Title: Schauder's Fixed Point Theorems in Complete Metric Spaces and Fuzzy Boundary Value Problems on an Infinite Interval

Mathematical Theory and Applications of Uncertainty Sciences and Decision Making

Author(s): Saito, Seiji; Ishii, Hiroaki

Citation: 数理解析研究所講究録 (2005), 1457: 241-246

Issue Date: 2005-11

URL: http://hdl.handle.net/2433/47883

Type: Departmental Bulletin Paper

Textversion: publisher
Schauder's Fixed Point Theorems in Complete Metric Spaces and Fuzzy Boundary Value Problems on an Infinite Interval

Seiji SAITO, Hiroaki ISHII

(Graduate School of Information Science and Technology, Osaka University)
E-mail :\{saito, ishii\}@ist.osaka-u.ac.jp
Osaka, Japan, 565-0871

Abstract
Aims of our study are follows: One is to prove that a complete metric space of fuzzy numbers becomes a Banach space under a condition that the metric has a homogeneous property. Another is to give sufficient conditions that a subset in the complete metric space and an into continuous mapping on the subset have at least one fixed point by applying Schauder's fixed point theorem. Finally we discuss a sufficient conditions for the existence of solutions of fuzzy differential equations on an infinite interval with boundary conditions.

1 Complete Metric Space of Fuzzy Numbers

Denote $I = [0,1]$. The following definition means that a fuzzy number can be identified with a membership function.

\textbf{Definition 1} Denote a set of fuzzy numbers with bounded supports and strict fuzzy convexity by

$$
F_{b}^{st} = \{ \mu : \mathbb{R} \rightarrow I \text{ satisfying (i)-(iv) below} \}.
$$

(i) μ has a unique number $m \in \mathbb{R}$ such that $\mu(m) = 1$ (normality);
(ii) $\text{supp}(\mu) = cl(\{\xi \in \mathbb{R} : \mu(\xi) > 0\})$ is bounded in \mathbb{R} (bounded support);
(iii) μ is strictly fuzzy convex on $\text{supp}(\mu)$ as follows:

(a) if $\text{supp}(\mu) \neq \{m\}$, then \(\mu(\lambda \xi_1 + (1 - \lambda)\xi_2) > \min[\mu(\xi_1), \mu(\xi_2)]\) for $\xi_1, \xi_2 \in \text{supp}(\mu)$ with $\xi_1 \neq \xi_2$ and $0 < \lambda < 1$;
(b) if $\text{supp}(\mu) = \{m\}$, then $\mu(m) = 1$ and $\mu(\xi) = 0$ for $\xi \neq m$;
(iv) μ is upper semi-continuous on \mathbb{R} (upper semi-continuity).

It follows that $\mathbb{R} \subset F_{b}^{st}$. Because m has a membership function as follows:

$$
\mu(m) = 1; \quad \mu(\xi) = 0 (\xi \neq m)
$$

(1.1)

Then μ satisfies the above (i)-(iv).
In usual case a fuzzy number x satisfies fuzzy convex on \mathbb{R}, i.e.,

$$\mu(\lambda \xi_1 + (1-\lambda) \xi_2) \geq \min[\mu(\xi_1), \mu(\xi_2)]$$

(1.2)

for $0 \leq \lambda \leq 1$ and $\xi_1, \xi_2 \in \mathbb{R}$. Denote α-cut sets by

$$L_\alpha(\mu) = \{\xi \in \mathbb{R} : \mu(\xi) \geq \alpha\}$$

for $\alpha \in I$. When the membership function is fuzzy convex, then we have the following remarks.

Remark 1 The following statements (1) - (4) are equivalent each other, provided with (i) of Definition 1.

1. (1.2) holds;
2. $L_\alpha(\mu)$ is convex with respect to $\alpha \in I$;
3. μ is non-decreasing in $\xi \in (-\infty, m)$, non-increasing in $\xi \in [m, +\infty)$, respectively;
4. $L_\alpha(\mu) \subseteq L_\beta(\mu)$ for $\alpha > \beta$.

Remark 2 The above condition (iii) is stronger than (1.2). From (iii) it follows that $\mu(\xi)$ is strictly monotonously increasing in $\xi \in [\min \text{supp}(\mu), m]$. Suppose that $\mu(\xi_1) \geq \mu(\xi_2)$ for $\xi_1 < \xi_2 \leq m$. From Remark 1(iii), it follows that $\mu(\xi_1) = \mu(\xi_2)$ for some $\xi_1 < \xi_2$, so we get $\mu(\xi) = \mu(\xi_1) = \mu(\xi_2)$ for $\xi \in [\xi_1, \xi_2]$. This contradicts with Definition 1 (iiia). Thus μ is strictly monotonously increasing. In the similar way μ is strictly monotonously decreasing in $\xi \in [m, \max \text{supp}(\mu)]$. This condition plays an important role in Theorem 1.

