<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>Necessity Measure Optimization in Linear Programming with Interactive Fuzzy Numbers (Mathematical Theory and Applications of Uncertainty Sciences and Decision Making)</td>
</tr>
<tr>
<td>著者</td>
<td>Inuiguchi, Masahiro</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 1457: 123-130</td>
</tr>
<tr>
<td>発行日</td>
<td>2005-11</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/47866</td>
</tr>
<tr>
<td>右</td>
<td>国立</td>
</tr>
<tr>
<td>テキストタイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版社</td>
<td>publisher Kyoto University</td>
</tr>
</tbody>
</table>
Necessity Measure Optimization in Linear Programming Problems with Interactive Fuzzy Numbers

大阪大学大学院基礎工学研究科 乾口雅弘 (Masahiro Inuiguchi)
Graduate School of Engineering Science, Osaka University

Abstract

In this paper, we treat fuzzy linear programming problems with uncertain parameters whose ranges are specified as fuzzy polytopes. The problem is formulated as a necessity measure optimization model. It is shown that the problem can be reduced to a semi-infinite programming problem and solved by a combination of a bisection method and a relaxation procedure. An algorithm in which the bisection method and the relaxation procedure converge simultaneously is proposed. A simple numerical example is given to illustrate the solution procedure.

Key Words: Possibilistic linear programming, necessity measure, interactive fuzzy numbers, semi-infinite programming, relaxation procedure, bisection method

1 Introduction

Fuzzy programming approach [6,12,15] is useful and efficient to treat a programming problem under uncertainty. While classical and stochastic programming approach may require a lot of cost to obtain the exact coefficient value or distribution, fuzzy programming approach does not (see Rommelfanger [13]). From this fact, fuzzy programming approach will be very advantageous when the coefficients are not known exactly but vaguely by human expertise.

Fuzzy programming has been developed under an implicit assumption that all uncertain coefficients are non-interactive one another. This assumption makes the reduced problem very tractable. The tractability can be seen as one of advantages of fuzzy programming approaches. However, it is observed that in a simple problem, such as a portfolio selection problem, solutions of models are often intuitively unacceptable because of the implicit assumption (see Inuiguchi and Tanino [9]). This implies that the non-interaction assumption is not sufficient to model the real world problem. In this sense, we should deal with fuzzy programming problems with interactive uncertain coefficients. However, unfortunately, the reduced problem usually becomes very difficult. Therefore, treatments of interactive uncertain coefficient without loss of tractability of the reduced problem are requested in the field of fuzzy programming. Several attempts have been done.

Rommelfanger and Kresztfalvi [14] proposed to use Yager's parameterized t-norm in order to control the spreads of fuzzy linear function values. The interaction among uncertain parameters is treated indirectly in these approaches. The parameter of Yager's t-norm should be selected for each objective function and for each constraint and the reduced problem is not always a linear programming problem. However, the selection of the parameter of Yager's t-norm will not be very easy.

Inuiguchi and Sakawa [8] treated a fuzzy linear programming with a quadratic membership function. Since quadratic membership function resembles to a multivariate normal distribution, they succeeded to show the equivalence between special models of stochastic linear programming problem and fuzzy linear programming problem. In this approach, though the fractile optimization problem [5] using a necessity measure can be reduced to a convex programming problem, the reduced problem should be solved by an iterative use of quadratic programming techniques.

Inuiguchi and Tanino [10] proposed scenario decomposed fuzzy numbers. In their approach, the interaction between uncertain parameters are expressed by fuzzy if-then rules. They showed that a fuzzy linear programming problem with scenario decomposed fuzzy numbers can be reduced to a linear programming problem.

Furthermore, Inuiguchi, Ramk and Tanino [7] proposed oblique fuzzy vectors. A non-singular matrix shows the interaction among uncertain parameters in an oblique fuzzy vector. It is shown that
Problem Statement

In this paper, we treat the following linear programming problem with uncertain parameters:

$$\begin{align*}
\text{minimize} & \quad c^T x, \\
\text{subject to} & \quad a_i^T x \leq b_i, \quad i = 1, 2, \ldots, m,
\end{align*}$$

