CYCLE CLASS MAPS FOR ARITHMETIC SCHEMES

SHUJI SAITO AND KANETOMO SATO

X/k: a proper smooth variety over a field k of characteristic zero. Let

$$CH^{r}(X) = \left(\bigoplus_{\substack{V \subset X \\ \text{irred. subvar.}}} \mathbb{Z} \right) / \underset{\text{rat. equiv.}}{\sim}$$

be the group of cycles of codimension r in X modulo rational equivalence, called the Chow group of cycles of codimension r.

For r = 1 we have

$$\mathrm{CH}^1(X) \simeq \mathrm{Pic}(X)$$

where Pic(X) is the group of isomorphism classes of line bundles on X.

If X has a k-rational point, we have the exact sequence

$$0 \to \operatorname{Pic}_{X/k}^0(k) \to \operatorname{Pic}(X) \to \operatorname{NS}(X) \to 0$$

where NS(X) is the Neron-Severi group of X and $Pic_{X/k}^0$ is the Picard variety of X/k. It is known that:

- (1) NS(X) is finitely generated (for an arbitrary k).
- (2) $\operatorname{Pic}_{X/k}^0(k)$ (=the group of the k-rational points of $\operatorname{Pic}_{X/k}^0$) is finitely generated if $[k:\mathbb{Q}]<\infty$. (the Mordell-Weil theorem).

Hence $\mathrm{CH}^1(X)$ is finitely generated if $[k:\mathbb{Q}]<\infty$.

Question: Is
$$CH^r(X)$$
 is finitely generated if $[k:\mathbb{Q}] < \infty$?

Remark: The rank of $CH^r(X)$ and the order of $CH^r(X)_{tors}$ are expected to be related to special values of L-function of X (Tate, Birch-Swinnerton-Dyer, Beilinson, Bloch-Kato,....).

Only little is known about the above question. Difficulty comes from the fact that $CH^r(X)$ for $r \geq 2$ is in general "not representable" so that over \mathbb{C} it is as large as $\mathbb{C} \otimes_{\mathbb{Z}} \mathbb{C} \cdots \otimes_{\mathbb{Z}} \mathbb{C}$ (Mumford theorem).

We now assume $[k:\mathbb{Q}]<\infty$ or $[k:\mathbb{Q}_\ell]<\infty$. We fix a prime p and are concerned with the finiteness of:

$$CH^2(X)_{p-tors}$$
 and $CH^2(X)/p^n$

where for an abelian group M, $M_{p\text{-tors}}$ denotes the p-primary torsion part. One way to approach to the fundamental question is to look at the cycle class map from Chow group to (continuous) étale cohomology of X:

$$\rho^r_{X,\mathbb{Z}/p^n\mathbb{Z}}: \mathrm{CH}^r(X)/p^n \to \mathrm{H}^{2r}_{\mathrm{\acute{e}t}}(X,\mathbb{Z}/p^n\mathbb{Z}(r))$$

$$\rho^r_{X,\mathbb{Z}_p}: \mathrm{CH}^r(X) \otimes \mathbb{Z}_p \to \mathrm{H}^{2r}_{\mathrm{cont}}(X,\mathbb{Z}_p(r))$$

where $\mathbb{Z}/p^n\mathbb{Z}(r) = \mu_{p^n}^{\otimes r}$ is the rth tensor power of the sheaf of p^n th roots of unity and $\mathbb{Z}_p(r) = \lim_{r \to \infty} \mathbb{Z}/p^n\mathbb{Z}(r)$ ". Note that $H^{2r}_{\text{\'et}}(X,\mathbb{Z}/p^n\mathbb{Z}(r))$ is not in general finite if $[k:\mathbb{Q}] < \infty$. But one

can show that $\operatorname{Im}(\rho^r_{X,\mathbb{Z}/p^n\mathbb{Z}})$ is fintie and $\operatorname{Im}(\rho^r_{X,\mathbb{Z}_p})$ is a finitely generated \mathbb{Z}_p -module. Hence the injectivity of the above maps would imply the desired finiteness.

For r=1 one can show the injectivity of these maps by using the Kummer sequence

$$0 \to \mathbb{Z}/p^n\mathbb{Z}(1) \to \mathbb{G}_m \xrightarrow{p^n} \mathbb{G}_m \to 0$$

and the isomorphism

$$\mathrm{CH}^1(X) \simeq \mathrm{Pic}(X) \simeq H^1_{\mathrm{\acute{e}t}}(X,\mathbb{G}_m).$$

It is conjectured in case $[k:\mathbb{Q}]<\infty$ that the kernel of ρ^r_{X,\mathbb{Z}_p} is torsion. On the other hand, using the theory of quadratic forms, Parimala and Suresh proved the following:

Theorem: There exists a smooth projective surface X over k with $H^2(X, \mathcal{O}_X) = 0$ (in fact X is a rational surface) such that $Ker(\rho_{X,\mathbb{Z}_2}^2)$ is a nonzero finite group.

