弱い0-最小化代数的構造（ゼリック幾何と数論幾何）

著者

2005年9月

http://hdl.handle.net/2433/47722

部門別論文

発行元

京都大学
Weakly o-minimal algebraic structures

岡山大学大学院・自然科学研究科 田中 広志 (Hiroshi Tanaka)
Graduate School of Natural Science and Technology,
Okayama University
htanaka@math.okayama-u.ac.jp

1 Introduction

Let M be a linearly ordered structure and A a subset M. The set A is said to be convex if for all $a, b \in A$ and $c \in M$ with $a < c < b$ we have $c \in A$. A linearly ordered structure M is said to be o-minimal if every definable subset of M is a finite union of intervals (possibly with infinite endpoints). A linearly ordered structure M is said to be weakly o-minimal if every definable subset of M is a finite union of convex sets. A theory T is said to be weakly o-minimal if every model of T is weakly o-minimal. Henceforth, a linearly ordered structure is abbreviated as an ordered structure.

It is well-known the following fact.

Fact 1 Let M be an ordered structure. Then the following is equivalent:

1. $\text{Th}(M)$ is weakly o-minimal;
2. for each formula $\varphi(x, \overline{y})$ there exists some $n \in \omega$ such that for each tuple \overline{a} from M the set $\varphi(M, \overline{a})$ can be written as a union of at most n many convex sets.

Fact 2 Let M be a weakly o-minimal structure. If M is ω-saturated, then $\text{Th}(M)$ is weakly o-minimal.

Fact 3 [BP] Let M be an expansion of an o-minimal structure by convex subsets. Then $\text{Th}(M)$ is weakly o-minimal.
2 Monoids and groups

In this section, we study weakly o-minimal monoids and groups. It is well-known the following fact.

Fact 4 [MMS] Let G be a weakly o-minimal group. Suppose that H is a definable subgroup of G. Then, the following holds:

1. G is abelian and divisible;
2. H is convex.

Let G be a weakly o-minimal group. Suppose that H is a definable subgroup of G. Then, by Fact 4, H is divisible.

We call an ordered group $(G, 0, +, <, \ldots)$ Archimedean if for all elements a, b with $b > 0$ there exists some $n \in \omega$ such that $a < nb$.

Lemma 5 Let $G = (G, 0, +, <, \ldots)$ be a weakly o-minimal Archimedean group. Suppose that H is a definable subgroup of G. Then H is either $\{0\}$ or G.

Proof. Let $a \in G$. Without loss of generality, we may assume $a > 0$. Let $H \neq \{0\}$. Then, there exists some $b \in H$ such that $b > 0$. Since the group G is Archimedean, there exists some $n \in \omega$ such that $a < nb$. Hence, by Fact 4, we have $a \in H$. \qed

From now on, we study monoids.

Proposition 6 Let $N = (N, 0, +, <, \ldots)$ be a weakly o-minimal monoid. Then N is commutative.

Proof. For all $a \in N$, let $C_N(a) := \{x \in N \mid x + a = a + x\}$.

Claim $C_N(a)$ is convex.

Clearly, $0 \in C_N(a)$ and, if $x, y \in C_N(a)$ then $x + y \in C_N(a)$. By weak o-minimality, $C_N(a)$ is the union of finitely many maximal convex subsets. Let X be the greatest of these convex components with respect to the ordering induced by $<$. Let $x \in X$ with $x > 0$. Suppose that $y \in N$ with $0 < y < x$. We may show that $y \in C_N(a)$. By $x - y + x < 2x$ and $2x \in X$, we have $y + x \in X$. Hence $(y + x) + a = a + (y + x)$. By $x \in C_N(a)$, we have $(y + a) + x = (a + y) + x$. Hence, we have $y + a = a + y$. Thus, $y \in C_N(a)$, as desired.

Let $b, c \in N$ with $b < c$. Then the following is equivalent:
• b and c are commutative;
• b and $b + c$ are commutative;
• $b + c$ and c are commutative.

Now $b, b + c \leq 0$ or $b + c, c \geq 0$. Hence we may assume $0 < b < c$. Then, as $C_N(c)$ is convex, we have $b \in C_N(c)$. Therefore N is commutative. \[\square\]

Let $\mathcal{N} = (N, 0, +, <, \ldots)$ be an ordered monoid. Suppose that $I_N := \{x \in N \mid N \models \exists y(x + y = 0)\}$. Clearly, I_N contains 0. We call an ordered monoid $(N, 0, +, <, \ldots)$ Archimedean if for all elements a, b with $b > 0$ there exists some $n \in \omega$ such that $a < nb$, and for all elements a, b with $b < 0$ there exists some $n \in \omega$ such that $nb < a$.

