<table>
<thead>
<tr>
<th>Title</th>
<th>Functions related to some geometrical properties of Banach Spaces (Banach and function spaces and their application)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>高橋 泰嗣; 加藤 幹雄</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2005), 1455: 65-69</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47825</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>ÊêÎÍÎÍ</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Functions related to some geometrical properties of Banach Spaces

Abstract. We introduce some functions $\varphi_X(\tau)$ as a generalization (or refinement) of the Schäffer constant $S(X)$ of Banach spaces X, and investigate geometrical properties of Banach spaces such as uniform non-squareness and uniform convexity in terms of those functions. The normal structure coefficient $N(X)$ is also estimated by the function $\varphi_X(\tau)$.

1. Definitions

(i) X is called uniformly non-square in the sense of James when there exists $\delta > 0$ such that

$$\min(||x+y||, ||x-y||) \leq 2(1-\delta) \text{ if } ||x|| = ||y|| = 1.$$

(ii) The James constant is defined by

$$J(X) := \sup \{ \min(||x+y||, ||x-y||) : ||x|| = ||y|| = 1 \}.$$

(iii) X is called uniformly non-square in the sense of Schäffer when there exists $\lambda > 1$ such that

$$\max(||x+y||, ||x-y||) \geq \lambda \text{ if } ||x|| = ||y|| = 1.$$
(iv) The Schäffer constant is defined by
\[
S(X) := \inf \{ \max(\|x + y\|, \|x - y\|) : \|x\| = \|y\| = 1 \}.
\]

(v) The von Neumann-Jordan (NJ-) constant of a Banach space X is the smallest constant C for which
\[
\frac{1}{C} \leq \frac{\|x + y\|^2 + \|x - y\|^2}{2(\|x\|^2 + \|y\|^2)} \leq C \quad \text{for all } (x, y) \neq (0, 0)
\]
holds; we denote it by $C_{NJ}(X)$.

(vi) The modulus of convexity of X is defined by
\[
\delta_X(\epsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{2} : \|x\| = \|y\| = 1, \|x - y\| = \epsilon \right\} \quad (0 \leq \epsilon \leq 2).
\]

X is called uniformly convex if $\delta_X(\epsilon) > 0$ for all $0 < \epsilon < 2$, and q-uniformly convex $(2 \leq q < \infty)$ if there is $C > 0$ such that $\delta_X(\epsilon) \geq C\epsilon^q$ for all $0 < \epsilon \leq 2$.

It is obvious that X is uniformly non-square in the sense of James, resp., Schäffer if and only if $J(X) < 2$, resp., $S(X) > 1$. Since $J(X)S(X) = 2$ for any Banach space X (cf.[3,12]), these two notions are equivalent. It is known that X is uniformly non-square if and only if $C_{NJ}(X) < 2$ (cf.[16]). Let us recall that X is super-reflexive if any Banach space finitely representable in X is reflexive. It is well-known that if X is uniformly convex, or more generally, uniformly non-square, then X is reflexive. It is easy to see that if X is uniformly non-square, then any Banach space finitely representable in X is uniformly non-square. Thus, any uniformly non-square Banach space is super-reflexive (cf.[9]). Enflo [5] showed that X is super-reflexive if and only if X admits an equivalent uniformly convex norm. Pisier [13] also showed that if X is super-reflexive, then X admits an equivalent q-uniformly convex norm for some $2 \leq q < \infty$.

2. Definitions (i) A Banach space X is said to have normal structure if $r(K) < \text{diam}(K)$ for every non-singleton closed bounded convex subset K of X, where $\text{diam}(K) := \sup\{\|x - y\| : x, y \in K\}$ and $r(K) := \inf\{\sup\{\|x - y\| : y \in K\} : x \in K\}$.

(ii) The normal structure coefficient of X (Bynum [2]) is the number:
\[
N(X) = \inf\{\text{diam}(K)/r(K) : K \subset X \text{ bounded and convex, diam}(K) > 0\}.
\]

Obviously, $1 \leq N(X) \leq 2$. The space X is said to have uniform normal structure if $N(X) > 1$. It is well-known that if X has uniform normal structure, then X has fixed point property (cf.[8]). Gao and Lau [7] showed that if $J(X) < 3/2$, then X has uniform normal structure. Prus [14] even estimated the normal structure coefficient $N(X)$ by $J(X)$. Kato, Maligranda and Takahashi [12] also estimated the normal
structure coefficient $N(X)$ by $C_{NJ}(X)$, and showed that if $C_{NJ}(X) < 5/4$, then X as well as its dual X' have the uniform normal structure.