In this talk we present a new viewpoint on the injectivity problem of cycle class maps by investigating cycle maps for models of X over the ring of integers of k. We fix the following setup:

 $k: [k:\mathbb{Q}] < \infty \text{ or } [k:\mathbb{Q}_{\ell}] < \infty.$

 \mathfrak{O}_k : the integer ring of k and put $S := \operatorname{Spec}(\mathfrak{O}_k)$,

 \mathcal{X} : a regular scheme which is proper flat of finite type over S.

 $X = \mathcal{X} \times_{S} \operatorname{Spec}(k)$: the generic fiber of \mathcal{X} .

We fix a prime p and assume the following condition:

If p is not invertible on \mathcal{X} , then \mathcal{X} has good or semistable reduction at each prime ideal of \mathfrak{O}_k dividing (p).

If p is not invertible on \mathcal{X} , etale cohomology of \mathcal{X} with $\mu_{p^n}^{\otimes r}$ -coefficient does not work well. Instead the p-adic étale Tate twist

$$\mathfrak{T}_n(r)_{\mathcal{X}} \in D^b(\mathcal{X}, \mathbb{Z}/p^n\mathbb{Z})$$

defined by K.Sato plays an important role. Here $D^b(\mathcal{X}, \mathbb{Z}/p^n\mathbb{Z})$ denotes the derived category of bounded complexes of étale sheaves of $\mathbb{Z}/p^n\mathbb{Z}$ -modules on \mathcal{X} .

Remark

(1) Letting $\mathcal{X}[\frac{1}{p}] \subset \mathcal{X}$ be the open subschme obtained by removing the fibers over the points of characteristic p of S,

$$\mathfrak{T}_n(r)_{\mathcal{X}\left[\frac{1}{p}\right]} = \mu_{p^n, \mathcal{X}\left[\frac{1}{p}\right]}^{\otimes r}.$$

- (2) Sato proved the finiteness of $H^i_{\text{\'et}}(\mathcal{X}, \mathfrak{T}_n(r)_{\mathcal{X}})$.
- (3) It is expected that:

$$\mathfrak{T}_n(r)_{\mathcal{X}}=\mathbb{Z}(r)_{\mathcal{X}}^{\mathrm{\acute{e}t}}\otimes^{\mathbb{L}}\mathbb{Z}/p^n\mathbb{Z},$$

where $\mathbb{Z}(r)_{\mathcal{X}}^{\text{\'et}}$ denotes the conjectural étale motivic complex of Beilinson-Lichtenbaum for \mathcal{X} .

By the semi-purity property of $\mathfrak{T}_n(r)_{\mathcal{X}}$ shown by Sato, we can define the cycle map

$$\boxed{\rho^r_{\mathcal{X},\mathbb{Z}/p^n\mathbb{Z}}: \mathrm{CH}^r(\mathcal{X})/p^n \to \mathrm{H}^{2r}_{\mathrm{\acute{e}t}}(\mathcal{X}, \mathfrak{T}_n(r)_{\mathcal{X}})}$$

We are now concerned with the induced maps

$$\rho^{r}_{\mathcal{X}, p\text{-tors}} : \mathrm{CH}^{r}(\mathcal{X})_{p\text{-tors}} \to \mathrm{H}^{2r}_{\mathrm{\acute{e}t}}(\mathcal{X}, \mathfrak{T}_{\mathbb{Z}_{p}}(r)_{\mathcal{X}})$$
$$\rho^{r}_{\mathcal{X}, \mathbb{Z}_{p}} : \mathrm{CH}^{r}(\mathcal{X}) \otimes \mathbb{Z}_{p} \to \mathrm{H}^{2r}_{\mathrm{\acute{e}t}}(\mathcal{X}, \mathfrak{T}_{\mathbb{Z}_{p}}(r)_{\mathcal{X}}),$$

where

$$\mathrm{H}^*_{\mathrm{cute{e}t}}(\mathcal{X}, \mathfrak{T}_{\mathbb{Z}_p}(r)_{\mathcal{X}}) = \lim_{\stackrel{\longleftarrow}{n \geq 1}} \mathrm{H}^*_{\mathrm{cute{e}t}}(\mathcal{X}, \mathfrak{T}_n(r)_{\mathcal{X}}).$$

