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CYCLE CLASS MAPS FOR ARITHMETIC SCHEMES

SHUJI SATTO AND KANETOMO SATO

X /k : & proper smooth variety over a field k of characteristic zero.

Let
CHT(X) = ( @ Z>/ rat re\:;uiv
vex ' '

irred. subvar.

be the group of cycles of codimension r in X modulo rational equivalence, called the Chow
group of cycles of codimension .

For r = 1 we have
CHY(X) ~ Pic(X)
where Pic(X) is the group of isomorphism classes of line bundles on X.

If X has a k-rational point, we have the exact sequence

0 — Pick (k) — Pic(X) — NS(X) — 0

where NS(X) is the Neron-Severi group of X and Picy,, is the Picard variety of X Jk. It is
known that: :

(1) NS(X) is finitely generated (for an arbitrary k).

(2) Picqu(k) (=the group of the k-rational points of Picg{/k) is finitely generated if [k : Q] < oo.
(the Mordell-Weil theorem).

Hence CH!(X) is finitely generated if [k : Q] < oco.

Question: Is CH"(X) is finitely generated if [k : Q] < co?

Remark: The rank of CH™(X) and the order of CH" (X )sors are expected to be related to special
values of L-function of X (Tate, Birch-Swinnerton-Dyer, Beilinson, Bloch-Kato,....}.

Only little is known about the above question. Difficulty comes from the fact that CH"(X)
for r > 2 is in general “not representable” so that over C it is as large as C®z C---®z C
(Mumford theorem).

We now assume [k : Q] < oo or [k : Q] < co. We fix a prime p and are concerned with the
finiteness of:

CH?(X)ptors and  CH(X)/p"

where for an abelian group M, Mo denotes the p-primary torsion part. One way to approach
to the fundamental question is to look at the cycle class map from Chow group to (continuous)
étale cohomology of X:

Pxzsmz : CH(X)/p" — HE (X, Z/v"Z(r))

PS{,ZP :CH'(X) ® Zp — H2 (X, Zp(r))
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where Z/p"Z(r) = p&7 is the rth tensor power of the sheaf of p"th roots of unity and Z,(r) =
“lim Z/p"Z(r)". Note that H2'(X,Z/p"Z(r)) is not in general finite if [k : Q] < co. But one

can show that Im(p% 5 /,n7) is fintie and Im(p z,) is a finitely generated Z,-module. Hence the
injectivity of the above maps would imply the desired finiteness.
For r = 1 one can show the injectivity of these maps by using the Kummer sequence

0—-Z/p"Z(1) - Gp 2 G — 0
and the isomorphism

CHY(X) =~ Pic(X) ~ H} (X, Gnm).
It is conjectured in case [k : Q] < oo that the kernel of p% 5 is torsion. On the other hand,
using the theory of quadratic forms, Parimala and Suresh proved the following:

Theorem: There exists a smooth projective surface X over k with H?(X, Ox) = 0 (in fact X
is a rational surface) such that Ker(p% z,) is a nonzero finite group.

In this talk we present a new viewpoint on the injectivity problem of cycle class maps by
investigating cycle maps for models of X over the ring of integers of k. We fix the following
setup:

k:[k:Q] <ooork:Q < oo
O,: the integer ring of k and put S := Spec(Oy),
X: a regular scheme which is proper flat of finite type over S.
X = X xg Spec(k): the generic fiber of X '
We fix a prime p and assume the following condition:
If p is not invertible on X, then X has good or semistable reduction at each prime
ideal of Oy, dividing (p).
If p is not invertible on X, etale cohomology of & with pu3/-coefficient does not work well.
Instead the p-adic étale Tate twist
Tu(r)x € DYNX,Z/p"Z)
defined by K.Sato plays an important role. Here D?(X,Z/p"Z) denotes the derived category of
bounded complexes of étale sheaves of Z/p"Z-modules on X.
Remark
(1) Letting X [%} C X be the open subschme obtained by removing the fibers over the points
of characteristic p of S,
— 07
‘I’II(T);'([%] - lupn,x{%]‘
(2) Sato proved the finiteness of Hi (X, %, (r)x).
(3) It is expected that:
To(rx = Z(r)s @ Z/p"Z,
where Z(r)% denotes the conjectural étale motivic complex of Beilinson-Lichtenbaum for
X.

