs with binary relation symbol $R(x_{1}, x_{2})$. We construct a formula σ_{φ} having free variable y, z in the the language of 3-hypergraphs with ternary relation symbol $\mathfrak{R}(x_{1}, x_{2}, x_{3})$ as follows.

- Replace all atomic subformulas $R(x_{1}, x_{2})$ by $\mathfrak{R}(x_{1}, y, z) \land \mathfrak{R}(x_{2}, y, z) \land \exists w \mathfrak{R}(w, y, z)$
- Replace $\forall x(\psi(\bar{x}))$, $\exists x(\psi(\bar{x}))$ by $\forall x(\mathfrak{R}(x, y, z) \rightarrow \psi(\bar{x}))$, $\exists x(\mathfrak{R}(x, y, z) \land \psi(\bar{x}))$.

Remark 2.7. Let \((\mathfrak{A}, \mathfrak{R}) \in \mathcal{K}_0, a, b \in \mathfrak{A}\) and \(\varphi\) be a sentence in the language of graphs. Then
\[
G_{(\mathfrak{A}, a, b)} \models \varphi \iff \mathfrak{A} \models \psi_\varphi(a, b)
\]

The above remark follows from "REDUCTION THEOREM", a (non-onto) map from \(G_{(\mathfrak{A}, a, b)}\) to \(\mathfrak{A}\), and the way of replacement of quantifiers. Reduction theorem needs a onto map, but our \(\psi_\varphi\)'s quantifiers are bounded in \(\mathfrak{A}(\ast, a, b)\). So we need not a onto map, here.

Fact 2.8. Let \(M\) be an \(L\)-structure, and \(N\) be an \(L'\)-structure. Suppose that
- there exists a partial onto map \(f\) from \(M^n\) to \(N\) (for some \(n < \omega\))
- for every positive atomic \(L\)-formula \(\theta\), there exists an \(L'\)-formula \(\psi_\theta\) such that \(M \models \theta(\overline{a}) \iff N \models \psi_\theta(f(\overline{a}))\)

THEN, by induction on the complexity of formulas, for every \(L\)-formula \(\varphi\), there exists an \(L'\)-formula \(\psi_\varphi\) such that \(M \models \varphi(\overline{a}) \iff N \models \psi_\varphi(f(\overline{a}))\).

Lemma 2.9. Let \(\varphi\) be a sentence in the language of graphs. THEN, "there exists a finite graph \(A \models \varphi\) iff \(M_0 \models \exists yz \psi_\varphi(y, z)\).

Proof. \((\Rightarrow):\) We may assume that \(\mathfrak{H}_A < M_0\). So, by Remark 2.4, \(A \simeq G(\mathfrak{H}_A, x_A, y_A) \simeq G(M_0, x_A, y_A)\). Therefore, \(M_0 \models \psi_\varphi(x_A, y_A)\).

\((\Leftarrow):\) \(G(M_0, a, b) \models \exists yz \psi_\varphi(y, z)\) and \(G(M_0, a, b) \subseteq \text{cl}_M(a, b) \subset M_0\)

Proposition 2.10. Let \(\varphi\) be a sentence in the language of graphs. Suppose that \(\varphi\) has arbitralily large finite model. Then there exists an infinite model, definable in some model of \(\text{Th}(M_0)\).

Proof. By our assumption, for any \(n < \omega\), there exists a finite graph \(A_n\) such that \(A_n \models \varphi\) and \(|A_n| \geq n\). As \(A_n \simeq G(\mathfrak{H}_{A_n}, x_{A_n}, y_{A_n})\) (by Remark 2.4) and \(\omega > |\mathfrak{H}_{A_n}| \geq |A_n| \geq n\), for any \(n < \omega\),

\[
|\mathfrak{H}_{A_n}| \models \psi_\varphi(x_{A_n}, y_{A_n}) \land |\mathfrak{R}_{0, A_n}(\ast, x_{A_n}, y_{A_n})| \geq n.
\]

As \(M_0\) is \((\mathcal{K}_0, <)\)-generic, there exists \(\mathfrak{H}_{A_n} \simeq \mathfrak{A} < M_0\). Since \(G(\mathfrak{H}_{A_n}, x_{A_n}, y_{A_n}) \simeq G(\mathfrak{A}, a, b) = G(M_0, a, b)\), where \(x_{A_n} A_n \mapsto ab\),

\[
\text{Th}(M_0) \models \exists yz \psi_\varphi(y, z) \land |\mathfrak{R}(\ast, y, z)| \geq n.
\]

By compactness, there exist infinite \(M \models \text{Th}(M_0)\) and \(a', b' \in M\) such that \(G(M, a', b') \models \varphi\), where \(G(M, a', b')\) is definable in \(M\).

Theorem 2.11. \(\text{Th}(M_0)\) has strict order property.

Proof. Let \(A_n\) be the graph as follows;
- Vertices: \(\{b_i : i < n\} \cup \{c_i : i < n\}\)
- Edges: \(\{(b_i, c_j) : 0 \leq i < j < n\}\)
Let \(a_i = (b_i, c_i) \), and \(\varphi(xy, zw) \equiv R(x, y) \land R(z, w) \land R(x, w) \land \neg R(x, z) \land \neg R(y, w) \land \neg R(y, z) \). Then \(A_n \models \varphi(a_i, a_j) \Leftrightarrow i < j < n \).

By Lemma 2.9, we can find a linear (uniformly definable) ordering of arbitrarily finite length in \(M_0 \). By compactness, we see that \(\text{Th}(M_0) \) has the strict order property.

\[\square \]

3. Review of Strong Order Property

This section consists of Shelah’s results in [Sh].

Definition 3.1. A complete theory \(T \) has \(n \)-strong order property, denoted \(\text{SOP}_n \), if there exists a formula \(\varphi(x, y) \) (\(\text{lh}(x) = \text{lh}(y) \)) and a sequence \((a_i : i < \omega) \) in some model \(N \) of \(T \) such that

1. \(N \models \varphi(a_i, a_j) \) for \(i < j < \omega \)
2. there is no \(n \)-\(\varphi \)-loops;

\[N \models \neg \exists x_0, x_1, \ldots, x_{n-1} \varphi(x_0, x_1) \land \varphi(x_1, x_2) \land \cdots \land \varphi(x_{n-2}, x_{n-1}) \]

Fact 3.2.

1. \(\text{SOP} \) implies \(\text{SOP}_n \).
2. \(\text{SOP}_{n+1} \) implies \(\text{SOP}_n \).
3. If \(T \) has \(\text{SOP}_3 \), then \(T \) has the tree property.

Proof. (1): By way of contradiction, suppose that \(T \) has \(\text{SOP} \) and \(\text{NSOP}_n \). So, there exist \(\varphi(x, y) \), \(N \models T \) and \((a_i : i < \omega) \subset N \) such that \(\forall x(\varphi(x, a_i) \rightarrow \varphi(x, a_j)) \land \exists x(\neg \varphi(x, a_i) \land \varphi(x, a_j)) \) for \(i < j < \omega \). Let \(\psi(x_0, x_1) = \forall x(\varphi(x, x_0) \rightarrow \varphi(x, x_1)) \land \exists x(\neg \varphi(x, x_0) \land \varphi(x, x_0)) \). As \(T \) has \(\text{NSOP}_n \), there exists \(n \)-\(\psi \)-loop, but it is impossible.

(2): Let \(\varphi(x, y) \), a model \(M \), and \((a_i : i < \omega) \in M \) be witness for \(\text{SOP}_{n+1} \). We may assume that \((a_i : i < \omega) \) is indiscernible. We divide the arugment into two cases, whether

\[M \models \exists x_0, \ldots, x_{n-1}[x_0 = a_1 \land x_{n-1} = a_0 \land \bigwedge_{i,j<n,k\equiv l+1(\text{mod} n)} \varphi(x_i, x_j)] \]

or not.