3. Definitions (Schäffer type constants): We define for $\tau \geq 0$

$$S_{X,p}(\tau) = \begin{cases} \inf \left\{ \left(\frac{\|x + \tau y\|^p + \|x - \tau y\|^p}{2} \right)^{1/p} : \|x\| = \|y\| = 1 \right\} & \text{if } 1 < p < \infty, \\
\inf \left\{ \max(\|x + \tau y\|, \|x - \tau y\|) : \|x\| = \|y\| = 1 \right\} & \text{if } p = \infty. \end{cases}$$

Let X be a Banach space (of dimension at least 2). Let φ be a strictly convex and strictly increasing function defined on $[0, \infty)$ with values in $[0, \infty)$ (such a function is continuous on $[0, \infty)$). For simplicity, we assume that $\varphi(0) = 0$, $\varphi(1) = 1$.

4. Definition (Generalized Schäffer type constant): For $\tau \geq 0$ let

$$\varphi_X(\tau) = \inf \left\{ \frac{\varphi(\|x + \tau y\|) + \varphi(\|x - \tau y\|)}{2} : \|x\| = \|y\| = 1 \right\}$$

5. Remark If $\varphi(t) = t^p$, $1 < p < \infty$, then $\varphi^{-1}(\varphi_X(\tau)) = S_{X,p}(\tau)$, where $S_{X,p}(\tau)$ is the Schäffer type constant.

6. Proposition $\varphi_X(\tau)$ is continuous and non-decreasing for $0 \leq \tau < \infty$.

7. Theorem X is uniformly non-square if and only if $\varphi_X(\tau) > 1$ for some $0 < \tau < 1$.

8. Corollary Let $1 < p \leq \infty$. The following are equivalent.

1. X is uniformly non-square.
2. $S_{X,p}(1) > 1$.
3. $S_{X,p}(\tau) > 1$ (0 < $\exists \tau < 1$).
4. $S_{X,p}(\tau) > \tau$ (1 < $\exists \tau < \infty$).

9. Theorem X is uniformly convex if and only if $\varphi_X(\tau) > 1$ for any $0 < \tau < 1$.

10. Corollary Let $1 < p \leq \infty$. The following are equivalent.

1. X is uniformly convex.
2. $S_{X,p}(\tau) > 1$ (0 < $\forall \tau < 1$).
3. $S_{X,p}(\tau) > \tau$ (1 < $\forall \tau < \infty$).
11. **Theorem** \(N(X) \geq \varphi^{-1}(\varphi_X(1/2)) \). In particular, if \(\varphi_X(1/2) > 1 \), then \(X \) has uniform normal structure.

12. **Corollary** Let \(1 < p \leq \infty \). Then

\[
N(X) \geq S_{X,p}(1/2).
\]

It is easy to see that if \(C_{NJ}(X) < 5/4 \), then \(S_{X,2}(1/2) \geq 1 \). Since \(C_{NJ}(X) = C_{NJ}(X') \), we have

13. **Corollary** If \(C_{NJ}(X) < 5/4 \), then \(X \) as well as \(X' \) have the uniform normal structure.

14. **Theorem** Let \(1 < p \leq \infty \) and \(2 \leq q < \infty \). The following are equivalent.
 (1) \(X \) is \(q \)-uniformly convex.
 (2) There is \(C > 0 \) such that

\[
S_{X,p}(\tau) \geq (1+C\tau^q)^{1/q} \quad \text{for all } \tau \geq 0.
\]

15. **Theorem** Let \(2 \leq p < \infty \). Then the following are equivalent.
 (1) \(X \) is isometric to a Hilbert space.
 (2) \(S_{X,p}(\tau) = (1+\tau^2)^{1/2} \) for all \(\tau \geq 0 \).

16. **Remark** If \(X \) is a Hilbert space, then for all \(\tau \geq 0 \)

\[
S_{X,p}(\tau) = \left(\frac{|1+\tau|^{r} + |1-\tau|^{r}}{2} \right)^{1/r} \quad \text{if } 1 < p < 2.
\]

Hence, the above theorem is false if \(1 < p < 2 \). Finally we calculate \(S_{X,p}(\tau) \) in \(L_{r} \)-spaces.

17. **Theorem** Let \(X \) be an \(L_{r} \)-space with \(\dim X \geq 2 \).
 (1) Let \(1 < r \leq 2 \) and \(1/r + 1/r' = 1 \). Then for all \(\tau \geq 0 \)

\[
S_{X,p}(\tau) = \left(\frac{|1+\tau|^{r} + |1-\tau|^{r}}{2} \right)^{1/r} \quad \text{if } r \leq p \leq \infty.
\]

 (2) Let \(2 \leq r < \infty \) and \(1/r + 1/r' = 1 \). Then for all \(\tau \geq 0 \)

\[
S_{X,p}(\tau) = (1+\tau^r)^{1/r} \quad \text{if } r' \leq p \leq \infty.
\]
参考文献