Our main results on these maps concern the injectivity of these two maps in case r=2. Roughly speaking, the injectivity of $\rho_{\mathcal{X},p\text{-tors}}^2$ and $\rho_{\mathcal{X},\mathbb{Z}_p}^2$ follows from a list of assumptions, each of which is a consequence of a well-known conjecture in arithmetic geometry. As a corollary we will get the following result: (Recall $X=\mathcal{X}\times_S\operatorname{Spec}(k)$)

Theorem 0.1. Assume $H^2(X, \mathcal{O}_X) = 0$. Then:

- (1) $\rho_{\mathcal{X},p\text{-tors}}^2$ is injective.
- (2) Suppose that $[k:\mathbb{Q}_{\ell}] < \infty$ with $\ell \neq p$ and $\dim(X) = 2$. Then $\operatorname{Ker}(\rho_{\mathcal{X},\mathbb{Z}_p}^2)$ is uniquely p-divisible.
- (3) Suppose that $[k:\mathbb{Q}_p] < \infty$ and $\dim(X) = 2$ with $\kappa_X \leq 1$. Then $\rho^2_{\mathcal{X},\mathbb{Z}_p}$ is injective.
- (4) Suppose that $[k:\mathbb{Q}] < \infty$ and $\dim(X) = 2$ with $\kappa_X \leq 1$. Then ρ_{X,\mathbb{Z}_p}^2 is injective.

Unramified cohomology:

Let $\mathcal{X}/\mathcal{O}_k$ be as before and let K be its function field.

The unramified cohomology of K (here we write $\mathbb{Q}_p/\mathbb{Z}_p(n) = \mu_{p^{\infty}}^{\otimes n}$)

$$\mathrm{H}^{n+1}_{\mathrm{ur}}(K,\mathbb{Q}_p/\mathbb{Z}_p(n)) \subset \mathrm{H}^{n+1}_{\mathrm{\acute{e}t}}(\mathrm{Spec}(K),\mathbb{Q}_p/\mathbb{Z}_p(n))$$

is defined to be the subgroup of those elements which are unramified along every point of codimention one on \mathcal{X} . More precisely it is the kernel of the boundary map

$$\mathrm{H}^{n+1}_{\mathrm{\acute{e}t}}(\mathrm{Spec}(K),\mathbb{Q}_p/\mathbb{Z}_p(n)) \xrightarrow{} \bigoplus_{y \in \mathcal{X}^1} \mathrm{H}^{n+2}_{y,\mathrm{\acute{e}t}}(\mathcal{X},\mathfrak{T}_{\infty}(r)_{\mathcal{X}})$$

in the localization sequence, where $\mathfrak{T}_{\infty}(r)_{\mathcal{X}} = \lim_{\substack{n \geq 1 \ n \geq 1}} \mathfrak{T}_n(r)_{\mathcal{X}}$ and \mathcal{X}^1 is the set of the points of

codimension one in \mathcal{X} .

The following isomorphisms hold true:

$$\mathrm{H}^1_{\mathrm{ur}}(K,\mathbb{Q}_p/\mathbb{Z}_p(0))\simeq\mathrm{H}^1_{\mathrm{\acute{e}t}}(\mathcal{X},\mathbb{Q}_p/\mathbb{Z}_p)\simeq\mathrm{Hom}_{cont}(\pi_1^{ab}(\mathcal{X}),\mathbb{Q}_p/\mathbb{Z}_p),$$

 $\mathrm{H}^2_{\mathrm{ur}}(K,\mathbb{Q}_p/\mathbb{Z}_p(1)) \simeq \mathrm{Br}(\mathcal{X})_{p ext{-tors}},$

where $\pi_1^{ab}(\mathcal{X})$ denotes the abelian fundamental group of \mathcal{X} and $Br(\mathcal{X})$ denotes the Grothendieck-Brauer group $H^2_{\acute{e}t}(\mathcal{X}, \mathbb{G}_m)$.

In case $[k:\mathbb{Q}]<\infty$, $\operatorname{Br}(\mathcal{X})$ is isomorphic (up to finite groups) to the Tate-Shafarevich group of $\operatorname{Pic}^0_{X/k}$, the Picard variety of the generic fiber X of \mathcal{X} .

For n = 0, the quotient $\mathrm{H}^1_{\mathrm{\acute{e}t}}(\mathcal{X}, \mathbb{Q}/\mathbb{Z})/\mathrm{H}^1_{\mathrm{\acute{e}t}}(S, \mathbb{Q}/\mathbb{Z})$ is finite by a theorem of Katz-Lang and in case $[k:\mathbb{Q}]<\infty$, $\mathrm{H}^1_{\mathrm{\acute{e}t}}(\mathcal{X},\mathbb{Q}/\mathbb{Z})$ is finite as well, because $\mathrm{H}^1_{\mathrm{\acute{e}t}}(S,\mathbb{Q}/\mathbb{Z})$ is finite.