(1)

where \(c = (c_1, c_2, \ldots, c_n)^T \), \(a_i = (a_{i1}, a_{i2}, \ldots, a_{in})^T \), \(i = 1, 2, \ldots, m \) and \(b = (b_1, b_2, \ldots, b_m)^T \) are uncertain parameters. Let \(q^T = (a_1^T, a_2^T, \ldots, a_m^T, b^T, c^T) \). We assume that some linear fractional function values \((w_k^T q + w_k d)/(d_k^T q + d_k) \), \(k = 1, 2, \ldots, p \) are vaguely known, where \(w_k, d_k \in \mathbb{R}^{(m+n)} \), \(k = 1, 2, \ldots, p \) are constant vectors, and \(w_k d_k \neq 0 \). Namely, we assume that the fuzzy boundary of linear fractional function values are known. Based on the linear fractional function value information we may construct an \((m+n+p+n)\)-dimensional fuzzy set \(Q \subseteq \mathbb{R}^{(m+n+p+n)} \) with the following membership function:

$$\mu_Q(q) = \min_{k=1,2,\ldots,p} L_k \left(\frac{w_k^T q + w_k d_k}{d_k^T q + d_k \alpha_k} - \hat{q}_k \right),$$

(2)

where \(L_k : \mathbb{R} \rightarrow [0,1], k = 1, 2, \ldots, p \) are reference functions, i.e., upper semi-continuous non-increasing functions such that \(L_k(0) = 1 \) and \(\lim_{r \rightarrow +\infty} L_k(r) = 0 \). \(\hat{q}_k \) shows the most plausible value for the \(k \)-th
linear fractional function value \((\overline{w}_{k} q + w_{0k})/(d_{k} q + d_{0k})\). \(\alpha_{k}\) shows the spread, i.e., to what extent the linear fractional function value \((\overline{w}_{k} q + w_{0k})/(d_{k} q + d_{0k})\) possibly exceeds \(\overline{q}_{k}\). When we know the maximum possible shortage of \((\overline{w}_{k} q + w_{0k})/(d_{k} q + d_{0k})\) from \(\overline{q}_{k}\), by multiplying \(w_{k}, w_{0k}\) and \(\overline{q}_{k}\) by \((-1)\), we can treat it as we know the maximum possible excess of \(-(\overline{w}_{k} q - w_{0k})/(d_{k} q + d_{0k})\) from \(-\overline{q}_{k}\). The fuzzy set \(Q\) is assumed to be bounded, i.e., \(h\)-level sets \([Q]_{h} = \{q | \mu_{Q}(q) \geq h\}\) for all \(h \in (0, 1]\) are bounded. Moreover, without loss of generality, we assume that \(d_{k} q + d_{0k} > 0\) for all possible \(q\). Let \(L_{k}(h) = \sup\{r | L_{k}(r) \geq h\}\). Then, because of (2), we have

\[
[Q]_{h} = \{q | w_{k} q + w_{0k} \leq (\overline{q}_{k} + \alpha_{k} L_{k}^{*}(h))(d_{k} q + d_{0k}), k = 1, \ldots, p\} \leq \{q | wd_{k}^{*}(h)q \leq -wd_{0k}^{*}(h), k = 1, \ldots, p\}. \tag{3}
\]

Here, \(wd_{k}^{*}(h) = w_{k} - (\overline{q}_{k} + \alpha_{k} L_{k}^{*}(h))d_{k}\) and \(wd_{0k}^{*}(h) = w_{0k} - (\overline{q}_{k} + \alpha_{k} L_{k}^{*}(h))d_{0k}\). Since \([Q]_{h} \subset \mathbb{R}^{(mn+m+n)}\) is bounded, from (3), we know that \(p > (mn + m + n)\) and that \([Q]_{h}\) is a polytope for all \(h \in (0, 1]\). In what follows, we may use the closure of a strong \(h\)-level set \(\text{cl}(Q)_{h} = \text{cl}\{q | \mu_{Q}(q) > h\}\). In two-dimensional case, such a fuzzy set \(Q\) is exemplified in Figure 1.

Let \(L_{h}(h) = \sup\{r | L_{k}(r) > h\}\). Then, in the same way as (3), we have

\[
\text{cl}(Q)_{h} = \{q | \text{wd}_{h}^{*}(h)q \leq -\text{wd}_{0k}^{*}(h), k = 1, \ldots, p\}, \tag{4}
\]

where \(\text{wd}_{h}^{*}(h) = w_{h} - (\overline{q}_{h} + \alpha_{h} L_{h}^{*}(h))d_{h}\) and \(\text{wd}_{0k}^{*}(h) = w_{0k} - (\overline{q}_{h} + \alpha_{h} L_{h}^{*}(h))d_{0k}\). As shown in (3), \(h\)-level sets of \(Q\) are polytopes. Thus, we may say that \(Q\) is a fuzzy polytope.