- The case that \(M \models \exists x_0, \ldots, x_{n-1}[x_0 = a_1 \land x_{n-1} = a_0 \land \bigwedge_{i,j<n,k\equiv l+1(\text{mod} n)} \varphi(x_i, x_j)] \)

As \(a_1 = a_0 \), we have \(M \models \exists x_0, \ldots, x_{n-1}[x_0 = a_2 \land x_{n-1} = a_0 \land \bigwedge_{i,j<n,k\equiv l+1(\text{mod} n)} \varphi(x_i, x_j)] \).

Let \(a_2, c_1, \ldots, c_{n-2}, a_0 \) be the witness for \(x_0, \ldots, x_{n-1} \). By the way, \(M \models \varphi(a_1, a_2) \land \varphi(a_0, a_1) \), so \(a_1, a_2, c_1, \ldots, c_{n-2}, a_0 \) is an \((n+1) \)-\(\varphi \)-loop, a contradiction.

- The case that \(M \models \neg \exists x_0, \ldots, x_{n-1}[x_0 = a_1 \land x_{n-1} = a_0 \land \bigwedge_{i,j<n,k\equiv l+1(\text{mod} n)} \varphi(x_i, x_j)] \)

Put \(\psi(x, y) \equiv \varphi(x, y) \land \neg \exists x_0, \ldots, x_{n-1}[x_0 = x \land x_1 = y \land \bigwedge_{i,j<n,k\equiv l+1(\text{mod} n)} \varphi(x_i, x_j)] \)

Then \(M \models \psi(a_i, a_i)(i < j < \omega) \), and \(n \)-\(\psi \)-loops never exist.

(3): Let \(\kappa = \text{cf}(\kappa) > |T| \) and \(\lambda > \kappa \) be such that \(\text{cf}(\lambda) = \kappa \) and "\(\mu < \lambda \) implies \(2^\mu < \lambda \)" (strongly limit singular cardinal of cofinality \(\kappa \)). Put \(J = ^\kappa \lambda \) and
I \subset J be such that \eta \in I iff \eta(i) = 0 for every i < \kappa large enough.

Let \varphi(x, y) be the witness for SOP₃. By compactness, there exist a sequence \langle a_\eta : \eta \in I \rangle in some model M such that M \models \varphi(a_\eta, a_\nu) for any \eta < \nu. The lexicographic order on I is as usual; if i is the least such that \eta|i = \nu|i, then \eta(i) = \nu(i).

We may assume that M is \kappa^+-saturated, and |M| \geq \lambda. Fix an \eta \in \kappa(\lambda \setminus \{0\}) \setminus I. We will define a_\eta as follows.

Put \rho = \{\varphi(a_\eta|_i a_\nu|_i, x) \wedge \varphi(a_\eta|_{i+1} a_\nu|_{i+1}, x) : i < \kappa\}.

Note that (\eta|i)0_{(i, \kappa)}, (\eta|i, \eta(i) + 1)0_{(i, \kappa)} \in I, and

a\eta = \varphi(a_\eta|_{i+1} a_\nu|_{i+1}, x) \wedge \varphi(a_\eta|_i a_\nu|_i, x).

As M is \kappa^+-saturated, there exists a realization of p_\eta in M, say a_\eta.

Claim. If \eta_1 \neq \eta_2 \in \kappa(\lambda \setminus \{0\}), then p_{\eta_1} \cup p_{\eta_2} is inconsistent.

Suppose that \eta_1 < \eta_2. Then there exists i such that \eta_1|i = \eta_2|i, \eta_1(i) < \eta_2(i). Take \nu < \rho \in I be with \eta_1 < \nu < \rho < \eta_2 as follows.

\eta_1|i = \eta_2|i = \nu|i = \rho|i, \nu(i) = \eta_1(i) + 1, \rho(i) = \nu_2(i), \nu(j) = 0(j > i), \rho(j) = \nu_2(i+1).

As \varphi(x, a_\nu) \in p_{\eta_1}, \varphi(x, a_\rho) \in p_{\eta_2}, and M \models \varphi(a_\nu, a_\rho), if we found the realization of p_{\eta_1} \cup p_{\eta_2}, say c, then c, a_\nu, a_\rho would be the 3-loop, a contradiction.

We also have |p_\eta| = \kappa, |\{Dom(p_\eta) : \eta \in \kappa(\lambda \setminus \{0\})\}| \leq \lambda (as \bigcup\{Dom(p_\eta) : \eta \in \kappa(\lambda \setminus \{0\})\} \subseteq \{a_\nu : \nu \in I\})

By 7.7(3) and 7.6(2) on p.141 of Shelah’s 2nd edition book, \lambda = \lambda^{<\kappa} > 2^{|T|} (by cf(\lambda) = \kappa < \lambda) and \kappa > |T| imply that T has the tree property. □

It is conjectured that SOP₄ is a good dividing line for existence of universal models, i.e. if T does not have SOP₄, it will have universal models of cardinality \lambda > |T| (Shelah showed that if T is simple and \lambda > |T|, then there exists universal models of cardinality \lambda^{++}. As the above, simplicity implies NSOP₃.)

4. \text{Th}(M_f) does not have SOP₄

Let \delta be a local rank on relational finite structures such that \delta(A/B) \leq \delta(A/A \cap B), where \delta(A/B) = \delta(AB) - \delta(B). Let f : \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0} be upper unbounded and monotone increasing. Let K_0 = \{A \in K_0 : \delta(X) \geq f(|X|) (\forall X \subseteq A)\} and \beta(x) = \min\{\delta(X/A) : A < X \in K_0, A \neq X, |X| \leq x\}.

Fact 4.1. Suppose that

\[f'(x) \leq \frac{\beta(x)}{x}. \]
Then K_f is closed under free amalgamation, so (K_f, \prec)-generic M_f exists, $cl = acl$ in M_f and $Th(M_f)$ is ω-categorical. (ω-categoricity follows from $|cl(*)| \leq f^{-1}(\delta(*))$ for finite graphs.)

Proof. Let $A < B_1, B_2 \in K_f$ and let $C = B_1 \otimes_A B_2$. We need to show that if $X \subseteq C$, then $\delta(X) \geq f(|X|)$. We may assume that $X < C$, because $\delta(X) \geq \delta(cl(X))$ and $f(|cl(X)|) \geq f(|X|)$.

Let $X_i = X \cap B_i (i = 1, 2)$ and let $X_0 = X \cap A$. Suppose that
\[
\frac{\delta(X_1) - \delta(X_0)}{|X_1| - |X_0|} \leq \frac{\delta(X) - \delta(X_0)}{|X| - |X_0|} \leq \frac{\delta(X_2) - \delta(X_0)}{|X_2| - |X_0|}.
\]
As $X_0 < X_1$, $\beta(|X_1|) \leq \delta(X_1/X_0)$. Therefore $\frac{\delta(X_1) - \delta(X_0)}{|X_1| - |X_0|} \geq \frac{\beta(|X_1|)}{|X_1|} \geq f'(|X_1|)$. So, the line between $(|X_0|, \delta(X_0))$ and $(|X_1|, \delta(X_1))$ lies above f. As f' is decreasing and $\delta(X_1) \geq f(|X_1|)$, $\delta(X) \geq f(|X|)$ follows. \qed

Let $d(A) = \delta(cl(A))$, and $d(a/A) = \delta(cl(aA)/cl(A))$. For possibly infinite B, let $d(a/B) = \inf\{d(a/B_0) : B_0 \subset_\omega B\}$.

Fact 4.2. Let \mathcal{M} be a relational structure having δ-rank. Let $a, A, B \subset_\omega \mathcal{M}$. Suppose that $A < B < \mathcal{M}$ and $cl(aA) \subset_\omega \mathcal{M}$. Then $d(a/B) = d(a/A)$ iff $cl(aA) \cap B = A, cl(aA)B = cl(aA) \otimes_A B$ and $d(aB) = \delta(cl(aA)B)$ (i.e. $cl(aA)B \leq cl(aB)$).