In case $[k:\mathbb{Q}]<\infty$, $\mathrm{H}^2_{\mathrm{ur}}(K,\mathbb{Q}_p/\mathbb{Z}_p(1))$ is expected to be finite due to the finiteness conjecture of the Tate-Shafarevich group of the Picard variety of X.

In case $n = d := \dim(\mathcal{X})$, $H_{\mathrm{ur}}^{d+1}(K, \mathbb{Q}_p/\mathbb{Z}_p(d))$ has been considered by K. Kato who conjectured $H_{\mathrm{ur}}^{d+1}(K, \mathbb{Q}_p/\mathbb{Z}_p(d)) = 0$ if $p \neq 2$ or k has no embedding into \mathbb{R} (The last conjecture is proved by Kato in case d = 2 and by Jannsen-Saito in case d = 3).

Motivated by the above facts we propose the following:

Conjecture 0.2. $\mathrm{H}^3_{\mathrm{ur}}(K,\mathbb{Q}_p/\mathbb{Z}_p(2))$ is finite.

The conjecture plays a central role in the proof of our main result. Indeed we have the following result.

Proposition 0.3. Let

$$\mathrm{H}^3_{\mathrm{ur}}(K,X;\mathbb{Q}_p/\mathbb{Z}_p(2))\subset \mathrm{H}^3_{\mathrm{ur}}(K,\mathbb{Q}_p/\mathbb{Z}_p(2))$$

be the intersection of $H^3_{ur}(K, \mathbb{Q}_p/\mathbb{Z}_p(2))$ with

$$\operatorname{Im}\left(\operatorname{H}^3_{\operatorname{\acute{e}t}}(X,\mathbb{Q}_p/\mathbb{Z}_p(2)) \to \operatorname{H}^3_{\operatorname{\acute{e}t}}(\operatorname{Spec}(K),\mathbb{Q}_p/\mathbb{Z}_p(2))\right).$$

- (1) If $H^3_{ur}(K, X; \mathbb{Q}_p/\mathbb{Z}_p(2))$ is finite, then $Ker(\rho^2_{\mathcal{X}, p\text{-tors}})$ coincides with the maximal divisible subgroup of $CH^2(\mathcal{X})_{p\text{-tors}}$.
- (2) If $H^3_{ur}(K, \mathbb{Q}_p/\mathbb{Z}_p(2))$ is finite then $Ker(\rho^2_{\mathcal{X},\mathbb{Z}_p})$ coincides with the maximal divisible subgroup of $CH^2(\mathcal{X}) \otimes \mathbb{Z}_p$.

The proposition is deduced from the exact sequence

$$\mathrm{H}^3_{\mathrm{ur}}(K,\mathbb{Z}/p^n\mathbb{Z}(2)) \to \mathrm{CH}^2(\mathcal{X})/p^n \overset{\rho^2_{\mathcal{X},\mathbb{Z}/p^n\mathbb{Z}}}{\longrightarrow} \mathrm{H}^4_{\mathrm{\acute{e}t}}(\mathcal{X},\mathfrak{T}_n(r)_{\mathcal{X}})$$

which is constructed by using the semi-purity property of the Sato complex.

By the proposition the injectivity problem of our cycle class maps is reduced to the finiteness problem of the unramified cohomology $\mathrm{H}^3_{\mathrm{ur}}(K,\mathbb{Q}_p/\mathbb{Z}_p(2))$. We next relate it to other well-known conjectures in arithemtic geometry.

Bloch-Kato conjecture:

Let $\mathcal{X}/S = \operatorname{Spec}(\mathfrak{O}_k)$ and $X = \mathcal{X} \times_S \operatorname{Spec}(k)$ be as before. The conjecture concerns the p-adic regulator map from Bloch's higher Chow group to continuous Galois cohomology:

$$reg_X^{r,q}: \mathrm{CH}^r(X,q) \otimes \mathbb{Q}_p \to \mathrm{H}^1_{\mathrm{cont}}(G_k,\mathrm{H}^{2r-q-1}_{\mathrm{\acute{e}t}}(\overline{X},\mathbb{Q}_p(r))) \quad (r,q \geq 1)$$

where $G_k = \operatorname{Gal}(\overline{k}/k)$ and $\overline{X} = X \times_k \overline{k}$.