Notation \(f \leq_{i} g\) is a fuzzy version of \(f \leq g\) and stands for \(f\) is approximately smaller than or equal to \(g\). The subscript \(i\) implies that the elasticity of the fuzzy inequality may depend on the constraint. To treat such a fuzzy inequality, \(\leq_{i}\) is regarded as a fuzzy binary relation. In this paper, we define \(\leq_{i}\) by

\[
\mu_{i}(f, g) = \nu_{i}(f - g), \tag{5}
\]

where \(\nu_{i} : \mathbb{R} \rightarrow [0, 1]\) is an upper semi-continuous non-increasing function such that \(\nu_{i}(r) = 1\) for all \(r \leq 0\) and \(\lim_{r \rightarrow +\infty} \nu_{i}(r) = 0\) (see Inuiguchi, et. al [5]). An \(h\)-level set of \(\leq_{i}\) is obtained as

\[
[\leq_{i}]_{h} = \{(f, g) | f - g \leq \nu_{i}^{*}(h)\}, \tag{6}
\]

where \(\nu_{i}^{*}(h) = \sup\{r | \nu_{i}(r) \geq h\}\). Especially, when \(\nu_{i}\) is defined by

\[
\nu_{i}(r) = \begin{cases} 1, & \text{if } r \leq 0, \\ 0, & \text{otherwise}, \end{cases} \tag{7}
\]

\(\leq_{i}\) is a conventional inequality relation \(\leq\).

When \(L_{h}, k = 1, \ldots, p\) are defined by

\[
L_{h}(r) = \begin{cases} 1, & \text{if } r \leq 0, \\ 0, & \text{otherwise}, \end{cases} \tag{8}
\]

\(Q\) is a conventional polytope. When \(d_{k} = 0, w_{k} = e_{k}\) (a unit vector whose \(k\)-th component is one), \(d_{0k} = 1\) and \(w_{0k} = 0\), \(Q\) is a vector of non-interactive fuzzy numbers. When \(L_{h}, k = 1, \ldots, p\) are defined by (8), \(d_{k} = 0, w_{k} = e_{k}\) (a unit vector whose \(k\)-th component is one), \(d_{0k} = 1\) and \(w_{0k} = 0\), \(Q\) is a vector of intervals. Thus, Problem (1) includes the conventional fuzzy linear programming problems and interval linear programming problems.

3 Formulation and reduction

In order to treat Problem (1), we should introduce some interpretation of the problem. Inuiguchi and Tanino [11] applied a fractile optimization model using a necessity to Problem (1) and reduced it to a semi-infinite linear programming problem. In this paper, we apply a necessity measure optimization model. The readers who are familiar with possibility theory [3] may have a question why a possibility measure is not treated but only a necessity measure. The reason is mainly a technical reason. Namely, the model with a possibility measure is reduced to a non-convex programming problem which is relatively hard to be solved. Moreover, the application of a possibility measure provides an uncertainty
prone model so that the solution is risk-seeking. Because of this, solitary use of a possibility measure is not suitable for the robust planning, safety design, and so on. Nevertheless, the introduction of a possibility measure to our model is useful to express the decision maker’s attitude and preference under uncertainty. Handling of a possibility measure in our problem will be one of the future topics.

A necessity measure of a fuzzy set $B \subseteq \Omega$ under a fuzzy set $A \subseteq \Omega$, i.e., $N_A(B)$ is defined by (see Dubois and Prade [2])

$$N_A(B) = \inf \max (1 - \mu_A(r), \mu_B(r)),$$

where μ_A and μ_B are membership functions of fuzzy sets A and B. Ω is a universal set. $N_A(B)$ evaluates to what extent the uncertain variable surely takes a value in a fuzzy set B under the information that the uncertain variable value is in a fuzzy set A. For the necessity measure, we have (see, Inuiiguchi and Ichihashi [4])