Proof. As $A < cl(aA) \cap B$ or $A = cl(aA) \cap B$, we have $\delta(A) \leq \delta(cl(A) \cap B)$. So, $\delta(cl(aA)/cl(A)) \cap B \leq \delta(cl(aA)/A)$. Therefore
\[
d(a/B) \leq \delta(cl(aA)/B) \leq \delta(cl(aA)/cl(aA) \cap B) \leq \delta(cl(aA)/A) = d(a/A).
\]
Now we can see the conclusion. \qed

By Fact 4.2, for $a, b, A \subset_\omega \mathcal{M}$,
\[
d(a/Ab) = d(a/A) \Leftrightarrow d(b/Aa) = d(b/A).
\]
(By $d(a/Ab) = d(a/A) \Leftrightarrow "cl(aA) \cap cl(bA) = cl(A), cl(aA)cl(bA) = cl(aA) \otimes cl(aA) cl(bA) \leq cl(abA)".

From now on, we assume that the control function f satisfies $"f'(x) \leq \frac{\beta(x)}{x}"$. Let \overline{K}_f be the class of possibly infinite structures whose finite substructures are all in K_f. Let $T_f = \{ \forall \bar{x} \exists \bar{y} \Diag_A(\bar{X}) : \delta(A) < f(|A|), |A| < \omega \}$. Then $M \models T_f \iff M \in \overline{K}_f$. Let \mathcal{M} be a big model of M_f. Note that if $A \subset_\omega \mathcal{M}$, then $A \in \overline{K}_f$.

Proposition 4.3. Suppose that, in \mathcal{M}, if $A = acl(A)$, $d(a/A) = d(a/Ab)$, $acl(aA) \cap acl(bA) = A$, then there exists $A_0 \subset_\omega A$ such that $d(a/A_0b) = d(a/A_0)$. THEN $Th(M_f)$ has NSOP4.
Proof. Let \((a_i : i < \omega)\) be an infinite indiscernible sequence in \(\mathcal{M}\). Put \(p(x_0x_1) = \text{tp}(a_0a_1)\). We will show that
\[p(x_0x_1) \cup p(x_1, x_2) \cup p(x_2x_3) \cup p(x_3x_0)\]
is consistent.

Claim. There exists \(B \subset_\omega \mathcal{M}\) such that \((a_i : i < \omega)\) is \(B\)-indiscernible, and \(d(a_2/Ba_0a_1) = d(a_2/Ba_1) = d(a_2/B)\). (Then \(a_2 \equiv_{a_0} a_1\), \(d(a_2/Ba_0a_1) = d(a_2/Ba_2)\) follows.)

Extend \((a_i : i < \omega)\) to \((a_i : i < \mathbb{Z})\). As \((a_i : i \geq 0)\) is indiscernible over \((a_i : i < 0)\), \((a_i : i \geq 0)\) is indiscernible over \(\text{acl}(a_i : i < 0) =: A_0\). As \(a_{<i} \equiv_{a_i} a_{<0}\), we see that \(d(a_i/A_0a_{<i}) = d(a_i/A_0)\).

By extending \((a_i : i \geq 0)\) over \(A_0\) and applying Erdos-Rado Theorem, we may assume that \(\text{acl}(A_0a_{<i}) \cap \text{acl}(A_0a_{<j}) =: C\) is constant for any \(i < j < k\), and \((a_i : i \geq 0)\) is indiscernible over \(C\).

Now, by our assumption, take \(B \subset_\omega C\) such that \(d(a_2/Ba_0a_1) = d(a_2/B)\), as desired. The claim is proven.

As \(d(a_2/Ba_0a_1) = d(a_2/B)\), we have
\[\text{cl}(a_2) \subset \text{cl}(a_0a_1)B = \text{cl}(a_2) \otimes_{\text{cl}(B)} \text{cl}(a_0a_1B) \leq \text{cl}(a_0a_1a_2B).
\]
As \(\text{cl}(a_0a_1a_2B) \in K_f\), we may assume that
\[\text{cl}(a_0a_1a_2B) \leq M_f.
\]
So, we can work inside \(M_f\). (i.e. we have \(a_0, a_1, a_2, B \subset_\omega M_f\) such that \((a_0, a_1, a_2)\) is \(B\)-indiscernible and \(d_{M_f}(a_2/Ba_0a_1) = d_{M_f}(a_2/B)\).)

Let \(C_{i,j} = \text{cl}(a_ia_jB)\), \(C_i = \text{cl}(a_iB)\). By \(d(a_2/Ba_0a_1) = d(a_2/Ba_1)\) and Fact 4.2, we see that \(C := C_{0,1}C_{1,2} = C_{0,1} \otimes_{C_1} C_{1,2}\). And \(C_{0,1} \cap C_{0,2} = C_0\) and \(C_{1,2} \cap C_{0,2} = C_2\) follow by \(d(a_2/Ba_0a_1) = d(a_2/Ba_1), d(a_1/Ba_0a_2) = d(a_1/Ba_2)\) and Fact 4.2. So we have
\[C \cap C_{0,2} = C_0C_2 = C_0 \otimes_B C_2 \subset C.
\]

Let \(f : C_0C_2 \rightarrow C_0C_2\) be an isomorphism over \(B\) sending \(a_0a_2\) to \(a_2a_0\), and let \(g : C_0C_2 \rightarrow C\) be the inclusion map. Put \(g' = g \circ f\). As \(K_f\) is closed under free amalgamation, there exist \(D \in K_f\) and \(h, h' : C \rightarrow D\) such that \(h \circ g(C_0C_2) = h' \circ g'\), \(h \circ g(C_0C_2) = h' \circ g'\) and \(D = h(C) \otimes_{h_0g(C_0C_2)} h'(C)\). We may assume that \(D < M_f\). Put \(a_0' = h \circ g(a_0), a_1' = h(a_1), a_2' = h' \circ g'(a_2), a_3' = h'(a_1)\).

Claim. \(a_0' a_1', a_1' a_2', a_2' a_3', a_3' a_0' \models p = \text{tp}(a_0a_1)\). (This proposition is proven.)

Note that
\[
h(a_0a_1) = a_0' a_1', h(a_1a_2) = a_1' a_2', h'(a_0a_1) = (h' \circ g'(a_2))a_3' = a_3' a_4',
\]
\[
h'(a_1a_2) = a_3'(h' \circ g'(a_0)) = a_3'(h \circ g(a_0)) = a_2'h(a_0) = a_3'a_0'.
\]
On the other hand,

\[h(C_{0,1}), h(C_{1,2}) < h(C) < D < M_f, \]
\[h'(C_{0,1}), h'(C_{1,2}) < h'(C) < D < M_f. \]

Put \(B' = h \circ g(B) = h' \circ g'(B) \). Then

\[h(\text{cl}(a_0a_1B)) = h(C_{0,1}) = \text{cl}(a'_0a'_1B'), \]
\[h'(\text{cl}(a_0a_1B)) = h'(C_{0,1}) = \text{cl}(a'_2a'_3B'), \]
\[h(\text{cl}(a_1a_2B)) = h(C_{1,2}) = \text{cl}(a'_3a'_4B'). \]

By genericity of \(M_f \), we see that

\[\text{cl}(a_0a_1B) \equiv \text{cl}(a_1a_2B) \equiv \text{cl}(a'_0a'_1B') \equiv \text{cl}(a'_2a'_3B') \equiv \text{cl}(a'_3a'_4B'). \]

\[\square \]

Remark 4.4. Suppose that for any \(a, A \subset \mathcal{M} \), there exists \(A_0 \subset A \) such that \(d(a/A) = d(a/A_0) \). Then the assumption of Proposition 4.3 holds.