Conjecture (Bloch-Kato):

$$\operatorname{Im}(reg_X^{r,q}) = \operatorname{H}_g^1(G_k, \operatorname{H}_{\operatorname{\acute{e}t}}^{2r-q-1}(\overline{X}, \mathbb{Q}_p(r)))$$

where the right hand side is the subspace defined by Bloch-Kato by using the p-adic Hodge theory. In case $[k:\mathbb{Q}_{\ell}]<\infty$,

$$H_g^1(G_k, V) = \begin{cases} H_{\text{cont}}^1(G_k, V) & (p \neq \ell) \\ \text{Ker}\left(H_{\text{cont}}^1(G_k, V) \to H_{\text{cont}}^1(G_k, V \otimes B_{DR})\right) & (p = \ell) \end{cases}$$

where $V = \mathrm{H}_{\mathrm{\acute{e}t}}^*(\overline{X}, \mathbb{Q}_p(r)).$

The following special case is relevant to our problem.

$$reg_X = reg_X^{2,1} : \mathrm{CH}^2(X,1) \otimes \mathbb{Q}_p \to \mathrm{H}^1_{\mathrm{cont}}(G_k,\mathrm{H}^2_{\mathrm{\acute{e}t}}(\overline{X},\mathbb{Q}_p(2)))$$

where $\mathrm{CH}^2(X,1)$ coincides with the cohomology of the following complex

$$K_2(K) \xrightarrow{\delta_1} \bigoplus_{x \in X^1} k(x)^{\times} \xrightarrow{\delta_1} \bigoplus_{x \in X^2} \mathbb{Z},$$

(recall K is the function field of X), where

$$K_2(K) = (K^{\times} \otimes_{\mathbb{Z}} K^{\times}) / \langle x \otimes y | x + y = 1 \ (x, y \in K^{\times}) \rangle,$$

and X^r denotes the set of the points of codimension r on X and k(x) is the residue field of $x \in X^r$. The map δ_1 is the so-called tame symbol and δ_2 is the map taking the divisors of functions.

We now state the Bloch-Kato conjecture in the relevant case as a condition:

$$(\mathbf{H1}): \ \ \mathrm{Im}(reg_X) = \mathrm{H}^1_g(G_k, \mathrm{H}^2_{\mathrm{cute{e}t}}(\overline{X}, \mathbb{Q}_p(2)))$$

where

$$reg_X: \mathrm{CH}^2(X,1) \otimes \mathbb{Q}_p \to \mathrm{H}^1_{\mathrm{cont}}(G_k,\mathrm{H}^2_{\mathrm{st}}(\overline{X},\mathbb{Q}_p(2)))$$

- (H1) is known to hold in the following cases:
- (1) $H^2(X, \mathcal{O}_X) = 0$,
- (2) $X = E \times E$ where E is a modular elliptic curve without CM over \mathbb{Q} and $p \not|$ (level of E), $p \geq 5$,
- (3) X is an elliptic modular surface of level 4 over \mathbb{Q} and $p \geq 5$,
- (4) X is a Fermat quartic surface over $k = \mathbb{Q}$ or $\mathbb{Q}(\sqrt{-1})$,

The first case is easy and the other cases follow from the works of Mildenhall, Flach, Langer-Saito, Langer, Otsubo.

We now consider the regulator map with $\mathbb{Q}_p/\mathbb{Z}_p$ -coefficient

$$reg_{X,\mathbb{Q}_p/\mathbb{Z}_p}: \mathrm{CH}^2(X,1)\otimes \mathbb{Q}_p/\mathbb{Z}_p \to \mathrm{H}^1(G_k,\mathrm{H}^2_{\mathrm{\acute{e}t}}(\overline{X},\mathbb{Q}_p/\mathbb{Z}_p(2)))$$

Consider the following variant of H1:

(H1*):
$$\operatorname{Im}(reg_{X,\mathbb{Q}_p/\mathbb{Z}_p}) = \operatorname{H}_g^1(G_k, \operatorname{H}_{\operatorname{\acute{e}t}}^2(\overline{X}, \mathbb{Q}_p(2)))_{Div}$$

where for an abelian group M, M_{Div} denotes its maximal divisible subgroup.

H1 always implies H1* and that the converse holds under some assumptions (for example in case $[k:\mathbb{Q}_\ell]<\infty$).

In what follows we assume $H^3_{\text{\'et}}(X_{\overline{k}}, \mathbb{Q}_p(2))^{G_k} = 0$, which holds if $[k:\mathbb{Q}] < \infty$ by the Weil conjecture (Deligne). If $[k:\mathbb{Q}_\ell] < \infty$, it is a consequence of the monodromy-weight conjecture so that it holds if $\dim(X) = 2$ or \mathcal{X} is proper smooth over S. We also assume $p \geq 5$ by a technical reason coming from p-adic Hodge theory.