$$N_A(B) \geq h \iff (A)_{1-h} \subseteq [B]_h.$$

When Ω is a metric space and B has an upper semi-continuous membership function μ_B, $[B]_h$, $h \in (0, 1]$ are closed sets. Therefore, (10) is equivalent to

$$N_A(B) \geq h \iff \text{cl}(A)_{1-h} \subseteq [B]_h.$$

Let us apply the necessity measure optimization model [5] to Problem (1). Then Problem (1) is formulated as

$$\begin{align*}
\text{maximize} & \quad \text{Nes}(c^T x \leq \bar{z}), \\
\text{subject to} & \quad \text{Nes}(a_i^T x \leq b_i) \geq h^i, \ i = 1, 2, \ldots, m,
\end{align*}$$

or equivalently,

$$\begin{align*}
\text{maximize} & \quad h, \\
\text{subject to} & \quad \text{Nes}(c^T x \leq \bar{z}) \geq h, \\
& \quad \text{Nes}(a_i^T x \leq b_i) \geq h^i, \ i = 1, 2, \ldots, m,
\end{align*}$$

where \bar{z} is a target value specified by the decision maker and \leq_0 is a fuzzy inequality relation defined by ν_0 in the same way as (5). Thus, "$\leq_0 \bar{z}$" corresponds to a fuzzy goal "approximately smaller than \bar{z}".

$h^i \in (0, 1]$, $i = 1, 2, \ldots, m$ are constants specified by the decision maker. 'Nes(C)' shows the necessity degree of the event that the condition C is satisfied. Since possible range of all uncertain parameters a_i, $i = 1, 2, \ldots, m$, b and c are jointly given by a fuzzy set Q. To evaluate all necessity degrees in Problem (12), we should consider events as a set or a fuzzy set of $\mathbb{R}^{(mn+m+n)}$. We define

$$\begin{align*}
\mu_{E_0(x)}(q) &= \sup \left\{ \mu_{\leq_0}(c^T x, z_0) \mid q^T = (q_{mm+m}, c^T) \right\}, \\
\mu_{E_i(x)}(q) &= \sup \left\{ \mu_{\leq_i}(a_i^T x, b_i) \mid q^T = (q_{n(i+1)}, a_i^T, q_{m(i+1)+i}, b_i, q_{m+i+n}) \right\}, \quad i = 1, 2, \ldots, m,
\end{align*}$$

where q_* is a vector of \mathbb{R}^* and $\mu_{E_i(x)}$ is a membership function of $E_i(x)$. Now, we can define

$$\begin{align*}
\text{Nes}(c^T x \leq z) &= N_Q(E_0(x)), \\
\text{Nes}(a_i^T x \leq b_i) &= N_Q(E_i(x)), \quad i = 1, 2, \ldots, m.
\end{align*}$$

Applying (11) to Problem (13) with the substitution of (16) and (17), we have

$$\begin{align*}
\text{maximize} & \quad h, \\
\text{subject to} & \quad \text{cl}(Q)_{1-h} \subseteq [E_0(x)]_{h^0}, \\
& \quad \text{cl}(Q)_{1-h} \subseteq [E_i(x)]_{h^i}, \ i = 1, 2, \ldots, m.
\end{align*}$$

For the sake of convenience, we define $q(a_i, b_i) = (q_{n(i+1)}, a_i^T, q_{m(i+1)+i}, b_i, q_{m+i+n})$. From (14), (15) and (6), we have

$$\begin{align*}
\text{Nes}(c^T x \leq \bar{z}) &= N_Q(E_0(x))), \\
\text{Nes}(a_i^T x \leq b_i) &= N_Q(E_i(x)), \quad i = 1, 2, \ldots, m.
\end{align*}$$

Applying (11) to Problem (13) with the substitution of (16) and (17), we have

$$\begin{align*}
\text{maximize} & \quad h, \\
\text{subject to} & \quad \text{cl}(Q)_{1-h} \subseteq [E_0(x)]_{h^0}, \\
& \quad \text{cl}(Q)_{1-h} \subseteq [E_i(x)]_{h^i}, \ i = 1, 2, \ldots, m.
\end{align*}$$