Proof. Take \(A_0, A_1 \subset A \) such that \(d(a/Ab) = d(a/A_0b) \) and \(d(a/A) = d(a/A_1) \). Then \(d(a/A_0A_1) = d(a/A_0A_1b) \).

\[\square \]

5. **Review of Evans’ Paper on Simple \(\omega \)-Categorical Generic Structures**

Let \(\delta \) be a local rank on relational finite structures such that \(\delta(A/B) \leq \delta(A/A \cap B) \), where \(\delta(A/B) = \delta(AB) - \delta(B) \). Let \(f : \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{\geq 0} \) be an upper unbounded, monotone increasing, convex \((f'(x) \) is monotone decreasing) and \(f'(x) \leq \frac{\beta(x)}{x} \), where \(\beta(x) = \min\{1, \delta(X/A) : A < X \in \mathcal{K}_0, A \neq X, |X| \leq x\} \).

Let \(K_f = \{ A \in \mathcal{K}_0 : f(|X|) \geq f(|X|)(\forall X \subseteq A) \} \).

The following fact is Corollary 2.20 of [E1].

Fact 5.1. Let \(M_f \) be \((K_f, <)\)-generic. And suppose the condition on \(\mathcal{M} \) (big model of \(\text{Th}(M_f) \)) as in Proposition 4.3. Furthermore, suppose the following.

1. (d-extension property in \(\mathcal{M} \))

 Let \(A \subset B \subset \mathcal{M} \) be algebraically closed and \(c \subset A \). Then there exists \(c' \subset \omega \mathcal{M} \) such that \(\text{tp}(c/A) = \text{tp}(c'/A) \), \(d(c'/B) = d(c/A) \) and \(\text{acl}(c'/A) \cap B = A \).

2. (Independence theorem over finite closed sets in \(M_f \))

 Let \(A, B_1, B_2 < M_f \) be finite such that \(B_1 \cap B_2 = A \) and \(d(B_1/B_2) = d(B_1/A) \). Suppose that \(c_1, c_2 \subset \omega \mathcal{M}_f \), \(\text{tp}(c_1/A) = \text{tp}(c_2/A) \) and \(d(c_1/B) = d(c_1/A) \). Then there exists \(c \subset \omega \mathcal{M}_f \) such that \(\text{tp}(c/B_1) = \text{tp}(c_1/B_1) \) and \(d(c/B_1B_2) = d(c/A) \).

THEN \(\text{Th}(M_f) \) is simple and \("c \perp_A B \iff d(c/B) = d(c/A) \) and \(\text{acl}(c/A) \cap B = A \), for \(A, B \) algebraically closed in \(\hat{\mathcal{M}} \)."
We give the proof of the following lemma. (Theorem 3.6 of [E1])

Lemma 5.2. Suppose that d-extension property over finite closed sets in \mathcal{M} and $f(3x) \leq f(x) + \beta(x)$. Then the independence theorem over finite closed sets holds in \mathcal{M}_f.

Proof. Let c_i, B_i, A be as in Fact 5.1. Then $\text{acl}(c_1A) \simeq_A \text{acl}(c_2A)$. Put $E_{12} = \text{acl}(B_1B_2)$, $E_{13} = \text{acl}(c_1B_1)$, $E_{23} = \text{acl}(c_2B_2)$. By considering free amalgamation and copies, we may assume that $B_1 \cap E_{13}, B_2 = E_{12} \cap E_{23}, B_3 := E_{13} \cap E_{23} = \text{acl}(c_iA)$.

Let $E = E_{12}E_{13}E_{23}$. We need to show that $A < E$ and $E \in \mathcal{K}_f$.

Claim. $A < E$.

By Fact 4.2, $B_iB_j \leq E_{ij}$. As $E = E_{ij} \otimes_{B_iB_j} E_{ik}E_{jk}$, $E_{ik}E_{jk} \leq E$ follows. We also have $E_{ik}E_{jk} = E_{ik} \otimes_{B_k} E_{jk}$ and $B_k < E_{jk}, E_{ik} < E_{ik}E_{jk}$ follows. Thus $E_{ik} < E$. As $A < B_i < E_{ik}, A < E$ follows.

Claim. $E \in \mathcal{K}_f$.

We have $E = E_{ij} \otimes_{B_iB_j} E_{ik}E_{jk}$, but we do not have $B_iB_j < E_{ij}, E_{ik}E_{jk}$. So we can not conclude this claim by using Fact 4.1.

We need to show $\delta(D) \leq f(|D|)$ for any $D \leq E$ as in Fact 4.1. Put $D_{ij} = D \cap E_{ij}$ and $d_{ij} = \delta(D_{ij})$. Suppose that d_{12} is the largest of these.

As $E_{12}E_{23} \in \mathcal{K}_f$, we may assume that $D \neq D_{12}D_{23}$. Put $D^1 = D_{12}D_{13}$. As $E_{12}E_{13} \leq E$, we see that $D^1 \leq D$. As $D^1 = D_{12} \otimes_{D \cap B_1} D_{13}$ and $D \cap B_1 < D_{13}$,

$$\delta(D^1) = d_{12} + \delta(D_{13}/D \cap B_1) \geq d_{12} + \beta(|D_{13}|).$$

As $d_{13} \leq d_{12}, |D_{13}| \leq f^{-1}(d_{13}) \leq f^{-1}(d_{12})$.

So, as β is monotone decreasing, $d_{12} \leq \delta(D^1) - \beta(|D_{13}|) \leq \delta(D^1) - \beta(f^{-1}(d_{12}))$.

By our assumption on f

$f(3x) \leq f(x) + \beta(x)$, so $3f^{-1}(x) \leq f^{-1}(x + \beta(f^{-1}(x)))$

$$3f^{-1}(d_{12}) = f^{-1}(d_{12} + \beta(f^{-1}(d_{12}))).$$

So, $3f^{-1}(d_{12}) \leq f^{-1}(\delta(D^1))$. As $|D| \leq \sum_{ij} |D_{ij}| \leq \sum_{ij} f^{-1}(d_{ij}) \leq 3f^{-1}(d_{12})$ and $\delta(D^1) \leq \delta(D)$, we see that $|D| \leq f^{-1}(\delta(D))$.

\[\square \]
6. Th(M_f) has SOP$_3$ for some f

We work with undirected graphs, and $\delta(A) = 2|A| - e(A)$. Note that $\beta(x) = 1$. The control function $f : \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ is an upper unbounded, monotone increasing satisfying the following five conditions:

(F1): $f(0) = 0, f(2) = 2, f(4) = 3, f(8) = 4 < f(10) < \frac{1}{2} < f(12) < 5 < f(14) < \frac{1}{3} < f(16) < f(18) \leq 6.$

(F2): $2f'(2n) \leq \frac{1}{n}$ for $n \geq 7$

(F3): $f\left(\frac{k^2}{2}\right) \leq k$ if $k \geq 6$

(F4): $f(3n) \leq f(n) + 1$ for $n \geq 10$

(F5): $f(10) + 1 \geq f(14), f(12) + 1 \geq f(16)$.

Let $f_1(x) = f(2x)$. So, $f_1'(x) = 2f'(2x)$ and F2: $f_1'(n) \leq \frac{1}{n}$ for $n \geq 7$.

We consider K_{f_1}.

Remark 6.1.

1. δ(3-cycle)$= 6 - 3 = 3 = f(4) < f(6) = f_1(3)$, so 3-cycle does not belong to K_{f_1}. δ(4-cycle)$= 8 - 4 = 4 = f(8) = f_1(4)$, so 4-cycle belongs to K_{f_1}.

2. The graph does not belong to K_{f_1}, because its δ-rank$= 14 - 9 = 5 < f(14) = f_1(7)$.

3. (F1) and (F2) give the free amalgamation property of (K_{f_1}, \prec).

4. (F1) and (F3) are needed to show that the graphs $G(A_n, B_n, x_0)$ belong to K_{f_1}. (Lemma 6.4.)

5. (F4) is needed to show Subclaim 2 in the proof of Lemma 6.7. Lemma 6.7 ensures that the important graphs E_n can be closedly embedded into M_{f_1} and the graphs E_n will give the witness formula for SOP$_3$.

6. (F1), (F2) and (F5) are needed to show Lemma 6.6. (Lemma 6.6 gives a very important key to get Lemma 6.7.)