Theorem 0.4. Let the assumption be as above.

- (1) **H1*** implies the following two finiteness conditions:
 - **F1:** $CH^2(X)_{p\text{-tors}}$ is finite.
 - **F2:** $\mathrm{H}^3_{\mathrm{ur}}(K,X;\mathbb{Q}_p/\mathbb{Z}_p(2))$ is finite.
- (2) Assume further

T: The reduced part of every fiber of $\mathcal{X}/\mathfrak{O}_k$ has simple normal crossings on \mathcal{X} and the Tate conjecture for divisors holds for the irreducible components of those fibers.

Then F1 and F2 imply H1*.

As for the finiteness of $\mathrm{H}^3_{\mathrm{ur}}(K,\mathbb{Q}_p/\mathbb{Z}_p(2))$, we need another condition:

H2: *Let*

$$AJ_X^2: \mathrm{CH}^2(X) \otimes \mathbb{Z}_p \to \mathrm{H}^1_{\mathrm{cont}}(k, \mathrm{H}^3_{\mathrm{\acute{e}t}}(\overline{X}, \mathbb{Z}_p(2)))$$

the p-adic Abel-Jacobi map for X. Then the quotient of $Ker(AJ_X^2)$ by its torsion subgroup is divisible.

In case $[k:\mathbb{Q}]<\infty$, Beilinson conjectured that $\mathrm{Ker}(AJ_X^2)$ is torsion.

In case $\dim(X) = 2$, **H2** holds true in the following cases:

o $[k:\mathbb{Q}_\ell]<\infty$ with $\ell\neq p$ (Saito-Sujatha).

o $H^2(X, \mathcal{O}_X) = 0$ and $\kappa_X \leq 1$ (Bloch-Kas-Lieberman).

Theorem 0.5. Let the assumption be as before. Then **H1*** and **H2** imply that $H^3_{ur}(K, \mathbb{Q}_p/\mathbb{Z}_p(2))$ is finite.

Summing up these, we get the following result which implies the first main result on the injectivity of cycle class map.

Corollary 0.6. Assume $H^2(X, \mathcal{O}_X) = 0$. Then:

- (1) $H^3_{ur}(K, X; \mathbb{Q}_p/\mathbb{Z}_p(2))$ is finite.
- (2) $\mathrm{H}^3_{\mathrm{ur}}(K,\mathbb{Q}_p/\mathbb{Z}_p(2))$ is finite under one of the following:
 - (i) $[k:\mathbb{Q}_{\ell}] < \infty$ with $\ell \neq p$ and $\dim(X) = 2$,
 - (ii) $[k:\mathbb{Q}_p] < \infty$ and $\dim(X) = 2$ and $\kappa_X \le 1$.
 - (iii) $[k:\mathbb{Q}] < \infty$ and $\dim(X) = 2$ and $\kappa_X \leq 1$.

Idea of Proof: We now explain the idea to show that $\mathbf{H1}^*$ implies the finiteness of $\mathrm{CH}^2(X)_{p\text{-tors}}$ and $\mathrm{H}^3_{\mathrm{ur}}(K,X;\mathbb{Q}_p/\mathbb{Z}_p(2))$. We only treat the case $[k:\mathbb{Q}_p]<\infty$. We consider the following groups

$$\operatorname{CH}^2(X,1) \otimes \mathbb{Q}_p/\mathbb{Z}_p \subset N^1 \operatorname{H}^3(X,\mathbb{Q}_p/\mathbb{Z}_p(2)) \subset U \subset \operatorname{H}^3(X,\mathbb{Q}_p/\mathbb{Z}_p(2))$$

where $N^1\mathrm{H}^3_{\mathrm{\acute{e}t}}(X,\mathbb{Q}_p/\mathbb{Z}_p(2))$ is the kernel of the natural map

$$\mathrm{H}^{3}(X, \mathbb{Q}_{p}/\mathbb{Z}_{p}(2)) \stackrel{\iota}{\longrightarrow} \mathrm{H}^{3}(\mathrm{Spec}(K), \mathbb{Q}_{p}/\mathbb{Z}_{p}(2)),$$

$$U = \iota^{-1}(\mathrm{H}^{3}_{\mathrm{ur}}(K, X; \mathbb{Q}_{p}/\mathbb{Z}_{p}(2))),$$