By the semi-purity property of ¥,(r)x shown by Sato, we can define the cycle map
P2z : CHN(X) /0" — HE (X, Tn(r)x)
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We are now concerned with the induced maps -
o - CH (R)pacm — HE (X, T2, (1))
Pz, : CH'(X) ® Zp — HE (X, %z,(r)x),
where :
Hzt(XagZp(T)X) = IEE} Hzt(X?‘In(T)X)‘
n>1
Our main results on these maps concern the injectivity of these two maps in case r = 2.
Roughly speaking, the injectivity of p% ;o 8nd P?r,z,, follows from a list of assumptions, each

of which is a consequence of a well-known conjecture in arithmetic geometry. As a corollary we
will get the following result: {Recall X = X xg Spec(k))

Theorem 0.1. Assume H*(X,Ox) = 0. Then:
(1) P potors 18 injective.
(2) Suppose that [k : Qg < oo with £ # p and dim(X) = 2. Then Ker(p% 7)) is uniquely
p-divisible.
(3) Suppose that [k : Q] < 0o and dim(X) = 2 with kx < 1. Then p% z is injective.
(4) Suppose that [k : Q] < co and dim(X) = 2 with kx < 1. Then p% g, is injective.

Unramified cohomology:

Let X/O; be as before and let K be its function field.
The unramified cohomology of K (here we write Q,/Z,(n) = pgs)

HZ:FI(Kv Qu/Zy(n)) C HZ;I(SpeC(K)va/ZP(n))
is defined to be the subgroup of those elements which are unramified along every point of
codimention one on X. More precisely it is the kernel of the boundary map
H (Spec(K), Qp/Zp(n)) = €D Hyé' (X, Too(r)x)

yexl

in the localization sequence, where To,(r)y = lm T.(r)x and X! is the set of the points of
nzl
codimension one in X.
The following isomorphisms hold true:

Hxlnr(K: @p/zp(o)) = H}ét(x’ @p/zp) = Homc,mt(wfb(X), QP/ZP)l

H?n‘(K7 QP/ZP(l)) = Br(X)p—tors;
where 7%(X) denotes the abelian fundamental group of X and Br(X) denotes the Grothendieck-
Brauer group H% (X, Gn).
In case [k : Q] < oo, Br(X) is isomorphic (up to finite groups) to the Tate-Shafarevich group
of Pick Tk the Picard variety of the generic fiber X of &.

For n = 0, the quotient HL (X, Q/Z)/HL (S, Q/Z) is finite by & theorem of Katz-Lang and in
case [k : Q] < oo, Hy(X,Q/Z) is finite as well, because H}, (S, Q/Z) is finite.

In case [k : Q] < oo, HZ(K,Q,/Z,(1)) is expected to be finite due to the finiteness conjecture
of the Tate-Shafarevich group of the Picard variety of X.

In case n = d := dim(X), H%(K, Q,/Z,(d)) has been considered by K. Kato who conjectured
HE (K, Qp/Zy(d)) = O if p # 2 or k has no embedding into R (The last conjecture is proved
by Kato in case d = 2 and by Jannsen-Saito in case d = 3).

Motivated by the above facts we propose the following:

Conjecture 0.2. H3 (K,Q,/Z,(2)) is finite.
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The conjecture plays a central role in the proof of our main result. Indeed we have the
following result.

Proposition 0.3. Let
H?lr(Ka X} @P/Zp(z)) - Hit(K’ @P/Zp(z))
be the intersection of H3 (K, Qp/Zy(2)) with
I (H (X, Qp/Z,(2)) — B, (Spec(K), Qp/Zy(2)))-

(1) IFHS,(K, X;Qp/Zy(2)) is finite, then Ker{p% ,.on) Coincides with the mazimal divisible
subgroup of CH*(X)p-tors-

(2) If H3.(K,Q,/Zp(2)) is finite then Ker(py z ) coincides with the mazimal divisible sub-
group of CH*(X) ® Z,.

The proposition is deduced from the exact sequence

2
HS, (K, 2/p"2(2)) — CHY(X) /" 28 HY(X, Tu(r))
which is constructed by using the semi-purity property of the Sato complex.

By the proposition the injectivity problem of our cycle class maps is reduced to the finiteness
problem of the unramified cohomology H3 (K, Q,/Z,(2)). We next relate it to other well-known
conjectures in arithemtic geometry.