For the sake of convenience, we define $q(a_i, b_i) = (q_{n(i+1)}, a_i^T, q_{m(i+1)+i}, b_i, q_{m+i+n})$. From (14), (15) and (6), we have

$$\begin{align*}
\text{Nes}(c^T x \leq \bar{z}) &= N_Q(E_0(x))), \\
\text{Nes}(a_i^T x \leq b_i) &= N_Q(E_i(x)), \quad i = 1, 2, \ldots, m.
\end{align*}$$
Then, by (14), (19) and (20), Problem (18) is reduced to
\begin{align}
\text{maximize} & \quad h, \\
\text{subject to} & \quad c^T x - z \leq \nu^*_I(h), \forall c : (q_{mn+m}^T, c^T)^T \in \text{cl}(Q)_{1-h}, \\
& \quad a_i^T x - b_i \leq \nu^*_I(h^i), \forall (a_i^T, b_i) : q(a_i, b_i) \in \text{cl}(Q)_{1-h^i}, i = 1, 2, \ldots, m, \\
& \quad h \in [0, 1].
\end{align}

(21)

This problem is a semi-infinite programming problem [1]. Since h is not a constant, Problem (21) does not possess the linearity. When h is fixed, the problem becomes a system of semi-infinite linear inequalities. The existence of a solution satisfying a system of semi-infinite linear inequalities can be examined by a relaxation procedure for solving a semi-infinite linear programming problem. From these facts, we can solve this problem by a bisection method together with a relaxation procedure. However, if we apply the relaxation procedure at each step of a bisection method, the combined solution algorithm will require a lot of computational effort.

4 A Solution Algorithm

We propose a solution algorithm such that the relaxation procedure and the bisection method converge simultaneously. To this end, we use a vector function $c[I] : [0, 1] \rightarrow \mathbb{R}^n$ whose function value is defined by c-value of an optimal solution to the following linear programming problem:
\begin{align}
\text{minimize} & \quad \sum_{k \in I} \delta_k, \\
\text{subject to} & \quad wd^\#_k (1-h)^T (q_{mn+m}^T, c^T)^T + \delta_k = -wd^\#_k (1-h), k = 1, 2, \ldots, p, \\
& \quad \delta_k \geq 0, k = 1, 2, \ldots, p,
\end{align}

(22)

where $I \subseteq \{1, 2, \ldots, p\}$ is an index set such that $|I| = mn + m + n$. Once Problem (22) is solved for a given I and h, we fix the value $c[I](h)$ as the c-value of the obtained optimal solution. This breaks the non-determinacy of $c[I](h)$ due to the multiplicity of optimal solutions of Problem (22).

Now we are ready to describe the proposed solution algorithm.

Solution Algorithm

Step 1. Select x^0 arbitrarily and set $s_i = 0, i = 0, 1, \ldots, m, h^L = 0, h^U = 1$ and $h = (h^U + h^L)/2$.

Step 2. Solve a linear programming problem,
\begin{align}
\text{maximize} & \quad x^{0T} c, \\
\text{subject to} & \quad wd^\#_k (1-h)^T (q_{mn+m}^T, c^T)^T \leq -wd^\#_k (1-h), k = 1, 2, \ldots, p,
\end{align}

(23)

Let \hat{c} be c-value of the obtained optimal solution to Problem (23) and \hat{I} an index set of active constraints at the optimal solution. Similarly, for $i = 1, 2, \ldots, m$, solve a linear programming problem,
\begin{align}
\text{maximize} & \quad x^{0T} a_i - b_i, \\
\text{subject to} & \quad wd^\#_k (1-h^i)^T q(a_i, b_i) \leq -wd^\#_k (1-h^i), k = 1, 2, \ldots, p,
\end{align}

(24)

Step 3. For $i = 1, 2, \ldots, m$, if $\hat{a}_{i}^T x^0 - \hat{b}_i > \nu^*_I(h^i)$, then update $s_i = s_i + 1$ and let $a_{si} = \hat{a}$ and $b_{si} = \hat{b}$. In this step, if some $s_i, i \in \{0, 1, \ldots, m\}$ is updated, then go to Step 6.

Step 4. If $\mu_{s_0}(\hat{c}^{0T}, x^0, 0) \geq \varepsilon$, then terminate the algorithm. In this case, we obtained the optimal solution as x^0. If $h^U - h^L \geq \varepsilon$ and $I_s \not= \hat{I}$ for all $s \leq s_0$, then update $s_0 = s_0 + 1$ and define $I_{s_0} = \hat{I}$ and $c[I_{s_0}](h) = \hat{c}$.