We introduce the following parametric representation of $\mu \in F_b^a$ as

$$x_1(\alpha) = \min L_\alpha(\mu),$$

$$x_2(\alpha) = \max L_\alpha(\mu)$$

for $0 < \alpha \leq 1$ and

$$x_1(0) = \min \text{supp}(\mu),$$

$$x_2(0) = \max \text{supp}(\mu).$$

In the following example we illustrate typical types of fuzzy numbers.

Example 1 Consider the following $L-R$ fuzzy number $x \in F_b^a$ with a membership function as follows:

$$\mu(\xi) = \begin{cases}
L(\frac{m-\xi}{\ell})_+ & (\xi \leq m) \\
R(\frac{\xi-m}{r})_+ & (\xi > m)
\end{cases}$$

Here it is said that $m \in \mathbb{R}$ is a center and $\ell > 0, r > 0$ are spreads. L, R are I-valued functions. Let $L(\xi)_+ = \max(L(\xi), 0)$ etc. We identify μ with $x = (x_1, x_2)$. As long as there exist L^{-1} and R^{-1}, we have $x_1(\alpha) = m - L^{-1}(\alpha)\ell$ and $x_2(\alpha) = m + R^{-1}(\alpha)r$.

Let $L(\xi) = -c_1\xi + 1$, where $c_1 > 0$ and $|x_1 - m| \leq \ell$. We illustrate the following cases (i)-(iv).

(i) Let $R(\xi) = -c_2\xi + 1$, where $c_2 > 0$. Then $c_2\ell(x_2 - m) = c_1r(m - x_1)$.

(ii) Let $R(\xi) = -c_2\sqrt{\xi} + 1$, where $c_2 > 0$. Then $c_2\ell(x_2 - m)^2 = c_1r^2(m - x_1)$.

(iii) Let $R(\xi) = -c_2\xi^2 + 1$, where $c_2 > 0$. Then $c_2^2\ell^2(x_2 - m) = c_1^2r^2(x_1 - m)^2$.

(iv) Let c be a real number such that $0 < c < 1$. Denote

$$L(\xi) = \begin{cases}
1 & (\xi = 0) \\
-c\xi + c & (0 < \xi \leq 1)
\end{cases}$$

and let $R(\xi) = L(\xi)$. Then we have $\ell(x_2 - m) = r(m - x_1)$ for $|x_1 - m| \leq \ell$. The representation of $x = (x_1, x_2)$ is as follows:

$$x_1(\alpha) = m - (1 - \frac{\alpha}{c})\ell, \\
x_2(\alpha) = m + (1 - \frac{\alpha}{c})r \quad (0 \leq \alpha < c) \\
x_1(\alpha) = x_2(\alpha) = m \quad (c \leq \alpha \leq 1)$$

The membership function is given by as follows:

$$\mu(\xi) = \begin{cases}
0 & (\xi < x_1(0), \xi > x_2(0)) \\
x_1^{-1}(\xi) & (x_1(0) \leq \xi < m) \\
1 & (\xi = m) \\
x_2^{-1}(\xi) & (m < \xi \leq x_2(0))
\end{cases}$$

Denote by $C(I)$ the set of all the continuous functions on I to \mathbb{R}. The following theorem shows a membership function is characterized by x_1, x_2.

Theorem 1 Denote the left-, right-end points of the α--cut set of $\mu \in \mathcal{F}_b^{st}$ by $x_1(\alpha), x_2(\alpha)$, respectively. Here $x_1, x_2 : I \rightarrow \mathbb{R}$. The following properties (i)-(iii) hold.

(i) $x_1, x_2 \in C(I)$;

(ii) $\max_{\alpha \in I} x_1(\alpha) = x_1(1) = m = \min_{\alpha \in I} x_2(\alpha) = x_2(1)$;

(iii) x_1, x_2 are non-decreasing, non-increasing on I, respectively, as follows:

(a) there exists a positive number $c \leq 1$ such that $x_1(\alpha) < x_2(\alpha)$ for $\alpha \in [0, c)$ and that $x_1(\alpha) = m = x_2(\alpha)$ for $\alpha \in [c, 1]$;

(b) $x_1(\alpha) = x_2(\alpha) = m$ for $\alpha \in I$;

Conversely, under the above conditions (i) - (iii), if we denote

$$\mu(\xi) = \sup\{\alpha \in I : x_1(\alpha) \leq \xi \leq x_2(\alpha)\}$$

for $\xi \in \mathbb{R}$, then $\mu \in \mathcal{F}_b^{st}$.