Example 7 Let $\mathcal{M} = (\{0\} \cup \mathbb{Q}_{\leq 1}, 0, +, <, P)$, where $\mathbb{Q}_{\leq 1} = \{a \in \mathbb{Q} \mid a \geq 1\}$ and the unary predicate symbol P is interpreted by the convex set $P_{\mathcal{M}} = (\sqrt{2}, 3) \cap \mathbb{Q}$. Then, \mathcal{M} is a weakly o-minimal Archimedean monoid and not divisible. Moreover $I_{\mathcal{M}} = \{0\}$.

Hence, in generally a weakly o-minimal Archimedean monoid is not a group. However the following holds.

Proposition 8 Let $\mathcal{N} = (N, 0, +, <, \ldots)$ be a weakly o-minimal Archimedean monoid. Suppose that $I_N \neq \{0\}$. Then \mathcal{N} is a group.

Proof. Clearly $0 \in I_N$. Let $x, y \in I_N$. Then, there exist x_1, y_1 such that $x + x_1 = 0$ and $y + y_1 = 0$. Then $(x + y) + (y_1 + x_1) = 0$. Thus, $x + y \in I_N$. Let $g \in I_N$.

Claim I_N is convex.

By weak o-minimality, I_N is the union of finitely many maximal convex subsets. Let C be the greatest of these convex components with respect to the ordering induced by $<$. Let $x \in C$ with $x > 0$. Suppose that $y \in N$ with $0 < y < x$. We may show that $y \in I_N$. By $x < y + x < 2x$ and $2x \in C$, we have $y + x \in C$. Hence, there exists some $z \in N$ such that $(y + x) + z = 0$. Thus, $y \in I_N$, as desired.

Let $g \in N$. By $I_N \neq \{0\}$, there exists some $a \in I_N$ such that $a \neq 0$. Without loss of generality, we may assume that $g > 0$ and $a > 0$. As N is Archimedean, there exists some $n \in \omega$ such that $0 < g < na$. Since I_N is convex, we have $g \in I_N$. Therefore $I_N = N$. \[\square\]
Let N be an ordered monoid and A a subset N. The ordered monoid N is said to be rich, if for all $a, b \in N$ if $0 \leq a \leq b$ or $b \leq a \leq 0$, then there exists some $c \in N$ such that $b = a + c$. The set A admits right elimination, if for all $a \in A$ and all $b \in N$ if $b + a \in A$, then $b \in A$.

Example 9 Let $\mathcal{M} = (\mathbb{Q}^{\geq 0}, 0, +, <, P)$, where $\mathbb{Q}^{\geq 0} = \{a \in \mathbb{Q} \mid a \geq 0\}$ and the unary predicate symbol P is interpreted by the convex set $P^{\mathcal{M}} = (\sqrt{2}, 3) \cap \mathbb{Q}$. Then, \mathcal{M} is a weakly o-minimal rich monoid and divisible.

Proposition 10 Let $\mathcal{N} = (N, 0, +, <, \ldots)$ be a weakly o-minimal monoid. Then the following is equivalent:

1. \mathcal{N} is divisible;
2. for all $n \in \omega$, nN admits right elimination;
3. for all $n \in \omega$, nN is convex.

Proof. (1 \Rightarrow 2) It is clear.

(2 \Rightarrow 3) Let $n \in \omega$. Let $x, y \in nN$. Then there exist $x_{1}, y_{1} \in N$ such that $x = nx_{1}$ and $y = ny_{1}$. By Proposition 6, we have $x + y = nx_{1} + ny_{1} = n(x_{1} + y_{1})$ Hence, $x + y \in nN$. Now, by weak o-minimality, nN is the union of finitely many maximal convex subsets. Let C be the greatest of these convex components with respect to the ordering induced by <. Let $x \in C$ with $x > 0$. Suppose that $y \in N$ with $0 < y < x$. We may show that $y \in nN$. By $x < y + x < 2x$ and $2x \in C$, we have $y + x \in C$. As nN admits right elimination, we have $y \in nN$, as desired.