Step 5. If $h^U - h^L < \varepsilon$, then go to Step 5. Otherwise, update $h^L = h$ and $h = (h^U + h^L)/2$.

Step 6. If $s_0 = 0$, then set $s_0 = s_0 + 1, I_{s_0} = \hat{I}$ and $c[I_{s_0}](h) = \hat{c}$. Solve a linear programming problem,
\begin{align}
\text{minimize} & \quad z, \\
\text{subject to} & \quad c[I_{s_0}](h)^T x \leq z, l_0 = 1, 2, \ldots, s_0, \\
& \quad a_i^T x - b_i \leq \nu^*_I(h^i), i = 1, 2, \ldots, s_i, i = 1, 2, \ldots, m.
\end{align}

(25)
Let \((x^0, z^0)^T\) be an optimal solution if it exists. If Problem (25) is unbounded, let \(z^0 = -\infty\) and \(x^0 = \hat{x} + \lambda t\) with a sufficiently large \(\lambda > 0\), where \(\hat{x}\) is an obtained feasible solution and \(t\) is an obtained extreme ray. If Problem (25) is infeasible, then Problem (13) is infeasible, too, and the algorithm is terminated. If \(\mu_{<0}(z^0, \varepsilon) < h\), then update \(h^U = h\) and \(h = (h^U + h^L)/2\) and repeat Step 6, else return to Step 2.

The convergence of this algorithm can be shown as follows. Since we have \(\mu_{<0}(\hat{a}^T x^0, \varepsilon) \leq 1\) and we update \(h\) by \(h = (h^U + h^L)/2\), Step 4 terminates in a finite number of repeats. Similarly, since we have \(\mu_{<0}(z^0, \varepsilon) \geq 0\) and we update \(h\) by \(h = (h^U + h^L)/2\), Step 6 terminates in a finite number of repeats.

The linear programming problems at Step 2 always have optimal solutions because of the boundedness of \(Q\). If Problem (13) is infeasible, the algorithm terminates as Step 6 in finite iterations because a new extreme point of a polytope \(\text{cl}(Q)_h\) for some constraint is added at each iteration.

In order to show the convergence of the proposed algorithm, it suffices to prove that one of the followings holds at each iteration when Problem (13) is feasible. This is because \(\text{cl}(Q)_h\) is a polytope:

(a) at least one of \(s_i, i = 1, 2, \ldots, m\) increases,

(b) \(s_0\) increases,

(c) \((h^U - h^L)\) is reduced to less than the half.

We prove this. If Step 4 is skipped in the iteration, (a) holds. If \(h^U\) is updated at Step 6, obviously (c) is valid. If \(s_0\) is updated at Step 5 or Step 6, directly (b) holds. Then we consider a case that Step 4 is not skipped, \(h^U\) is not updated at Step 6 and \(s_0\) is not updated. Assume we come to Step 6 without any update among (a), (b) and (c) in this iteration. Since \(\hat{a}^T \geq z^0\) holds at Step 6, we should have \(\mu_{<0}(\hat{a}^T x^0, \varepsilon) \geq \mu_{<0}(z^0, \varepsilon) \geq h > h^L\). Therefore, \(h^L\) must have been updated before Step 6. This contradicts with the assumption. Hence, at least one of (a), (b) and (c) holds at each iteration.

5 Numerical Example

Example. Let us consider the following linear programming problem with interactive fuzzy parameters:

\[
\begin{align*}
\text{maximize} \quad & -2.5x_1 + c_2 x_2, \\
\text{subject to} \quad & 2.3x_1 + 0.8x_2 \leq 1, 20, \\
& a_1 x_1 + a_2 x_2 \leq 14, \\
& a_3 x_1 + 2x_2 \leq 24, \\
& x_1 \geq 0, \quad x_2 \geq 0,
\end{align*}
\]

