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APPROXIMATION OF A FIXED POINT OF A ¢-STRONGLY
PSEUDOCONTRACTIVE MAPPING IN A BANACH SPACE

HIROKO MANAKA TAMURA

ABsTrACT. In the present paper, we show the stability result of the following
unified iterative scheme
T4l — tnTvn + (1 - tn)xn + Un

for a given sequence {vn} in a Banach space X and a ¢-strongly pseudo-
contractive mapping T with a coefficient sequence {f»} in [0,1] and an error
term sequence {un} in X. This stability result implies a convergence theorem
of Mann, Ishikawa and Stevié¢’s iterations. We also try to show convergence
rateestimates to a fixed point of T :

1. INTRODUCTION

Let X be an arbitrary Banach space and let T': X — X be a nonlinear mapping
such that the set F'(T) of fixed points of T is nonempty. In the last four decades,
numerous papers have been published on the iterative approximation of fixed points
of nonlinear mappings T in Banach spaces. Let J denote the normalized duality
mapping from X into 2% given by

Jz)={f € X" : (z, f) = ||=|* = IfII'},

where X* denotes the dual space of X and (-,-) denotes the duality pairing. A
mapping T : D(T) € X — X is called a strong pseudocontraction if there exists
t > 1 such that for all z,y € D(T'), there is j{z — y) € J(z — y) satisfying

. 1 2
(Tx ~Ty,5(x —y)) < n llz — "

Let ¢ : [0,00) — [0, 0) be a strictly increasing function with ¢(0) = 0. A mapping
T:D(T)C X — X is called ¢-strongly pseudocontractive if for all z,y € D(T)
there exists j(z —y) € J(z ~ y) such that

(Tz — Ty, j(z — y)) < llz -yl = d(llz — yl}) Iz — vl -

We call a ¢-strongly pseudocontractive mapping a ¢-strong pseudocontraction. The
class of strong pseudocontractions and the class of ¢-strong pseudocontractions have
been studied extensively by several authors ( see [1], [6], [8], [14] ). It was shown
in [14] that the class of strong pseudocontractions is a proper subset of the class
of ¢-strong pseudocontractions. It is well-known that if T : X — X is continuous
and strongly pseudocontractive, then T has a unique fixed point ( see [18] ). Let
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C be a closed convex subset of X. If T : C — C is continuous and ¢-strongly
pseudocontractive, then T has a unique fixed point ( see [6], [7] ).

A mapping f(T,-) : X — X is said to be an iterative scheme when f(T,-) is
considered as a procedure, involving 7', which yields a sequence of points {z,} C X
defined by zney = f(T,z,) for n > 0, where zg € X is given. Suppose that the
sequence {z, } converges strongly to ap € F(T'), and then it is denoted by z, = p €
F(T). Let {y,} be an arbitrary sequence in X. If limp—co {|ynt+1 — F(T, ya)|l =0
implies y, — p € F(T), then an iterative scheme f(7,-) is said to be T-stable or
stable with respect to T (see [3]). We say that an iterative scheme f(T,-) is almost

T-stable or almost stable with respect to T' if Z Wynt1 = F(T,yn)l| < co implies
n=]
yn = p € F(T). (cf. [17], [22]). Clearly, an iterative scheme f(T\,-) which is T
stable is almost T-stable. In [17] Osilike gave an example showing that an iterative
scheme which is almost T-stable may fail to be T-stable. In [3], Harder and Hicks
pointed out the importance of stability of iteration schemes from the view point
of practical use of iterations, and gave some results for the stability of iteration
schemes. Recently, the stability of iterative scheme for nonlinear mappings was
investigated by several authors (cf. [15], [16], [17], [19], [20], [21], [22], (23], [24]).
In this paper, first we show a stability result of the following iteration scheme
f(T,v,, ) involving a ¢-strong pseudocontraction T and a sequence {vp}in X :

x0 € X,
(11) Tnt1 = f(Ta Un,xn)
= tnTUn + (1 — t0)Zn + Un,

where {t,} and {u,} are a coeflicient sequence in [0, 1] and an error term sequence
in X, respectively. This iteration scheme gives the Mann iteration as a special case
when vy, = @n, (n > 0) ([13]). Moreover we show that this stability result implies
the stability of an iterative scheme for a family of k selfmappings T, T, ..., Ty with
k coeflicient sequences {tgf)} and k error term sequences {u&j}}, (4 =1,...,k) such
as

zg € X,
(12) S f(T17T21"-aTk)xn>
- gSE)leﬁ,}) + (11— t%l)}xn + ug),
where
z® = t@PT2® 4+ (1~ g, + ul?,
26D = (T, + (1 - )z +uld),
and