(3 \Rightarrow 1) Let n be a nonzero natural number. For all positive $a \in N$, we have $0 < a < na$. As nN is convex, we have $a \in nN$. Hence \mathcal{N} is divisible.

Proposition 11 Let $\mathcal{N} = (N, 0, +, <, \ldots)$ be a weakly o-minimal monoid. If \mathcal{N} is rich, then \mathcal{N} is divisible.

Proof. Let n be a nonzero natural number. Now, by weak o-minimality, nN is the union of finitely many maximal convex subsets. Let C be the greatest of these convex components with respect to the ordering induced by <. Let $x \in C$ with $x > 0$. Suppose that $y \in N$ with $0 < y < x$. We show that $y \in nN$. By $x < y + x < 2x$ and $2x \in C$, we have $y + x \in C$. So there exist $z_{1}, z_{2} \in N$ with $0 < z_{1} < z_{2}$ such that $x = nz_{1}$ and $y + x = nz_{2}$.

As \mathcal{N} is rich, there exists some $a \in N$ such that $a + z_1 = z_2$. Hence, we have $y + nz_1 = na + nz_1$. Therefore we have $y = na \in nN$. It follows that $nN = N$.

\[\square\]

Proposition 12 [T] Let N be an ordered monoid. Suppose that $\text{Th}(N)$ is weakly o-minimal. Then there exists an extending ordered group G of N such that $\text{Th}(G)$ is weakly o-minimal.

Proof. Let N_1 be an ω-saturated elementary extension of N. Define the following relation on $N_1 \times N_1$:

$$(a,b) \sim (a',b') \iff a + b' = a' + b.$$

Then \sim is an equivalence relation on $N_1 \times N_1$. For each $(a,b) \in N_1 \times N_1$, let $[(a,b)]$ denote the \sim-class of (a,b). Let $G := N_1 \times N_1 / \sim$. Then G can be naturally expanded to an ω-saturated ordered group. We may treat N_1 as a substructure of G by identifying $a \in N_1$ and $[(a,0)] \in G$. We may show that G is weakly o-minimal. By way of a contradiction, assume that G is not weakly o-minimal. Then there exists a definable subset $A \subseteq G$ and a monotone sequence $\{a_i \in G \mid i \in \omega\}$ such that for all $i \in \omega$, $a_i \in A$ if and only if i is even. As G is an eq-object of N_1, there exists a formula $\varphi(x,y)$ (parameters from N_1) such that $[(b,c)] \in A$ if and only if $N_1 \models \varphi(b,c)$. For all $i \in \omega$, let $a_i := [(b_i, c_i)]$. Then we have

$$N_1 \models \varphi(b_i, c_i) \iff i \text{ is even.}$$

For all $n \in \omega$, let $d_i := \Sigma_{j=0,j \neq i}^{2n} c_i$ and $e := \Sigma_{j=0}^{2n} c_i$. Then we have

$$N_1 \models \varphi(b_i + d_i, e) \iff i \text{ is even.}$$

Hence, the set $\varphi(N_1,e)$ can not be written as the union of n convex sets, contradicting that $\text{Th}(N)$ is weakly o-minimal.

\[\square\]

3 Rings and fields

In this section, we study weakly o-minimal rings and fields.

A commutative ordered domain R is said to be real closed if R has intermediate value property, that is, for any polynomial $p(x)$ with coefficients in
\(R \) and any \(a, b \in R \) such that \(a < b \) and \(p(a) \cdot p(b) < 0 \), there exists some \(c \in R \) so that \(a < c < b \) and \(p(c) = 0 \).

It is well-known the following fact.

Fact 13 [MMS]

1. If a commutative ordered ring \(R \) is weakly o-minimal, then \(R \) is a real closed ring.

2. If an ordered field \(F \) is weakly o-minimal, then \(F \) is a real closed field.

In [PS1], it is shown that an o-minimal ring is a real closed field. However, in generally a weakly o-minimal ordered ring is not a field. We shall show that if a weakly o-minimal ordered ring \(R \) which may not be associative is Archimedean, then \(R \) is a real closed field.

Lemma 14 If \(\mathcal{R} = (R, 0, 1, +, \cdot, <, \ldots) \) is a weakly o-minimal ring, then \(\mathcal{R} \) is commutative.