The first inclusion comes from Bloch's exact sequence

$$0 \to \mathrm{CH}^2(X,1) \otimes \mathbb{Q}_p/\mathbb{Z}_p \to N^1\mathrm{H}^3(X,\mathbb{Q}_p/\mathbb{Z}_p(2)) \to \mathrm{CH}^2(X)_{p\text{-tors}} \to 0$$

which is obtained by using the theorem of Mercuriev-Suslin on the surjectivity of the Galois symbol map for K_2 . Thus it suffices to show

$$[U: \mathrm{CH}^2(X,1) \otimes \mathbb{Q}_p/\mathbb{Z}_p] < \infty.$$

The assumption implies that $H^3(\overline{X}, \mathbb{Q}_p/\mathbb{Z}_p(2))^{G_k}$ is finite and the Hochschild-Serre spectral sequence

$$E_2^{u,v}:=\mathrm{H}^u(G_k,\mathrm{H}^v(\overline{X},\mathbb{Q}_p/\mathbb{Z}_p(2)))\Longrightarrow\mathrm{H}^{u+v}(X,\mathbb{Q}_p/\mathbb{Z}_p(2))$$

induces the edge homomorphism

$$\nu: \mathrm{H}^3(X, \mathbb{Q}_p/\mathbb{Z}_p(2))_{Div} \to \mathrm{H}^1(G_k, \mathrm{H}^2(\overline{X}, \mathbb{Q}_p/\mathbb{Z}_p(2)))$$

where for an abelian group M, M_{Div} denotes its maximal divisible subgroup. We note that the composition

$$\mathrm{CH}^2(X,1)\otimes \mathbb{Q}_p/\mathbb{Z}_p \hookrightarrow \mathrm{H}^3(X,\mathbb{Q}_p/\mathbb{Z}_p(2)) \stackrel{\nu}{\longrightarrow} \mathrm{H}^1(G_k,\mathrm{H}^2(\overline{X},\mathbb{Q}_p/\mathbb{Z}_p(2)))$$

is the regulator map with $\mathbb{Q}_p/\mathbb{Z}_p$ -coefficient. Thus $\mathbf{H1^*}$ implies

$$\nu(\mathrm{CH}^2(X,1)\otimes \mathbb{Q}_p/\mathbb{Z}_p)=\mathrm{H}^1_g(G_k,\mathrm{H}^2(\overline{X},\mathbb{Q}_p/\mathbb{Z}_p(2)))_{Div}.$$

Hence we are reduced to show the following:

Claim A: $\nu(U_{Div}) \subset \mathrm{H}^1_g(G_k, \mathrm{H}^2(\overline{X}, \mathbb{Q}_p/\mathbb{Z}_p(2))).$

Claim B: $U \cap \text{Ker}(\nu)$ is finite.

To show Claim A, we first prove the inclusions

$$U \hookrightarrow W = \mathrm{H}^3(\mathcal{X}, \tau_{\leq 2} R j_* \mathbb{Q}_p/\mathbb{Z}_p(2)) \hookrightarrow \mathrm{H}^3(X, \mathbb{Q}_p/\mathbb{Z}_p(2)),$$

where $j: X \hookrightarrow \mathcal{X}$ is the natural immersion. It is derived from the following purity theorem. Let $Y \subset \mathcal{X}$ be the special fiber of $\mathcal{X}/\mathcal{D}_k$.

Theorem (Hagihara): Let n, r and c be integers with $n \ge 0$ and $r, c \ge 1$. Then for any integer $q \le n + c$ and any closed subscheme $Z \subset Y$ with $\operatorname{codim}_{\mathcal{X}}(Z) \ge c$, we have

$$\mathrm{H}^q_Z(\mathcal{X},\tau_{\leq n}Rj_*\mu_{p^r}^{\otimes n})=0=\mathrm{H}^{q+1}_Z(\mathcal{X},\tau_{\geq n+1}Rj_*\mu_{p^r}^{\otimes n}).$$

By the above inclusions the proof of Claim A is reduced to show

$$(*) \nu(W_{Div}) \subset \mathrm{H}^1_q(G_k, \mathrm{H}^2(\overline{X}, \mathbb{Q}_p/\mathbb{Z}_p(2))).$$

The first step is to relate W with syntomic cohomology of $\mathcal{X}/\mathfrak{O}_k$.

Theorem (Kato-Kurihara-Tsuji): There is a canonical isomorphism

$$\eta: s_n^{\log}(r)_{\mathcal{X}} \xrightarrow{\cong} i_* i^* \tau_{\leq r} R j_* \mu_{p^n}^{\otimes r},$$

where the right hand side denotes the log-syntomic complex of Kato and $i: Y \to \mathcal{X}$ is the closed immersion of the closed fiber of \mathcal{X}/S .