where \(a_{21}, a_{22}, a_{31}\) and \(c_2\) are uncertain parameters. For those parameters, we know \(-c_2\) is about twice of \(a_{22}\) and also about twice of \(a_{31}, a_{31}\) is about 1, \(a_{22}\) is approximately greater than 0.7 and the ratio of the sum of 3\(a_{22}\) and \(c_2\) to \(a_{31}\) is approximately greater than 1. Finally, the sum of \(-a_{21}, -a_{22}, a_{31}\) and \(-c_2\) is about 1. In order to express those information, let us assume parameters \(d_{k1}, d_{k2}, w_{k1}, w_{ok}, \) \(\overline{q}_k\) and \(a_k, k = 1, 2, \ldots, 9\) are given as shown in Table 1. Since only 4 parameters are uncertain, we consider 4-dimensional fuzzy set in this example. We define the functions \(L_k, k = 1, 2, \ldots, 9\) are same and defined as \(L_k(r) = \max(1 - r, 0)\).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(w_k)</th>
<th>(w_{ok})</th>
<th>(d_k)</th>
<th>(d_{ok})</th>
<th>(\overline{q}_k)</th>
<th>(\alpha_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((0, 0, 0, -1)^T)</td>
<td>0</td>
<td>((0, 1, 0, 0)^T)</td>
<td>0</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>((0, 0, 0, 1)^T)</td>
<td>0</td>
<td>((0, 1, 0, 0)^T)</td>
<td>0</td>
<td>-2</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>((0, 0, 0, -1)^T)</td>
<td>0</td>
<td>((0, 0, 1, 0)^T)</td>
<td>0</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>((0, 0, 0, 1)^T)</td>
<td>0</td>
<td>((0, 0, -1, 0)^T)</td>
<td>0</td>
<td>-2</td>
<td>0.5</td>
</tr>
<tr>
<td>5</td>
<td>((0, 0, 0, 1)^T)</td>
<td>0</td>
<td>((0, 0, 0, 0)^T)</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>((0, -1, 0, 0)^T)</td>
<td>0</td>
<td>((0, 0, 0, 0)^T)</td>
<td>1</td>
<td>-1</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>((0, -1, 0, 0)^T)</td>
<td>0</td>
<td>((0, 0, 0, 0)^T)</td>
<td>1</td>
<td>-0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>8</td>
<td>((0, -3, 0, -1)^T)</td>
<td>0</td>
<td>((0, 0, 0, 0)^T)</td>
<td>0</td>
<td>-1</td>
<td>0.6</td>
</tr>
<tr>
<td>9</td>
<td>((-1, -1, 1, -1)^T)</td>
<td>0</td>
<td>((0, 0, 0, 0)^T)</td>
<td>1</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>((1, 1, -1, 1)^T)</td>
<td>0</td>
<td>((0, 0, 0, 0)^T)</td>
<td>1</td>
<td>-1</td>
<td>0.4</td>
</tr>
</tbody>
</table>
We assume that the functions \(\nu_i, i = 1, 2, 3 \) are same and defined as

\[
\nu_i(r) = \min(1, \max(1 - r/5, 0)), \quad i = 1, 2, 3.
\]

(27)

Let \(h^i = 0.5, i = 1, 2, 3, \bar{x} = -22 \) and \(\nu_0(r) = \min(1, \max(1 - r/5, 0)) \). We apply the necessity measure optimization model. We apply the proposed solution algorithm with an initial solution \(x^0 = (3, 21)^T \) and \(\epsilon = 10^{-4} \). In the 6th iteration, we obtain an optimal solution \(x \approx (4.8019, 4.8019)^T \) and \(h \approx 0.4254 \). A part of the solution procedure is shown in Table 2.

6 Concluding Remarks

In this paper, we treated a linear programming problem with a fuzzy polytope. The fuzzy polytope is obtained from vague knowledge on sums and ratios of uncertain variables, more generally, linear fractional function values of uncertain variables. The fuzzy polytope would be useful to represent interactive fuzzy numbers in real-world problems. A necessity measure optimization model is discussed. It is shown that the problem is reduced to a semi-infinite programming problem and solved by a bisection method together with a relaxation procedure. A solution algorithm in which the bisection method and the relaxation procedure converge simultaneously is proposed.

The introduction of a possibility measure to the fuzzy programming problems treated in this paper is one of the future topics. Furthermore, a symmetric model [5] using a necessity measure is also a future topic.