Proof. For all \(a \in R \), let \(C_R(a) := \{ x \in R \mid xa = ax \} \). Then, \(C_R(a) \) is a definable additive subgroup. Hence, by Fact 4, \(C_R(a) \) is convex. Let \(g, h \in R \). Without loss of generality, we may assume that \(0 < g < h \). As \(C_R(h) \) is convex, we have \(g \in C_R(h) \). It follows that \(\mathcal{R} \) is commutative. \(\square \)

We call an ordered ring \((R, 0, 1, +, \cdot, <, \ldots) \) standard if for all nonzero \(a \in R \) there exists \(b \in R \) such that \(1 < ab \). Clearly, an Archimedian ordered ring is standard.

Proposition 15 Let \(\mathcal{R} = (R, 0, 1, +, \cdot, <, \ldots) \) be a weakly o-minimal ring. Then, the following is equivalent:

1. \(\mathcal{R} \) is standard;

2. \(\mathcal{R} \) is a field.

Proof. \((2 \Rightarrow 1)\) Let \(a \in R \) with \(a \neq 0 \). Then, as \(\mathcal{R} \) is field, there exists \(a^{-1} \). Hence, \(1 < a \cdot 2a^{-1} = 2 \), as desired.

\((1 \Rightarrow 2)\) Let \(a \in R \). Then, as \(\mathcal{R} \) is standard, there exists some \(b \in R \) such that \(1 < ab \). Now \(aR \) is a definable additive subgroup. Hence, as \(aR \) is convex, we have \(1 \in aR \). It follows that \(\mathcal{R} \) is a field. \(\square \)
Corollary 16 Let $\mathcal{R} = (R, 0, 1, +, \cdot, <, \ldots)$ be a weakly o-minimal Archimedean ring, where \mathcal{R} may not be associative. Then, \mathcal{R} is a real closed field.

Proof. By Fact 13, Lemma 14 and Proposition 15, we may show that \mathcal{R} is associative. Let $a \in R$ with $a \neq 0$. Suppose that $D_R(a) := \{x \in R \mid (xa)a = x(aa)\}$. Then, as \mathcal{R} is commutative, $D_R(a)$ contains a and is a definable additive subgroup. Hence, by Lemma 5, $D_R(a) = R$. Also, suppose that $E_R(a) := \{x \in R \mid (xa)x = z(ax)\}$ for each z. Then, by $D_R(a) = R$, $E_R(a)$ contains a and is a definable additive subgroup. Thus, by Lemma 5, $E_R(a) = R$. It follows that \mathcal{R} is associative.

Proposition 17 Let R be an ordered ring. Suppose that $\text{Th}(R)$ is weakly o-minimal. Then there exists an extending ordered field F of R such that $\text{Th}(F)$ is weakly o-minimal.

Proof. Let R_1 be an ω-saturated elementary extension of R. Let $R_1^{\geq 0} := \{a \in R_1 \mid a > 0\}$. Define the following relation on $R_1 \times R_1^{\geq 0}$:

$$(a, b) \sim (a', b') \iff ab' = a'b.$$

Then \sim is an equivalence relation on $R_1 \times R_1^{\geq 0}$. For each $(a, b) \in R_1 \times R_1^{\geq 0}$, let $[(a, b)]$ denote the \sim-class of (a, b). Let $F := R_1 \times R_1^{\geq 0}/\sim$. Then F can be naturally expanded to an ω-saturated ordered field. We may treat R_1 as a substructure of F by identifying $a \in R_1$ and $[(a, 1)] \in F$. We may show that F is weakly o-minimal. By way of a contradiction, assume that F is not weakly o-minimal. Then there exists a definable subset $A \subseteq F$ and a monotone sequence $\{a_i \in F \mid i \in \omega\}$ such that for all $i \in \omega$, $a_i \in A$ if and only if i is even. As F is an eq-object of R_1, there exists a formula $\varphi(x, y)$ (parameters from R_1) such that $[(b, c)] \in A$ if and only if $R_1 \models \varphi(b, c)$. For all $i \in \omega$, let $a_i := [(b_i, c_i)]$. Then we have

$$R_1 \models \varphi(b_i, c_i) \iff i \text{ is even.}$$

For all $n \in \omega$, let $d_i := \Pi_{j=0, j \neq i}^{2n}c_j$ and $e := \Pi_{j=0}^{2n}c_j$. Then we have

$$R_1 \models \varphi(b_id_i, e) \iff i \text{ is even.}$$

Hence, the set $\varphi(R_1, e)$ can not be written as the union of n convex sets, contradicting that $\text{Th}(R)$ is weakly o-minimal. \qed
References