Bloch-Kato conjecture:

Let X/S = Spec(Dx) and X = X xg Spec(k) be as before. The conjecture concerns the
p-adic regulator map from Bloch’s higher Chow group to continuous Galois cohomology:

regif - CH'(X, 9) ® Qp — Hipy (Gi BE 'K, Q1)) (rg>1)
where Gy = Gal(k/k) and X = X x, k.
Conjecture (Bloch-Kato):
Im(regy’) = Hy(Cr, By 777 (X, Qp(r)))

where the right hand side is the subspace defined by Bloch-Kato by using the p-adic Hodge
theory. In case [k : Qg < o0,

(G V) = {Hzm(ak, V) (p#0)
Ker (Hl(Gr, V) — Hl,yi(Gh,V ® Bpg)) (0 =10)
where V = H% (X, Q,(r)).
The following special case is relevant to our problem.
regx = regi{’l : CHQ(X’ HeQ,— He ot (G HE (X, Qy(2)))
where CH?(X, 1) coincides with the cohomology of the following complex

KxK) 2 @ k(=) > DI,

zeX?! zeX?
(recall K is the function fleld of X), where

Ko(K) = (K* @z K*)/ <z®ylz+y=1(s,y € K*) >,
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and X" denotes the set of the points of codimension r on X and k(z) is the residue field of
z € X". The map ¢&; is the so-called tame symbol and 4§, is the map taking the divisors of
functions.

We now state the Bloch-Kato conjecture in the relevant case as a condition:

(H1): Im(regx) = Hy(Gy, Hi (X, Q,(2)))

where
regx : CH2(X’ 1) & Qp - Héont(Gkv Hgt (—X-: QP(Q)))
(H1) is known to hold in the following cases:
(1) Hz(Xa OX) =0,
(2) X = EXE where E is a modular elliptic curve without CM over Q and p [(level of E), p > 5,

(3) X is an elliptic modular surface of level 4 over Q and p > 5,
(4) X is a Fermat quartic surface over k = Q or Q(v/-1),

The first case is easy and the other cases follow from the works of Mildenhall, Flach, Langer-
Saito, Langer, Otsubo.

We now consider the regulator map with Q,/Z,-coefficient
re9x,0p/2, * CHA(X, 1) ® Qp/Zy — HH{(Gr, Hey (X, Qu/Z,(2)))

Consider the following variant of H1:

(H1*): Im(regxq./z,) = Hy(Gr, HL(X, @p(2))) Div

where for an abelian group M, Mp;, denotes its maximal divisible subgroup.

H1 always implies H1* and that the converse holds under some assumptions {for example in
case [k : Q] < 00).

In what follows we assume HE, (X7, Q,(2))% = 0, which holds if [ : Q] < oo by the Weil
conjecture (Deligne). If [k : Q] < oo, it is a consequence of the monodromy-weight conjecture
so that it holds if dim(X) = 2 or X is proper smooth over S. We also assume p > 5 by a
technical reason coming from p-adic Hodge theory.

Theorem 0.4. Let the aassumption be as above.

(1) H1* implies the following two finiteness conditions:
F1: CH*(X)ptors 15 finite.
F2: H3 (K, X;Qp/Z,(2)) is finite.

(2) Assume further
T: The reduced part of every fiber of X /9y, has simple normal crossings on X and the

Tate conjecture for divisors holds for the irreducible components of those fibers.

Then F1 and F2 imply H1*.

As for the finiteness of H3 (K, Q,/Z,{(2)), we need another condition:

H2: Let

AT : CHH(X) ® Zp — Hogn (k, Ho (X, Z5(2)))

the p-adic Abel-Jacobi map for X. Then the quotient of Ker(AJ%) by its torsion subgroup

is divisible.
In case [k : Q] < oo, Beilinson conjectured that Ker(AJ%) is torsion.
In case dim(X) = 2, H2 holds true in the following cases:

o [k: Qg < co with £ # p (Saito-Sujatha).
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o H3(X,Ox) = 0 and kx < 1 (Bloch-Kas-Lieberman).
Theorem 0.5. Let the assumption be as before. Then H1* and H2 imply that H3, (K, Qp/Zy(2))
18 finite.
Summing up these, we get the following result which implies the first main result on the
injectivity of cycle class map.
Corollary 0.6. Assume H*(X,Ox) = 0. Then:
(1) BB, (K, X; Qu/Z,(2)) is finite.
(2) B.(K,Qp/Z,(2)) is finite under one of the following:
(3) [k: Qe < oo with £ # p and dim(X) =2,
(i1) [k : Qp) < o0 and dim(X) =2 and kx < L.
(i37) [k : Q] < o0 and dim(X) =2 and kx < 1.