By the graphs $E_n < M_{f_1}(n \in \omega)$, we will give a formula $\varphi(x, y)$ and infinite sequence $(a_i)_{i<\omega}$ in M_{f_1} such that $M_{f_1} \models \varphi(a_i, a_j)$ whenever $i < j$. But if there were a 3-φ-loop in some model N of Th(M_{f_1}), then N would have the
graph as in (2) of Remark 6.1. As any finite graph of N belongs to $\mathbb{K}_{f_{1}}$, so SOP3 follows.

Lemma 6.2. $\mathbb{K}_{f_{1}}$ has the free amalgamation property.

Proof. Let $A < B_{1}, B_{2} \in \mathbb{K}_{f}$ and let $C = B_{1} \otimes_{A} B_{2}$. We need to show that if $X \subseteq C$, then $\delta(X) \geq f_{1}(|X|)$. We may assume that $X < C$, because $\delta(X) \geq \delta(\text{cl}(X))$ and $f_{1}(\text{cl}(X)) \geq f_{1}(|X|)$.

Let $X_{i} = X \cap B_{i}(i = 1, 2)$ and let $X_{0} = X \cap A_{n}$. Suppose that

$$\frac{\delta(X_{1}) - \delta(X_{0})}{|X_{1}| - |X_{0}|} \leq \frac{\delta(X) - \delta(X_{0})}{|X| - |X_{0}|} \leq \frac{\delta(X_{2}) - \delta(X_{0})}{|X_{2}| - |X_{0}|}, |X_{1}| \geq 7.$$

As $X_{0} < X_{1}$, $\beta(|X_{1}|) \leq \delta(X_{1}/X_{0})$. So, by (F2),

$$\frac{\delta(X_{1}) - \overline{\delta}(X_{0})}{|X_{1}| - |X_{0}|} \geq \frac{1}{|X_{1}|} \geq f_{1}'(|X_{1}|).$$

So, the line between $(|X_{0}|, \overline{\delta}(X_{0}))$ and $(|X_{1}|, \delta(X_{1}))$ lies above f_{1}. As f_{1}' is decreasing and $\delta(X_{1}) \geq f_{1}(|X_{1}|)$, $\delta(X) \geq f_{1}(|X|)$ follows. In Appendix 1, we give the proof when $|X_{1}| \leq 6$.

\[\square\]

Notation 6.3. Consider the following graphs $G(A_{n}, B_{n}, x_{0})$ for each $n < \omega$.

- Vertex set: $A_{n} \cup B_{n} \cup \{x_{0}\} \cup \{z_{ij} : 0 \leq i < j \leq n\}$, where $A_{n} = \{a_{i} : 0 \leq i \leq n\}, B_{n} = \{b_{i} : 0 \leq i \leq n\}$.
- Edges: $R(x_{0}, a_{i}), R(x_{0}, b_{i})$ for $0 \leq i \leq n$ and $R(z_{ij}, a_{i}), R(z_{ij}, b_{j})$ for $0 \leq i < j \leq n$.

Lemma 6.4.

1. $G(A_{n}, B_{n}, x_{0}) \in \mathbb{K}_{f_{1}}$
2. $x_{0}A_{n} < G(A_{n}, B_{n}, x_{0})$
3. $d(A_{n}/B_{n}) = d(A_{n}/x_{0})$, where $d(\cdot) = d_{G\langle A_{11},B_{n},x_{0}\rangle}(\cdot)$.

Proof. Put $G = G(A_{n}, B_{n}, x_{0}), A = A_{n}, B = B_{n}, Z = \{z_{ij} : 0 \leq i < j \leq n\}$. (1): It suffices to show that if $X < G$, then $\delta(X) \geq f_{1}(|X|)$. It is clear in case of $|X| = 1$. If $|X| \geq 2$, then $x_{0} \in X$. (If $x_{0} \neq a, b \in X$, then $\delta(x_{0}/ab) = 0$, so $x_{0} \in \text{cl}_{G}(ab) \subseteq X$.)

Claim. $a_{i}, b_{j} \in X \Leftrightarrow z_{ij} \in X$.

This claim follows from $\delta(z_{ij}/a_{i}b_{j}) = \delta(a_{i}/x_{0}z_{ij}) = \delta(b_{j}/x_{0}z_{ij}) = 0$ and $X < G$.

Put $X_{A} = X \cap A_{n}, X_{B} = X \cap B, X_{Z} = X \cap Z$ and $m = |X_{A}| + |X_{B}|$. By claim, we see that $\delta(X_{Z}/x_{0}X_{A}X_{B}) = 0$, so we have

$$\delta(X) = \delta(x_{0}X_{A}X_{B}) = 2(m + 1) - m = m + 2 =: k$$
As \(|X_Z| \leq |X_A||X_B| \leq |X_A|(m - |X_A|) = (\frac{m}{2})^2 - (|X_A| - \frac{m}{2})^2 \leq (\frac{m}{2})^2\), we have

\[|X| \leq 1 + m + (\frac{m}{2})^2 = (1 + \frac{m}{2})^2 = \frac{k^2}{4}\]

If \(k \geq 6\), by (F3), \(\delta(X) = k \geq f(\frac{k^2}{2}) = f_1(\frac{k^2}{4}) \geq f_1(|X|)\), as desired.

If \(k \leq 5\), then \(|X_A| + |X_B| \leq 3\).

If \(|X_A| = 3\), then \(X_Z = \emptyset\) and \(\delta(X) = 2\).

If \(|X_A| = 2, |X_B| = 1\), then \(\delta(X) \geq \{1\}\).

If \(|X_A| = 2, |X_B| = 0\), then \(X_Z = \emptyset\) and \(\delta(X) = 2 \cdot 2 - 1 = 3 = f(4) = f_1(2)\).

By symmetry, we see that \(X \in \mathbf{K}_{f_1}\).

(2): Let \(x_0 A \subset X \subset G\). We show that \(\delta(X/x_0 A) > 0\). We may assume \(X < G\). By \(\dagger\) we have

\[
\delta(X/x_0 A) = \delta(x_0 X_A X_B/x_0 A) = \delta(X_B/x_0 A) = 2|X_B| - |X_B| > 0.
\]

(3): It is clear that \(cl_G(x_0) = x_0, cl_G(x_0 A) = x_0 A, cl_G(x_0 B) = x_0 B\), and \(\delta(A/Bx_0) = \delta(A/x_0)\). We also have \(x_0 AB \leq cl_G(x_0 AB) = G\), because \(\delta(Z'/x_0 AB) = \sum_{z \in Z'} \delta(z/x_0 AB) = 0\). So, by Fact 4.2, we are done. \(\square\)

Notation 6.5. Suppose that \(C_n = \{c_i : 0 \leq i \leq n\}\) and \(C_n \cap A_n B_n = \emptyset\).

Let \(E_n\) be the free amalgam of \(G(A_n, B_n, x_0), G(B_n, C_n, x_0)\) and \(G(C_n, A_n, x_0)\).

i.e.

\[
\text{Edges} = \text{edges of } G(A_n, B_n, x_0), G(B_n, C_n, x_0) \text{ and } G(C_n, A_n, x_0), \text{ only}.
\]

In particular, we have \(G(A_n, B_n, x_0)G(B_n, C_n, x_0) = G(A_n, B_n, x_0) \otimes_{B_n x_0} G(B_n, C_n, x_0)\),

\(G(B_n, C_n, x_0)G(C_n, A_n, x_0) = G(B_n, C_n, x_0) \otimes_{C_n x_0} G(C_n, A_n, x_0)\)

\(G(C_n, A_n, x_0)G(A_n, B_n, x_0) = G(C_n, A_n, x_0) \otimes_{A_n x_0} G(A_n, B_n, x_0)\).