References

Table 2: A part of the solution procedure

| Step 1. Set $x^0 = (3,21)^T$, $s_i = 0$, $i = 0, 1, 2, 3$, $h^U = 1$, $h^L = 0$ and $h = 0.5$. |
| Step 2. Solve a linear programming problem, maximize $21c_2$, subject to $1.75a_{22} \leq -c_2 \leq 2.25a_{22}$, $1.75a_{31} \leq -c_2 \leq 2.25a_{31}$, $0.8 \leq a_{31} \leq 1.2$, $a_{22} \geq 0.45$, $-3a_{22} + 0.7a_{31} - c_2 \leq 0$, $0.8 \leq -a_{21} - a_{22} + a_{31} - c_2 \leq 1.2$. We obtain $c_2 = -1.4$ and $I = \{4,6,8,10\}$. Under the same constraints, solve a linear programming problem with an objective function maximize $3a_{21} + 21a_{22}$. We obtain $a_{21} = 1.65435$ and $a_{22} = 1.67765$. Again, under the same constraints, solve a linear programming problem with an objective function maximize $3a_{21}$. We obtain $a_{21} = 1.24$. Step 3. Since $a_{21}^T x^0 - b_1 = 3.7 > 16^{-2}(h_1) = 2$, we set $s_1 = 1$ and $a_{11} = (2.3,0.8)^T$. Since $a_{22}^T x^0 - b_2 = 26.19 > 16^{-2}(h_2) = 2$, we set $s_2 = 1$ and $a_{21} = (1.65435,1.67765)^T$. Since $a_{32}^T x^0 - b_3 = 21.72 > 16^{-2}(h_3) = 2$, we set $s_3 = 1$ and $a_{31} = (1.24,2)^T$. s_i, $i = 1,2,3$ are updated, then we go to Step 6. Step 6. Since $s_0 = 0$, we set $s_0 = 1$. Let $I_1 = \{4,6,8,10\}$ and $c_2[I_1](0.5) = -1.4$. Solve a linear programming problem, minimize z, subject to $-2.5x_1 - 1.4x_2 \leq z$, $2.3x_1 + 0.8x_2 \leq 22$, $1.65435x_1 + 1.67765x_2 \leq 16$, $1.24x_1 + 2x_2 \leq 26$, $x_1 \geq 0$, $x_2 \geq 0$. We obtain $x^0 = (9.50976,0.15948)^T$ and $z^0 = -23.99762$. We have $\mu_{\leq_0}(x^0,z) = 1 > h = 0.5$ and return to Step 2. Step 2. Under the constraints of (8), solve a linear programming problem with an objective function, maximize $0.15948c_2$. We obtain $c_2 = -1.4$ and $I = \{2,6,8,10\}$. Under the constraints of (8), solve a linear programming problem with an objective function maximize $9.50976a_{21} + 0.15948a_{22}$. We obtain $a_{21} = 2.092$ and $a_{22} = 1.24$. Again, under the constraints of (8), solve a linear programming problem with an objective function maximize $9.50976a_{21}$. We obtain $a_{21} = 1.24$. Step 3. $a_{22}^T x^0 - b_3 = 6.09215 < 16^{-2}(h_2) = 2$, we set $s_3 = 1$ and $a_{21} = (2.092,1.24)^T$. $a_{22}^T x^0 - b_3 = -11.889 < 16^{-2}(h_3) = 2$. s_2 is updated, then we go to Step 6. Step 6. Solve a linear programming problem, minimize z, subject to $-2.5x_1 - 1.4x_2 \leq z$, $2.3x_1 + 0.8x_2 \leq 22$, $1.65435x_1 + 1.67765x_2 \leq 16$, $1.24x_1 + 2x_2 \leq 26$, $2.092x_1 + 1.24x_2 \leq 16$, $x_1 \geq 0$, $x_2 \geq 0$. We obtain $x^0 = (7.64818,0)^T$ and $z^0 = -19.1205$. Since $\mu_{\leq_0}(x^0,z) = 0.42409 < h = 0.5$, we update $h^U = 0.5$ and $h = 0.25$. Repeat Step 6. Step 6. $c_2[I_1](0.25) = -1.6875$. Solve a linear programming problem, minimize z, subject to $-2.5x_1 - 1.0875x_2 \leq z$, $2.3x_1 + 0.8x_2 \leq 22$, $1.65435x_1 + 1.67765x_2 \leq 16$, $1.24x_1 + 2x_2 \leq 26$, $2.092x_1 + 1.24x_2 \leq 16$, $x_1 \geq 0$, $x_2 \geq 0$. We obtain $x^0 = (4.80192,4.80192)^T$ and $z^0 = -20.10804$. We have $\mu_{\leq_0}(x^0,z) = 0.62161 > h = 0.25$ and return to Step 2. ********** Continue **********