o) = 2,
This iteration generalizes the Mann, Ishikawa, Das & Debata and Stevié iterations,
and we obtain them as special cases when wepuwt 71 =T, Ty = T =T, Ty # Ty,and
Ty =Ty = ... = T}, = T, respectively. (See [2], [4], [13], [22], [25], etc.) Our iteration
defined by (1.1) is a unified approach for these iterations, when we put v, = :1:53).
With respect to the stability results of Mann and Ishikawa iterations, there are
many results by several authors (see [11], [15], {16], [17], [21], [24] ). Osilike gave
the result of Mann and Ishikawa iterations for a ¢-strong pseudocontraction in 17,
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and Stevi¢ generalized the stability result of Osilike in [24] . The unified approach
of (1.1) gives a natural generalization of Stevié’s result and a strong convergence
theorem for iterations defined by (1.2). Secondary we try to show how fast the
iterative sequence converges to a fixed point. We give the convergence rate estimates
for Mann iteration involving a Lipschitz continuous ¢-strong pseudocontraction 7'
on a closed convex subset C' in an arbitrary Banach space X.

2. PRELIMINARIES
We shall give some lemmata which are needed to present our statements and to
prove the main results.

Lemma 1. [9] Let {a.}, {bn} and {c,} be three non-negative real number sequences
satisfying the difference inequality

(2.1) Gn41 S (1 —tn)an+bn+cn.
Suppose
{ta} C10,1, D ta=00, by=tno(1), and Y e, < oo.
n=1 n=1
Then
lim a, =0.
n—>Cco

Lemma 2. [24] Let {an},{b.} ond {c,} be three non-negative real number se-

quences satisfying the difference inequality (2.1). Suppose {¢,} C [0, 1], 1 ln =
0, by =O0(tn), and 3.7 ¢, < 00. Then {an} is bounded.

The following lemma plays an important role in the proof of the main theorem.

Lemma 3. [24] Let {an}, {bn}, {tn}, {6n} and {p,} be non-negative real number
sequences satisfying the following conditions (a) — (g) :

& (2799 < l“tn an+tn5n+ Ty
(2 (10,20 p
where fi and fa are non-negative increasing functions on [0,00), and f2(0) > 0,
(b) {t.} C[0,1] and ﬁ_}m tn, =0,
(c) lim 6, =0,
T3 OO0

(d) Z On < 00,
n=1

(e) {an} is bounded and liminf a, =0,
20
(f) nlj_)r{.lo(a'n-f-l - an) = O)
(8) nhﬁ\rgo(an —by,) = 0.
Then
lim a, =0.

n—oQ
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Lemma 4. ( ¢f. [5] ) Let X be a Banach space, and let T be ¢-strongly pseudo-
contractive. For any z,y € X andr > 0,

lz—yll <llz—y+r{-T—~(z,9)z - I ~-T -~z y))y},

where

B (= — yl|)
v(z,9) = 7 iz —yll) +llz -yl

The following lemma can be proved using Lemma 4, similar to the method used
for a pseudocontraction ( cf. [10], [24] ).

Lemma 5. Let T' be ¢-strongly pseudoconiractive on X, and let y* be defined by
Yy =tTv+ (1 -1ty +u,
 fory,u,v € X, and t € [0,1]. Suppose p € F(T) # 0. Then

ot —pll < =T gy g EE Ty
oy - o+ R
where
: oy ~ pl)

V=P E T ) + e - pl

3. STABILITY AND STRONG CONVERGENCE THEOREM

We shall show & stability result and a strong convergence theorem.

Theorem 1. [26] Let X be an arbitrary Banach space and let T be a uniformly con-
tinwous and ¢-strongly pseudocontractive selfmapping on X with @ bounded range.
For a sequence {vn} in X, let an iterative scheme f(T, vy, ) with o coefficient
sequence {t,} in [0,1] and an error term sequence {u,} in X be defined by (1.1).
Suppose that {t,,} and {u,} sotisfy the following conditions .

n—od

(1) S llunll <00, () D ta =00, (j) lim tn=0.
n=1 n=1
Then the following statements hold.
(D) If {yn} in X satisfies

Hynﬁvnnﬁo (n—>oo) and ZHyn-i-l —f(T;Umyn)H < 00,

n==1

then yn — p € F(T).
(II) If w,, — p € F(T), then

Hwn—H - f(Tavnawn)H — 0 (’fb - OO)