Lemma 6.6. Suppose that \(A, B, C \in \mathbf{K}_{f_1}, |A|, |B|, |C| \leq 4\). Suppose that \(A \cap B < A, B, A \cap C < A, C\) and \(B \cap C < B, C\), and \(AB = A \otimes_{A \cap B} B, AC = A \otimes_{A \cap C} C, BC = B \otimes_{B \cap C} C\). Put \(X = A \cap B \cap C, Z = A \setminus (B \cup C), W = B \setminus (A \cup C), U = C \setminus (A \cup B)\).

Suppose that \(D = ABC \notin \mathbf{K}_{f_1}\)

Then \(D\) is isomorphic to \(\begin{array}{c}
\begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
\text{x} & \text{y} & \text{z} \\
\text{w} & \text{u} & \text{v}
\end{array}
\end{array}\), where \(a \in A \cap C, b \in A \cap B, c \in B \cap C, x \in X, z \in Z, w \in W, u \in U\).
Proof. See Appendix 2. As $A \cap B < A$, if $c \in A \setminus (A \cap B)$, there is no $a, b \in A \cap B$ such that $R(a, c) \cap R(b, c)$. This easy fact is important for the proof. (F1), (F2) and (F5) are also needed.

Lemma 6.7.
(1) $E_n \in K_{f_1}$
(2) $E_n < E_{n+1}$, so we may assume $E_n < E_{n+1} < M_{f_1}$ for any $n < \omega$.

Proof. (1): Let $D \subseteq E_n$ and $D_{AB} = D \cap G(A_n, B_n, x_0)$, $D_{BC} = D \cap G(B_n, C_n, x_0)$, $D_{CA} = D \cap G(C_n, A_n, x_0)$, and $D_A = D \cap x_0 A_n$, $D_B = D \cap x_0 B_n$, $D_C = D \cap x_0 C_n$. By way of contradiction, suppose that $\delta(D) < f_1(|D|)$.

Claim. $|D_{AB}|, |D_{BC}|, |D_{CA}| \leq 4$.

Suppose that $\delta(D_{BC}), \delta(D_{CA}) \leq \delta(D_{AB}) =: d_{AB}$. By Fact 6.2, $G(A_n, B_n, x_0)G(C_n, A_n, x_0) \in K_{f_1}$. So we have $D' \neq D$. As $E_n = G(A_n, B_n, x_0)G(C_n, A_n, x_0)\otimes_{B, C_n} G(B_n, C_n, x_0)$ and $B_n C_n x_0 \leq G(B_n, C_n, x_0)$ by (3) of Lemma 6.4, we see

$D' \leq D$.

As $x_0 A_n < G(C_n, A_n, x_0)$ (so $D_A < D_{CA}$) and $D' = D_{AB} \otimes_{D_A} D_{CA}$, so

$\delta(D') \geq d_{AB} + 1$.

Subclaim 1: $f^{-1}(d_{AB} + 1) < 3 f^{-1}(d_{AB})$.

Note that $f^{-1}(d_{AB}) \geq f^{-1}(\delta(D_{**})) \geq 2 |D_{**}|$. Suppose that this subclaim does not hold, then we have

$f^{-1}(d_{AB} + 1) \geq 3 f^{-1}(d_{AB}) \geq 2(|D_{AB}| + |D_{BC}| + |D_{CA}|) \geq 2 |D|$.

So, we have $\delta(D) \geq \delta(D') \geq d_{AB} + 1 \geq f_1(|D|)$, a contradiction. This subclaim is proven.

Subclaim 2: $d_{AB} < f(10)$.

Otherwise, we have $f^{-1}(d_{AB}) \geq 10$. Thus, by ((F4): $f(3n) \leq f(n) + 1$), we have $3 f^{-1}(d_{AB}) \leq f^{-1}(f^{-1}(d_{AB})) + 1 = f^{-1}(d_{AB} + 1)$, this contradicts subclaim 1. Subclaim 2 is proven.

As $\delta(D_{**}) \leq d_{AB} < f(10)$, and $D_{**} \in K_{f_1}$, we see the claim.

By this claim and Lemma 6.6, we have the following graph E_n, where $a \in D_A, b \in D_B, c \in D_C, z \in D_{AB} \setminus D_A D_B, w \in D_{BC} \setminus D_B D_C, u \in D_{CA} \setminus D_A D_C$. But this is impossible by definition of E_n.

(2): Let $V = \{z_{i+n+1}, u_{i+n+1}, u_{n+n+1} : 0 \leq i \leq n\}$ be the vertices of $E_{n+1} \setminus (E_n \cup \{a_{n+1}, b_{n+1}, c_{n+1}\})$. Then

$E_{n+1} = E_n \cup \{a_{n+1}, b_{n+1}, c_{n+1}\} \cup V$.

Let $X \subseteq \{a_{n+1}, b_{n+1}, c_{n+1}\} \cup V$. Then $e(X, E_n) = |X|$, so $\delta(X/E_n) = \delta(X) - |X| = |X| - e(X)$. If $X \cap V = \emptyset$ or $X \cap \{a_{n+1}, b_{n+1}, c_{n+1}\} = \emptyset$, then $e(X) = 0$. Otherwise, $e(X) = |X \cap V| < |X|$, as desired.

Theorem 6.8. Th(M_{f_1}) has SOP$_3$.

Proof. Let $\varphi(x_1y_1z_1, x_2y_2z_2) \equiv \bigwedge_{i=1,2}(R(x_0, x_i) \land R(x_0, y_i) \land R(x_0, z_i)) \land \exists z, w, u(R(x_1, z) \land R(z, y_2) \land R(y_1, w) \land R(w, z_2) \land R(z_1, u) \land R(u, x_2))$.

Let a_n, b_n, c_n be as in $E_n (n < \omega)$, and put $d_n = a_n b_n c_n$. Then $\Lambda I_{f_1} \models \varphi(d_i, d_j)$ for $i < j < \mu j$.

By way of contradiction, suppose that there exist $N = Th(M_{f_1})$ and $d_0', d_1', d_2' \in N$ such that $N \models \varphi(d_0', d_1') \land \varphi(d_1', d_2') \land \varphi(d_2', d_0')$. Let $d_i' = a_i'b_i'c_i'$.

Now we have $\overline{d}_i' \in N$. But any substructure of N is in K_{f_1}, a contradiction.

7. Appendix 1 (Free AP of K_{f_1})

We show Lemma 6.2, when $|X_1| \leq 6$ and

$$\frac{\delta(X_1) - \delta(X_0)}{|X_1| - |X_0|} \leq \frac{\delta(X) - \delta(X_0)}{|X| - |X_0|} \leq \frac{\delta(X_2) - \delta(X_0)}{|X_2| - |X_0|}.$$

By assumption and $|X| - |X_1| = |X_2| - |X_0|$, $\delta(X_2/X_0) \geq \delta(X_1/X_0)$ follows.

Remark 7.1.

1. $\delta(X) \geq \delta(X_1) + \delta(X_1/X_0)\frac{|X| - |X_1|}{|X_1| - |X_0|}$

2. $f'(x)(\leq \frac{1}{14})$ is decreasing for $x \geq 14$ by (F2).

3. $e(X_1 \backslash X_0, X_0) \leq |X_1 \backslash X_0|$ by $X_0 < X_1$. So we have

$$\delta(X_1/X_0) \geq |X_1 \backslash X_0| - e(X_1 \backslash X_0).$$

4. X_0, X_1, X_2 do not contain 3-cycles, since they belong to K_{f_1}.

Proof. (3): $\delta(X_1/X_0) = \delta(X_1 \backslash X_0) - e(X_1 \backslash X_0, X_0) = \delta(X_1 \backslash X_0) - |X_1 \backslash X_0| - e(X_1 \backslash X_0)$. Now we check $\delta(X) \geq f(2|X|)$ for each case on the size of $X_1 \backslash X_0, X_0$.

Recall (F1): $f(0) = 0, f(2) = 2, f(4) = 3, f(8) = 4 < f(10) < 4\frac{1}{2} < f(12) < 5 < f(14) < 5\frac{1}{3}$.