Remark 3 From the above Condition (i) a fuzzy number $x = (x_1, x_2)$ means a bounded continuous curve over \mathbb{R}^2 and $x_1(\alpha) \leq x_2(\alpha)$ for $\alpha \in I$.

In what follows we denote $\mu = (x_1, x_2)$ for $\mu \in \mathcal{F}_b^{st}$. The parametric representation of μ is very useful in calculating binary operations of fuzzy numbers and analyzing qualitative behaviors of fuzzy differential equations.

Let $g : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be an \mathbb{R}--valued function. The corresponding binary operation of two fuzzy numbers $x, y \in \mathcal{F}_b^{st}$ to $g(x, y) : \mathcal{F}_b^{st} \times \mathcal{F}_b^{st} \rightarrow \mathcal{F}_b^{st}$ is calculated by the extension principle of Zadeh. The membership function $\mu_{g(x, y)}$ of g is as follows:

$$\mu_{g(x, y)}(\xi) = \sup_{\xi = g(\xi_1, \xi_2)} \min(\mu_x(\xi_1), \mu_y(\xi_2))$$
Here $\xi, \xi_1, \xi_2 \in \mathbb{R}$ and μ_x, μ_y are membership functions of x, y, respectively. From the extension principle, it follows that, in case where $g(x, y) = x + y,$

$$
\begin{align*}
\mu_{x+y}(\xi) &= \max_{\xi = \xi_1 + \xi_2} \min_{i=1,2} (\mu_{i}(\xi_i)) \\
&= \max\{ \alpha \in I : \xi = \xi_1 + \xi_2, \xi_i \in L_\alpha(\mu_i), i = 1, 2 \} \\
&= \max\{ \alpha \in I : \xi \in [x_1(\alpha) + y_1(\alpha), x_2(\alpha) + y_2(\alpha)] \}.
\end{align*}
$$

Thus we get $x + y = (x_1 + y_1, x_2 + y_2)$. In the similar way $x - y = (x_1 - y_2, x_2 - y_1)$.

Denote a metric by

$$
 d_{\infty}(x, y) = \sup_{\alpha \in I} \max(|x_1(\alpha) - y_1(\alpha)|, |x_2(\alpha) - y_2(\alpha)|)
$$

for $x = (x_1, x_2), y = (y_1, y_2) \in F_b^{st}$.

Theorem 2 F_b^{st} is a complete metric space in $C(I)^2$.

2 Induced Linear Spaces of Fuzzy Numbers

According to the extension principle of Zadeh, for respective membership functions μ_x, μ_y of $x, y \in F_b^{st}$ and $\lambda \in \mathbb{R}$, the following addition and a scalar product are given as follows:

$$
\begin{align*}
\mu_{x+y}(\xi) &= \sup\{ \alpha \in [0,1] : \xi = \xi_1 + \xi_2, \xi_1 \in L_\alpha(\mu_x), \xi_2 \in L_\alpha(\mu_y) \}; \\
\mu_{\lambda x}(\xi) &= \left\{ \begin{array}{ll}
\mu_x(\xi/\lambda) & (\lambda \neq 0) \\
0 & (\lambda = 0, \xi \neq 0) \\
\sup_{\eta \in \mathbb{R}} \mu_x(\eta) & (\lambda = 0, \xi = 0)
\end{array} \right.
\end{align*}
$$

In [5] they introduced the following equivalence relation $(x, y) \sim (u, v)$ for $(x, y), (u, v) \in F_b^{st} \times F_b^{st}$, i.e.,

$$(x, y) \sim (u, v) \iff x + v = u + y.$$ \hspace{1cm} (2.4)

Putting $x = (x_1, x_2), y = (y_1, y_2), u = (u_1, u_2), v = (v_1, v_2)$ by the parametric representation, the relation (2.4) means that the following equations hold.

$$
x_i + v_i = u_i + y_i \quad (i = 1, 2)
$$

Denote an equivalence class by $[x, y] = \{(u, v) \in F_b^{st} \times F_b^{st} : (u, v) \sim (x, y) \}$ for $x, y \in F_b^{st}$ and the set of equivalence classes by

$$
F_b^{st}/\sim = \{[x, y] : x, y \in F_b^{st}\}
$$

such that one of the following cases (i) and (ii) hold:

(i) if $(x, y) \sim (u, v)$, then $[x, y] = [u, v]$;

(ii) if $(x, y) \not\sim (u, v)$, then $[x, y] \cap [u, v] = \emptyset$.