11



12

APPROXIMATION OF A FIXED POINT
Proof. (I) Suppose {y,} in X satisfies

[9n = Val] = 0 (n = 00) and Y {lgn+1 =~ F(L\vn, )l < 00.
n=1
Let En be “yn-i—l - f(T, 'U'n»yn)i[ forn 3 1> then
Ynt1 — Il € en + [[tnTvn + (1 —=tn)yn + un -7l
< &n + tn [Ton = pll + (1= ta) llyn — 2l + llunll.
Since T has a bounded range, there exists M such that sup,, ||Tv, — pl| = M < oco.
Thus the above inequality implies
llyni1 = 2l < (1 —ta) llyn — pll + taM + (€n + [funl])-

Setting an = |{yn — 2ll, b = tnM, and ¢, = e, + |junll, Lemma 2 gives the bound-
edness of {y,}. Let My denote max{M, sup, |ly» —pli}. Let 51 = F(L, U, Yn)-
From Lemma 5, putting v» = ¥(y511p), we have an estimate of “y;_H —p” as

follows:

ti@ 7’711)
lyn — plf + NN g — Tunl|
146,22 ~v.)

(1+tn)

. 14 tn(l — )
“?Jnﬂ —PH < TUrhy

[} -

tn "
t gy [Toms ~Tonli 4

Using the inequality

M <1~ tayn + (tn)27

(1+1,)
we have
lynsr —pll < ”ZU;YH *p” +En

< (1 = tn¥n) Yn — Pl + tn “Ty:z+1 - T”n“ + (€n + 3luall)
(3.1) Fip (o llyn — 2l + 2tn(llyn — pll + [ Tvn — plD)

< (1 = ta¥n) lyn — Il + (6n + 3lunll)

ttn (| Tyt — Ton| + 5ta M) -

Since

HZIZH - ’Un” <t 1 T0n — Yl + g = vall +{lunll
from our assumptions we have
Hy;_H — ’Un“ —0 (n— 00).
The uniform continuity of T' implies
HT'g;‘;H —Tv,|| =0 (n— ).

Suppose liminf,e7n = 7 > 0. For any € € (0,3) and sufficiently large n,
v — £ < 7¥,. Then the inequality (3.1) implies

lynss = pll < (0= taly = ) llgn — il + (en + 3lunll)
+tn (| Tyigr — Tonl + 5t M) .
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By Lemma 1 we obtain lim, 0 |[yn — pll = 0.

On the other hand, if liminf v, = v = 0, then liminf ||y}, — p|| = 0. Setting
b = |yies — P> Au(t) = 6(t), f2(t) = 1+(t) +t, we can apply Lemma 3 to (3.1)
and we have lim, o ||yn — || = 0 (cf. [24]). This means that (I) hold.

(II) Let w,, —+ p, then

Hwnsr — F(T, Un, Wil = |[Wnas — 8T 0n — (1= tn)wn — unll
< Hwpgr = pll + tn [ Tvn = pll + (1 = ) llwn — pll + lnl]

=0 (n-— ),

by the conditions of the theorem. From this (II) follows. O

Let T%,Th, ..., Tk be k selfmappings of an arbitrary Banach space X. We con-
sider an iterative scheme f(T%,..,Tk,-) = f(7,) defined by (1.2) for a family of
selfmappings 7 = {74, ..., Ty} with k coeflicient sequences {tgf }} in {0, 1] and k error
term sequences {ugﬁ} in X for j = 1,2,...,k. Suppose that a sequence {z,} is
defined by zny1 = f(r,2,) for z; € X. Letting F/(7) denote a set of common fixed
points of 7, we suppose that ¢, = p € F(r) # (. Let {y.} be an arbitrary sequence
in X. If

Jim Jlynn = f(mya)ll =0 implies yn = p,
then an iterative scheme f(7,-) is said to be T-stable or stable with respect to 7. We
say that an iterative scheme f(7,-) is almost 7-stable or almost stable with respect
to 7 if

co
Z llynt1 — f(run)ll < oo implies  yn = p.
n=1

By applying Theorem 1 under assumption that 73 is ¢-strongly pseudocontrac-
tive, we obtain Theorem 2 which proves strong convergence and almost stability
of the iterative scheme f(7,-) defined by (1.2). This theorem generalizes Stevié’s
result in [24]. Its proof is obtained from Theorem 1 by putting

Up = t(z)Tgmg‘)) + (1 - N, + ug),

k3
because Lemma 2 gives the boundedness of {z,} and we have lim, e o — 2ol =
0.