The case that $|X_1 \setminus X_0| = 1$

$\bullet \ |X_1 \setminus X_0| = 1, |X_0| = 0$

$\delta(X) \geq 2 + \frac{|X| - 1}{1} = 2|X| \geq f(2|X|)$.

(By $\delta(X_1) = \delta(X_1/X_0) = 2$ and $2x \geq f(2x)$ for $x \geq 2$)

$\bullet \ |X_1 \setminus X_0| = 1, |X_0| = 1$

$\delta(X) \geq (4 - 1) + (2 - 1)\frac{|X| - 2}{1} = 1 + |X| \geq f(2|X|)$.

(By $1 + x \geq f(2x)$ and $\delta(X_1) \geq 4 - 1, \delta(X_1/X_0) \geq 2 - 1$.)

$\bullet \ |X_1 \setminus X_0| = 1, |X_0| = 2$

$\delta(X) \geq (6 - 2) + 1\frac{|X| - 3}{1} = 3 + f(2|X|)$.

(By $\delta(X_1) \geq 6 - 2, \delta(X_1/X_0) \geq 2 - 1$ and $1 + x \geq f(2x)$)

$\bullet \ |X_1 \setminus X_0| = 1, |X_0| = 3$

$\delta(X) \geq (8 - 3) + 1\frac{|X| - 4}{1} = 4 + f(2|X|)$.

(By $\delta(X_1) \geq 8 - 3, \delta(X_1/X_0) \geq 2 - 1$ and $1 + x \geq f(2x)$)

$\bullet \ |X_1 \setminus X_0| = 1, |X_0| = 4$

$\delta(X) \geq (10 - 5) + 1\frac{|X| - 5}{1} = 5 + f(2|X|)$.

(By $\delta(X_1) \geq 10 - 5, \delta(X_1/X_0) \geq 2 - 1$ and $x \geq f(2x)$ if $x \geq 6$)

$\bullet \ |X_1 \setminus X_0| = 1, |X_0| = 5$

$\delta(X) \geq (12 - 6) + 1\frac{|X| - 6}{1} = 6 + f(2|X|)$.

(By $\delta(X_1) \geq 12 - 6, \delta(X_1/X_0) \geq 2 - 1$ and $x \geq f(2x)$ if $x \geq 6$)

The case that $|X_1 \setminus X_0| = 2$

$\bullet \ |X_1 \setminus X_0| = 2, |X_0| = 0$

$\delta(X) \geq 3 + 3\frac{|X| - 1}{1} \geq f(2|X|)$.

(By $\delta(X_1) = \delta(X_1/X_0) \geq 3$ and $3x + 2 \geq f(2x)$.)

$\bullet \ |X_1 \setminus X_0| = 2, |X_0| = 1$

$\delta(X) \geq 4 + 2\frac{|X| - 3}{2} \geq f(2|X|)$.

(By $\delta(X_1) \geq 6 - 2, \delta(X_1/X_0) \geq 3 - 1$ and $x + 1 \geq f(2x)$.)

$\bullet \ |X_1 \setminus X_0| = 2, |X_0| = 2$

$\delta(X) \geq 4 + 1\frac{|X| - 4}{2} \geq f(2|X|)$.

(As $\delta(X_1) \geq 8 - 4, \delta(X_1/X_0) \geq 3 - 2$ and $4 + \frac{x - 4}{2} \geq f(2x)$ if $x \geq 5$.)
The case that $|X_1 \setminus X_0| = 3$

- $|X_1 \setminus X_0| = 3, |X_0| = 0$
 \[\delta(X) \geq 4 + 4 \frac{|X| - 3}{3} \geq f(2|X|). \]
 (As $\delta(X_1) = \delta(X_1/X_0) \geq 6 - 2$ and $4 + 4 \frac{x - 3}{3} \geq f(2x)$ if $x \geq 4$.)
- $|X_1 \setminus X_0| = 3, |X_0| = 1$
 \[\delta(X) \geq 5 + 3 \frac{|X| - 4}{3} \geq f(2|X|). \]
 (As $\delta(X_1) \geq 8 - 3$, $\delta(X_1/X_0) \geq 4 - 1$ and $5 + 3 \frac{x - 4}{3} = x + 1 \geq f(2x)$ if $x \geq 5$.)
- $|X_1 \setminus X_0| = 3, |X_0| = 2$
 \[\delta(X) \geq 5 + 2 \frac{|X| - 5}{3} \geq f(2|X|). \]
 (As $\delta(X_1) \geq 10 - 5$, $\delta(X_1/X_0) \geq 4 - 2$ and $5 + 2 \frac{x - 5}{3} \geq f(2x)$ if $x \geq 6$.)
- $|X_1 \setminus X_0| = 3, |X_0| = 3$
 \[\delta(X) \geq 5 + 1 \frac{|X| - 6}{3} \geq f(2|X|). \]
 (As $\delta(X_1) \geq 12 - 7$, $\delta(X_1/X_0) \geq 4 - 3$ and $5 + 1 \frac{x - 6}{3} \geq f(2x)$ if $x \geq 7$.)

The case that $|X_1 \setminus X_0| = 4$

- $|X_1 \setminus X_0| = 4, |X_0| = 0$
 \[\delta(X) \geq 4 + 4 \frac{|X| - 4}{4} \geq f(2|X|). \]
 (As $\delta(X_1) = \delta(X_1/X_0) \geq 8 - 4$ and $4 + 4 \frac{x - 4}{4} = x \geq f(2x)$ if $x \geq 5$.)
- $|X_1 \setminus X_0| = 4, |X_0| = 1$
\[\delta(X) \geq 5 + 3 \frac{|X| - 5}{4} \geq f(2|X|). \]

(As \(\delta(X_1) \geq 10 - 5 \), \(\delta(X_1/X_0) \geq 4 - 1 \) and \(5 + 3 \frac{x-5}{4} \geq f(2x) \) if \(x \geq 6 \).)

- \(|X_1 \setminus X_0| = 4, |X_0| = 2 \)

\[\delta(X) \geq 5 + 2 \frac{|X| - 6}{4} \geq f(2|X|). \]

(As \(\delta(X_1) \geq 12 - 7 \), \(\delta(X_1/X_0) \geq 4 - 2 \) and \(5 + 3 \frac{x-6}{4} \geq f(2x) \) if \(x \geq 7 \).)

- \(|X_1 \setminus X_0| = 5 \)

\[\delta(X) \geq 5 + 5 \frac{|X| - 5}{5} = |X| \geq f(2|X|). \]

(The case that \(|X_1 \setminus X_0| = 5 \)

- \(|X_1 \setminus X_0| = 5, |X_0| = 0 \)

\[\delta(X) \geq 5 + 5 \frac{|X| - 5}{5} = |X| \geq f(2|X|). \]

(As \(\delta(X_1) = \overline{\delta}(X_1/X_0) \geq 10 - 5 \) and \(x \geq f(2x) \) if \(x \geq 6 \).)

- \(|X_1 \setminus X_0| = 5 \), \(|X_0| = 1 \)

\[\delta(X) \geq 5 + 3 \frac{|X| - 6}{5} \geq f(2|X|). \]

(As \(\delta(X_1) \geq 12 - 7 \), \(\delta(X_1/X_0) \geq 5 - 2 \) and \(5 + \frac{x-6}{5} \geq f(2x) \) if \(x \geq 7 \).)

8. Appendix 2 (The Proof of Lemma 6.6)

We show the following.

Lemma 6.6 Suppose that \(A, B, C \in \mathbb{K}_{f_1}, |A|, |B|, |C| \leq 4 \). And suppose that \(A \cap B < A, B, A \cap C < A, C, B \cap C < B, C, \) and \(AB = A \otimes_{A \cap B} B, AC = A \otimes_{A \cap C} C, BC = B \otimes_{B \cap C} C \). Put \(X = A \cap B \cap C, Z = A \setminus (B \cup C), W = B \setminus (A \cup C), U = C \setminus (A \cup B) \).