Then F_b^{st}/\sim is a linear space with the following addition and scalar product

$$
[x, y] + [u, v] = [x+u, y+v] \hspace{1cm} (2.5)
$$

$$
\lambda[x, y] = \left\{ \begin{array}{ll}
[\lambda x, \lambda y] & (\lambda \geq 0) \\
[(-\lambda)y, (-\lambda)x] & (\lambda < 0)
\end{array} \right.
$$ \hspace{1cm} (2.6)
for $\lambda \in \mathbb{R}$ and $[x, y], [u, v] \in \mathcal{F}_b^{et}/\sim$. They denote a norm in \mathcal{F}_b^{et}/\sim by
\[
\| [x, y] \| = \sup_{\alpha \in I} d_H(L_\alpha(x), L_\alpha(y)).
\]
Here d_H is the Hausdorff metric is as follows:
\[
d_H(L_\alpha(x), L_\alpha(y)) = \max \left(\sup_{\xi \in L_\alpha(\mu_x)} \inf_{\eta \in L_\alpha(\mu_y)} |\xi - \eta|, \sup_{\eta \in L_\alpha(\mu_y)} \inf_{\xi \in L_\alpha(\mu_x)} |\xi - \eta| \right).
\]
It can be easily seen that $\| [x, y] \| = d_\infty(x, y)$.

3 Schauder’s Fixed Point Theorem in Complete Metric Spaces

In the following theorem we show that the complete metric space \mathcal{F}_b^{et} has an induced Banach space.

Theorem 3 Let S be a bounded closed subset in \mathcal{F}_b^{et}. Assume that S contains any segments of $x, y \in S$, i.e., $\lambda x + (1 - \lambda)y \in S$ for $\lambda \in I$. Let V be an into continuous mapping on S. Assume that the closure $cl(V(S))$ is compact in \mathcal{F}_b^{et}. Then V has at least one fixed point x in S, i.e., $V(x) = x$.

In the following theorem complete metric spaces have at least one fixed point of the induced Banach space.

Theorem 4 Let \mathcal{F} be a complete metric space with a metric d. Assume that \mathcal{F} is closed under addition and scalar product, and that $d(\lambda x, 0) = |\lambda|d(x, 0)$ for the scalar product λx and $\lambda \in \mathbb{R}, x \in \mathcal{F}$. Denote $X = \{[x, 0] : x, 0 \in \mathcal{F}\}$. Here $[x, y]$ for $x, y \in \mathcal{F}$ are equivalence classes of (2.4) and 0 is the origin. Then X is a Banach space concerning addition (2.5), scalar product (2.6) and norm $\| [x, 0] \| = d(x, 0)$ for $[x, 0] \in X$.

Moreover let S be a bounded closed subset in \mathcal{F}. Assume that S contains any segments of $x, y \in S$ in the same meaning of Theorem 3. Let V be an into continuous mapping on S. Assume that the closure $cl(V(S))$ is compact in \mathcal{F}. Then V has at least one fixed point in S.

4 FBVP on Infinite Intervals

In this section we deal with the following FBVP on an infinite interval:
\[
\frac{dx}{dt} = p(t)x + f(t, x), \quad x(\infty) = c \tag{4.7}
\]
Here $p : \mathbb{R}_+ \rightarrow \mathcal{F}_b^{et}, \ f : \mathbb{R}_+ \times \mathcal{F}_b^{et} \rightarrow \mathcal{F}_b^{et}$ are continuous functions. Let denote $\mathbb{R}_+ = [0, \infty)$ and $c \in \mathcal{F}_b^{et}$. The following assumptions play important roles in considering the existence of solutions of (4.7).

Assumption.

(A1) Assume that
\[
\int_0^\infty d(p(s), 0)ds = K < \infty.
\]

(A2) There exist positive real numbers a, r, R and integrable function $m : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that
\[
d(f(t, x), 0) \leq m(t) \text{ for } (t, x) \in \mathbb{R}_+ \times S_1;
\]
\[
\int_0^\infty m(s)ds \leq rR;
\]
\[
[R + N_p(a + \| L \| R)]K < 1.
\]
Here
\[S_1 = \{ x \in F_b^\epsilon t : d(x,0) \leq \min(\alpha r, r) \} \]
and \(N_p \) is independent on the function \(p \).

\(L : C^\lim r \to F_b^\epsilon t \) is a linear operator as \(L(x) = x(\infty) \) and
\[C^\lim r = \{ x \in C(\mathbb{R}_+ : F_b^\epsilon t) : \exists x(\infty), d(x,0) \leq r \}. \]

A3 There exists no solution of
\[\frac{dx}{dt} = p(t)x, L(x) = 0 \]
extcept for the zero solution.

We expect the following existence theorem for solutions of FBVP on the infinite interval.
Under assumptions (A1) - (A3) we expect that there exists at least one solution of (4.7) in \(C^\lim r \) for any \(c \in S_1 \) by applying the Schauder's fixed point theorem in \(C^\lim r \).

References