Now put

$$\mathrm{H}^*(\mathcal{X}, s_{\mathbb{Q}_p}^{\mathrm{log}}(r)_{\mathcal{X}}) := \left\{ \varprojlim_{r \geq 1} \mathrm{H}^*(\mathcal{X}, s_n^{\mathrm{log}}(r)_{\mathcal{X}}) \right\} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p,$$

Assume $H_{\operatorname{\acute{e}t}}^{i+1}(\overline{X},\mathbb{Q}_p(r))^{G_k}=0$. Let ξ be the composite map:

$$\mathrm{H}^{i+1}(\mathcal{X}, s^{\mathrm{log}}_{\mathbb{Q}_{p}}(n)_{\mathcal{X}}) \to \mathrm{H}^{i+1}_{\mathrm{\acute{e}t}}(X, \mathbb{Q}_{p}(r)) \to \mathrm{H}^{1}(G_{k}, \mathrm{H}^{i}_{\mathrm{\acute{e}t}}(\overline{X}, \mathbb{Q}_{p}(r)))$$

where the second map comes from the Hochschild-Serre spectral sequence. The desired assertion (*) follows from the following result shown via theory of log-syntomic and log-crystalline cohomology.

Theorem (Langer and Nekovář): We have

$$\operatorname{Im}(\xi) = \operatorname{H}_g^1(G_k, \operatorname{H}_{\operatorname{\acute{e}t}}^i(\overline{X}, \mathbb{Q}_p(r))).$$

Finally we explain the idea to show Claim B, namely the finiteness of $U \cap \text{Ker}(\nu)$. By definition of $H^3_{\text{ur}}(K, X; \mathbb{Q}_p/\mathbb{Z}_p(2))$, U is the kernel of the localization map

$$\delta: \mathrm{H}^3_{\mathrm{cute{e}t}}(X, \mathbb{Q}_p/\mathbb{Z}_p(2)) o igoplus_{y \in \mathcal{X}^1} \mathrm{H}^4_y(\mathcal{X}, \mathfrak{T}_\infty(2)_\mathcal{X})$$

where $\mathfrak{T}_{\infty}(2)_{\mathcal{X}} = \underset{\longrightarrow}{\lim} \, \mathfrak{T}_{n}(2)_{\mathcal{X}}.$

On the other hand, $\operatorname{Ker}(\nu) = F^2 \operatorname{H}^3_{\text{\'et}}(X, \mathbb{Q}_p/\mathbb{Z}_p(2))$ with F^2 denoting the filtration coming from the Hochschild-Serre spectral sequence. Hence we have a surjection

$$\mathrm{H}^2(G_k,\mathrm{H}^1_{\mathrm{\acute{e}t}}(\overline{X},\mathbb{Q}_p/\mathbb{Z}_p(2))) \to \mathrm{Ker}(\nu).$$

Therefore we are reduced to show the finiteness of the kernel of the composite map

$$\mathrm{H}^2(G_k,\mathrm{H}^1_{\mathrm{\acute{e}t}}(\overline{X},\mathbb{Q}_p/\mathbb{Z}_p(2))) \to \bigoplus_{y \in \mathcal{X}^1} \mathrm{H}^4_y(\mathcal{X},\mathfrak{T}_\infty(2)_{\mathcal{X}}).$$

In order to show this, one is required to describe the above map explicitly in terms of geometry of the special fiber Y of $\mathcal{X}/\mathfrak{O}_k$. This is rather technical and complicate. Here we only point out one key ingredient.

Let $\overline{Y} = \mathcal{X} \times_{\mathfrak{D}_k} \overline{F}$ where F is the residue field of k and \overline{F} is an algebraic closure of F. Let $W_n \omega_{Y,\log}^q$ be the logarithmic part of the de Rham-Witt differential $W_n \omega_Y^q$ associated to the semi-stable scheme $\mathcal{X}/\mathfrak{D}_k$ defined by Hyodo. Then one constructs a natural map

$$h: \mathrm{H}^{2}(G_{k}, \mathrm{H}^{1}_{\mathrm{\acute{e}t}}(\overline{X}, \mathbb{Q}_{p}/\mathbb{Z}_{p}(2))) \to \mathrm{H}^{1}(F, \mathrm{H}^{0}(\overline{Y}, W_{\infty}\omega_{Y,\log}^{1}))$$
$$(W_{\infty}\omega_{Y,\log}^{1} = \lim_{n \to \infty} W_{n}\omega_{Y,\log}^{1})$$

and show that it has finite kernel and cokernel by using the Fontaine-Jannsen conjecture (the comparison isomorphism between p-adic etale cohomology and log-crystalline cohomology of $\mathcal{X}/\mathcal{O}_k$) proved by Hyodo-Kato and Tsuji.