Idea of Proof: We now explain the idea to show that H1* implies the finiteness of
CH2(X ) ptors and H3 (K, X;Q,/Z,(2)). We only treat the case [k : Q] < oo. We consider
the following groups

CH2(X,1) ® Qp/Zy C N'H*(X,Qp/Z,(2)) C U € HY(X, Qp/Z,(2))
where N'HZ, (X, Q,/Z,(2)) is the kernel of the natural map
HS(X7 Qp/Z,(2)) — H*(Spec(K), Qp/Zn(2)),
U = L_I(H?H'(K’ X’ Qp/ZP(2)))1
The first inclusion comes from Bloch’s exact sequence
0 — CHY(X,1) ® Q,/Z, — N'H3(X,Q,/Z,(2)) — CH*(X)p-tors — 0
which is obtained by using the theorem of Mercuriev-Suslin on the surjectivity of the Galois
symbol map for K5. Thus it suffices to show
U: CHZ(Xa 1) ® Qp/Zy) < 0.
The assumption implies that H3(X,Q,/Z,(2))% is finite and the Hochschild-Serre spectral
sequence '

Ey* = HY(Gy, H'(X, Qp/Z,(2))) => H"™(X, Qp/Zy(2))

induces the edge homomorphism
v:H(X, Qp/zp(z))Div — HY (G, (X, Qy/Zy(2)))
where for an abelian group M, Mp;, denotes its maximal divisible subgroup. We note that the
composition
CH(X,1) @ Qp/Zy — HY(X, Qp/Z,(2)) = H'(Gi,, H* (X, Qp/Z(2)))
is the regulator map with Q,/Z,-coefficient. Thus H1* implies
V(CH2(X7 nH® Qp/zp) = H;(Gka HZ(Ya QP/ZP(2)))Div-
Hence we are reduced to show the following:
Claim A: v(Upsy) C Hz(Gk,H2('X—, Qu/Z,(2))). '
Claim B: U nKer(v) is finite.
To show Claim A, we first prove the inclusions

U W = H X, 72 RiQp/Zy(2)) — B (X, Qp/Z(2)),
where j : X — X is the natural immersion. It is derived from the following purity theorem.
Let Y C X be the special fiber of X /9Oy.
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Theorem (Hagihara): Let n,r and ¢ be integers withn > 0 and r,c > 1. Then for any integer
g < n+c and any closed subscheme Z C'Y with codimx(Z) > ¢, we have

HY (X, T<n Rjup3™) = 0 = HE (X, Tons1 R LED).
By the above inclusions the proof of Claim A is reduced to show
(+) V(Wpiw) C HY(G, (X, Qp/Zo(2))).
The first step is to relate W with syntomic cohomology of X' /Oy.
Theorem (Kato-Kurihara-Tsuji) : There is a canonical isomorphism
n: sl:g(r)x = i*i*TSTRj*uff,

where the right hand side denotes the log-syntomic complex of Kato andi:Y — X is the closed
immersion of the closed fiber of X/S.

Now put

H*(X, 855(7‘)31) = {1‘1_1_11 H*(X, S,I:E(T)X)} ®Zp Qp,

rzl

Assume H (X, Q,(r))% = 0. Let ¢ be the composite map:
H*(X, sg5(n)x) — Hi (X, Qp(r) — H(Gr, Hy (X, Qp(r)))

where the second map comes from the Hochschild-Serre spectral sequence. The desired asser-
tion (x) follows from the following result shown via theory of log-syntomic and log-crystalline
cohomology.

Theorem (Langer and Nekovaf) : We have
Im(¢) = Hy{Gr, Hy (X, Qo).

Finally we explain the idea to show Claim B, namely the finiteness of UNKer(v). By definition
of H3,(K, X;Q,/Zy(2)), U is the kernel of the localization map

J: Hﬁt(X, Q,/Z,(2)) — @ H:(X’ Teo(2))

yeXt
where Teo(2)x = lim Tn(2) x.

On the other hand, Ker(v) = F?HZ (X, Qp/Z,(2)) with F? denoting the fltration coming
from the Hochschild-Serre spectral sequence. Hence we have a surjection

Hz(Gk: Hét(f, Qu/Zy(2))) — Ker(v).
Therefore we are reduced to show the finiteness of the kernel of the composite map

HQ(GkaHét(Xa Qu/Zy(2))) — @ Hg(x’sm(z)&’)-

yex?

In order to show this, one is required to describe the above map explicitly in terms of geometry
of the special fiber Y of X /Oj. This is rather technical and complicate. Here we only point out

one key ingredient.
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Let ¥ = X Xp, F where F is the residue field of k¥ and F is an algebraic closure of F.
Let Wywy, e be the logarithmic part of the de Rham-Witt differential W,w§ associated to the
semi-stable scheme X' /Oy defined by Hyodo. Then one constructs a natural map

h: HZ(GAH Hiﬁt(fv Qo/Zp(2))) — Hl(Fv HO(?’ Woowll/,log))

1 1
Wy 10g = llg Wawyiog)

n

and show that it has finite kernel and cokernel by using the Fontaine-Jannsen conjecture (the
comparison isomorphism between p-adic etale cohomology and log-crystalline cohomology of
X /O4) proved by Hyodo-Kato and Tsuji.