Theorem 2. [26] Let X be an arbitrary Banach space and let Ty, ..., Ty be self-
mappings of X (k > 2). Let f(r,-) be the iterative scheme defined by (1.2) for
7= {T1,Ts,....; Tx}. Suppose Ty is a uniformly continuous ¢ -strong pseudocontrac-
tion with a bounded range, and that Ty has a bounded range. Suppose F(r) # ¢
and that the following conditions hold :
U) Zzo:l u'(nl) < 0,
m)  limae ||uf? ] =0,

(
(n) T th) =oo,
(@) limnsets =0, forj=1,2.

u®

13
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Then the following statements hold.

(I) The sequence {z,} defined by (1.2) converges strongly to p € F(7).
(II) The iterative scheme f(r,-) is almost T-stable.

(III)  For any sequence {y»} satisfying that yn — p € F(1),

Jim {lynts - flryn)ll = 0.

4. CONVERGENCE RATE ESTIMATES

Let ® be the set of all strictly increasing functions f : [0,00) — [0,00) with
£(0) = 0. Let C be a bounded closed and convex subset of an arbitrary Banach
space X and set 6(C) = M, where §(C) is the diameter of C. Consider ¢ € & such
that the function ¢ defined by

) .
. 5 Zf t e (O,M},
W’L){ 0 if t=0

is increasing and 0 < ¢(t) < 1for all t € [0, M]. Such a ¢ is said to be a P-function
on [0, M]. For example,

2
i\ t
t) = | = d 1) =
9(t) (M) and (1) 1+log M —logt
are P-functions on [0, M]. We can prove the following lemma by using Kato’s lemma
(see [5]).

Lemma 6. [12] Let C be a convex subset of an arbitrary Banach space X, and let
T : C — C be a ¢-strong pseudocontraction with ¢ € & . Then for any z,y € C
with = # vy, the following inequality holds:

e —y+t{I-T =y Dz — (I =T =y Dy}l > llz =yl (£>0),

where 1y = “ESHE = b(lle - ).

Using Lemma 6, we obtain the following important lemma.

Lemma 7. [12] Let C be a bounded closed and conves subset of an arbitrary Banach
space X with 6(C) = M, and let ¢ be @ P-function on [0,M]. Let T : C — C be
a ¢—strongly pseudocontractive and Lipschitz continuous mapping with a Lipschitz
constant L. Then for Mann iteration {z,} defined by (1.1), we obtain the following
estimate: for a unique fized point p € F(T), :

[#nt1 =PIl < (L= utn + Lt2) [lon —pl (0 20),
where v, = Y(||znr1 — pl]) and L =3 + 3L + L2

Let N be the set of all natural numbers, and let Np be N U {0}. For 8 € (G,1)
and K € N, let C(B%, L) = (1- Z9(MPB¥)?). It is trivial that 0 < cpx, L)< 1.
Since 1(t) is increasing, we also have that C(8%, L)< C(BE+1 L), Define

mg =min{m e N: C(8%,L)y" <8},
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and then define n: N — N by n(0) = 0 and n(K) = n(K — 1) +mg, ie.,
K K
n(K) = n(0) + ij = ij.
j:l j:l

We have 0 = n(0) < n(1) < --- < n(K) < -+ So, for each n € No we can find
K € Ny with n(K —1) <n < n(K). Then, define ¢, € (0,1) by
1
tn = = M K .
) L"ﬁ( B
Now, we can consider the Mann iteration {z,} C C with this coeflicient sequence
{t,} as follows :

Zg € C,
Tnp1 = tn T2y + (1 = tn)Zn.

For such a sequence {n(K)}xen, and the Mann iteration {z,} C C, we obtain the
following result.

Theorem 3. [12] Let 8 € (0,1) be fived. Then for the {(n(K)}r>o and {x.} defined
above, we obtain the following estimate:

lz, —pll < MB%,  (nzn(K))

Next for a given 3 and each P-function ¢, we give the convergence rate estimates
for the Mann iteration involving ¢—strong pseudocontraction T.

Theorem 4. [12]Under the assumption of the previous theorem, we obtain the
following estimate of n{K):
K
n(K) < K(1+1og ) — 8E(10gf) S ——r=3, (K 21),
2 G

Moreover, for § = %, we have the following estimates: (1) if p(t) = (ﬁ)2 Ji.e., W(t) =

=, then we have

n(K)§K(1—10g2)+%’—(10g2)M24K, (K >1).

(2) 'Lf ¢(t) = m-};, z'.e., ?/)(t) = m, then we have
n(K) < (1 + (81 — 1)(log 2))K + 8L(log2)” K(K + 1)

+ %E(log KK + 1) (2K + 1), (K2

One can see that the Mann iteration which involves a ¢-strongly pseudocontrac-
tion T with ¢(t) = m converges strongly to p € F(T) faster than one

with ¢(t) = ().
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