If \(D = ABC \not\in \mathbb{K}_{f_1} \), then \(D \) is isomorphic to \(\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C}
\end{array} \), where \(a \in A \cap C, b \in A \cap B, c \in B \cap C, x \in X, z \in Z, w \in W, u \in U \).

Proof. We use the following easy fact: If \(X < Y, c \in Y \setminus X, a, b \in X, \) then \(R(a, c) \land R(b, c) \) does not hold.
Clearly, $D = BCZ$.

We may assume that $Z, W, U \neq \emptyset$, since, for example, if $Z = \emptyset$, then $D = B \otimes_{B \cap C} C \in K_f$ by free AP. As $|A|, |B|, |C| \leq 4$, we have $|A \cap C| \leq 3$.

a, a' denote elements of $A \cap C$, b, b' denote elements of $A \cap B$, c, c' denote elements of $B \cap C$, z, z' denote elements of Z, w, w' denote elements of W, u, u' denote elements of U and x, x' denote elements of X.

We check each case on the size of $|A \cap C|$.

The case that $|A \cap C| = 3$

We have $6 \leq |D| \leq 9$. As $|A| \leq 4$, $|Z| = 1$ and $A \cap B \setminus X = \emptyset$ follow. So, we have $\delta(Z/BC) \geq 1$. Thus $\delta(D) = \delta(BC) + \delta(Z/BC) \geq f(2|D| - 2) + 1 \geq f(2|D|)$.

The case that $|A \cap C| = 2$

$\bullet |(A \cap C) \setminus X| = 2$ (i.e. $X = \emptyset$.)

Suppose that $|Z| = 2$. So, $6 \leq |D| \leq 10$.

As $A \cap B = \emptyset$, $\delta(Z/BC) \geq 3 - 2$ follows. So, $\delta(D) \geq \delta(BC) + 1 \geq f(2|D| - 4) + 1 \geq f(2|D|)$ by (F5), $f(8) + 1 = 5 \geq f(12)$, $f(14) + 1 \geq 6 \geq f(18)$ and (F2).

Suppose that $|Z| = 1$, so $|A \cap B| \leq 1$.

If $A \cap B = \emptyset$, then $5 \leq |D| \leq 9$, $\delta(Z/BC) \geq 2 - 1$ follows. So, $\delta(D) \geq \delta(BC) + 1 \geq f(2|D| - 2) + 1 \geq f(2|D|)$.

If $|A \cap B| = 1$, then $6 \leq |D| \leq 9$.

If $|D| = 6$, then $D = aa'zbwu$. Then $\delta(D) = 12 - 5 = 7 \geq f(12)$.

If $|D| = 7$, then $D = aa'zbwuw'$, $aa'zbwcu$ or $aa'zbw'u$, because $Z, W, U \neq \emptyset$. Then $\delta(D) \geq 16 - 9 = 7 \geq f(16)$.

If $|D| = 8$, then $D = aa'zbwuw'u'$ or $aa'zbw'u$, because $Z, W, U \neq \emptyset$. Then $\delta(D) \geq 18 - 9 = 9 \geq f(18)$.

$\bullet |(A \cap C) \setminus X| = |X| = 1$.

Suppose that $|A \cap B \setminus X| = 0$. Then $\delta(Z/BC) \geq 1$.

So, $\delta(D) \geq f(2|D| - 2|Z|) + 1$.

If $|Z| = 1$, then $5 \leq |D| \leq 8$, so $f(2|D| - 2) + 1 \geq f(2|D|)$ holds.

If $|Z| = 2$, then $6 \leq |D| \leq 9$. $f(2|D| - 4) + 1 \geq f(2|D|)$ holds for $|D| = 6, 9$. $(f(8)+1 = 5 \geq f(12)$ and $f(14)+1 \geq 6 \geq f(18).$) For $|D| = 7$, $D = xazz'wcu$, $xazz'wuw$ or $xazz'wuw'u$ and then $\delta(D) \geq 14 - 8 \geq f(14)$ holds. For $|D| = 8$, $D = xazz'wuw'cu$ or $xazz'wuw'u'$ and then $\delta(D) \geq 16 - 10 \geq f(16)$ holds.

Suppose that $|A \cap B \setminus X| = 1$. Then $6 \leq |D| \leq 8$.

If $|D| = 6$, then $D = xazbwu$ and $\delta(D) \geq 12 - 6 \geq f(12)$.

If $|D| = 7$, then $D = xazbwu'$, $xazbwu'u$ or $xazbwcu$. If the former two cases hold, then $\delta(D) \geq 14 - 8 \geq f(14)$.

In the latter case, D is if and only if $\delta(D) = 14 - 9 < f(14)$.

If $|D| = 8$, then $D = xazbwu'u'$ and $\delta(D) \geq 16 - 10 \geq f(16)$.

\[\bullet \ (|A \cap C \setminus X| = 0, |X| = 2) \]

We have $5 \leq |D| \leq 8$.

If $|D| = 5$, then $D = xx'zwu$ and $\delta(D) \geq 10 - 4 \geq f(10)$.

If $|D| = 6$, then $D = xx'zz'wu, xx'zbwu, xx'zww'u, xx'zwcu$ or $xx'zwuu'$ and $\delta(D) \geq 12 - 7 \geq f(12)$.

If $|D| = 7$, then $D = xx'zz'wu'u, xx'zbwu', xx'zww'u'u, xx'zz'wcu, xx'zz'wu'u'$, $xx'zbwu'u'$ or $xx'zwuu'u'$. If $D \neq xx'zz'wcu, xx'zbwu'$, then $\delta(D) \geq 14 - 8 \geq f(14)$. And we have $\delta(D) = 14 - 9 < f(14)$ if and only if D is or . But this never happens, because $B \cap C < B$ and $A \cap B < B$, so w does not have two edges to $B \cap C$, also to $A \cap B$.

If $|D| = 8$, then $D = xx'zz'wuu'u'$ and $\delta(D) = 16 - 10 \geq f(16)$.

The case that $|A \cap C| = 1$

\[\bullet \ (|A \cap C\setminus X| = 1 (|X| = 0) \]

By symmetry, we may assume $|A \cap B|, |B \cap C| \leq 1$.

Suppose that $|A \cap B|, |B \cap C| = 1$. Then $6 \leq |D| \leq 9$.

If $|D| = 6$, then $\delta(D) \geq 12 - 6 \geq f(12)$. If $|D| = 7$, then $\delta(D) \geq 14 - 7 \geq f(14)$. If $|D| = 8$, then $\delta(D) \geq 16 - 8 \geq f(16)$. If $|D| = 9$, then $\delta(D) \geq 18 - 9 \geq f(18)$.

Suppose that $|A \cap B| = 0$ or $|B \cap C| = 1$. By symmetry, we assume that $|A \cap B| = 0$. Then $AC \cap B = B \cap C$. By assumption on A, B, C, $B \cap C < C < AC$ and $AC = A \otimes_{AC} C \in K_{f_1}$ by free AP. As $B \cap C < AC$, B and $D = AC \otimes_{AC} B$, we have $D \in K_{f_1}$ by free AP.

• $|(A \cap C) \setminus X| = 0$ and $|X| = 1$.
As we have shown the case that $|A \cap C| = 2, 3$, by symmetry, we may assume that $D = XZWU$. (i.e. $|(A \cap B) \setminus X| = 0$ and $|(B \cap C) \setminus X| = 0$) As $X < XZW = XZ \otimes_X XW \in K_{f_1}$ and $X < XU \in K_{f_1}$, we have $D = XZW \otimes_X XZ \in K_{f_1}$ by free AP.

The case that $|A \cap C| = 0$
As we have shown the case that $|A \cap C| = 1, 2, 3$, by symmetry, we may assume that $D = ZWU$ (i.e. $|A \cap B| = 0$ and $|B \cap C| = 0$.) By free AP, we see $D \in K_{f_1}$.

References

[E] D.M. Evans, Some remarks on generic structures, preprint, July 2003 (working draft)

E-mail address: ikuo.yoneda@s3.dion.ne.jp