Classes of non-normal operators defined by inequalities for operator means

東京理科大・理 柳田 昌宏 (Masahiro Yanagida)
Department of Mathematical Information Science,
Tokyo University of Science

1 Class A-f and A-f-paranormality

In what follows, a capital letter means a bounded linear operator on a complex Hilbert space H. An operator T is said to be positive (denoted by $T \ge 0$) if $(Tx, x) \ge 0$ for all $x \in H$, and also T is said to be strictly positive (denoted by T > 0) if T is positive and invertible. Following [12], class A is a class of non-normal operators T such that

$$|T^2| \ge |T|^2.$$

It is also shown in [12] that class A includes p-hyponormal $((T^*T)^p \ge (TT^*)^p$ for p > 0) and \log -hyponormal (T is invertible and $\log T^*T \ge \log TT^*)$ operators, and is included in the classes of p-aranormal $(\|T^2x\| \ge \|Tx\|^2)$ for every unit vector $x \in H$) and n-ormaloid $(\|T\| = r(T))$ (the spectral radius)) operators. It is shown in [24] that T belongs to class A if and only if

$$(|T^*||T|^2|T^*|)^{\frac{1}{2}} \ge |T^*|^2,$$

and in [2] that T is paranormal if and only if $T^{2*}T^2 - 2\lambda T^*T + \lambda^2 I \ge 0$ for all $\lambda > 0$, or equivalently,

 $\frac{1}{2} (I + \lambda^2 |T^*||T|^2 |T^*|) \ge \lambda |T^*|^2 \text{ for all } \lambda > 0.$

From these points of view, we introduced generalizations of class A and paranormality in [29].

Definition 1.A ([29]). Let f be a non-negative continuous function on $[0, \infty)$.

- (i) $T \in class A f \iff f(|T^*||T|^2|T^*|) \ge |T^*|^2$.
- (ii) T is A-f-paranormal $\iff \lambda T \in \text{class A-}f$ for all $\lambda > 0$.

When f is a representing function of an operator connection σ (see [19]), we also call class A-f and A-f-paranormal class A- σ and A- σ -paranormal, respectively.

In fact, class A and paranormality coincide with class A- \sharp and A- ∇ -paranormality, respectively, where ∇ and \sharp are the arithmetic and geometric means, that is,

$$A \, \nabla \, B = \frac{1}{2} (A + B) \quad \text{and} \quad A \, \sharp \, B = A^{\frac{1}{2}} (A^{\frac{-1}{2}} B A^{\frac{-1}{2}})^{\frac{1}{2}} A^{\frac{1}{2}}.$$

Hence we can explain the inclusion relation between class A and the class of paranormal operators shown in [12] in terms of class A-f and A-f-paranormality as follows:

$$T\in {\rm class}\; {\bf A} \Longleftrightarrow T\in {\rm class}\; {\bf A}$$
 by Definition 1.A
$$\Longleftrightarrow T\; {\rm is}\; {\bf A}\text{-}\sharp \text{-paranormal} \qquad {\rm since}\; f_\sharp(\lambda^2 t) = (\lambda^2 t)^\frac12 = \lambda t^\frac12 = \lambda f_\sharp(t)$$

$$\Longrightarrow T\; {\rm is}\; {\bf A}\text{-}\nabla\text{-paranormal} \qquad {\rm since}\; f_\sharp(t) = t^\frac12 \le \frac12(1+t) = f_\nabla(t)$$

$$\Longleftrightarrow T\; {\rm is}\; {\rm paranormal} \qquad {\rm by}\; {\rm Definition}\; 1.{\bf A}.$$

Furthermore, in [29], we introduced parametrized generalizations of class A-f and A-f-paranormality.

Definition 1.B ([29]). Let f be a non-negative continuous function on $[0, \infty)$, and s, t > 0.

- (i) $T \in class\ A(s,t)-f \Longleftrightarrow f(|T^*|^t|T|^{2s}|T^*|^t) \ge |T^*|^{2t}$
- (ii) T is A(s,t)-f-paranormal $\iff \lambda T \in \text{class A}(s,t)$ -f for all $\lambda > 0$.

When f is a representing function of an operator connection σ (see [19]), we also call class A(s,t)-f and A(s,t)-f-paranormal class A(s,t)- σ and A(s,t)- σ -paranormal, respectively.

We remark that class A(s,t)- $\sharp_{\frac{t}{s+t}}$ and A(s,t)- $\nabla_{\frac{t}{s+t}}$ -paranormality, introduced in [8] and [26], coincide with class A(s,t) $((|T^*|^t|T|^{2s}|T^*|^t)^{\frac{t}{s+t}} \geq |T^*|^{2t})$ and absolute-(s,t)-paranormality $(\frac{s}{s+t}I + \frac{t}{s+t}\lambda^{s+t}|T^*|^t|T|^{2s}|T^*|^t \geq \lambda^t|T^*|^t$ for all $\lambda > 0$), respectively, where

$$A \nabla_{\alpha} B = (1 - \alpha)A + \alpha B$$
 and $A \sharp_{\alpha} B = A^{\frac{1}{2}} (A^{\frac{-1}{2}} B A^{\frac{-1}{2}})^{\alpha} A^{\frac{1}{2}}$ for $\alpha \in [0, 1]$.

Particularly, it is pointed out in [17] that class $A(\frac{1}{2}, \frac{1}{2})$ coincides with the class of w-hyponormal $(|\tilde{T}| \geq |T| \geq |(\tilde{T})^*|)$, where \tilde{T} is the Aluthge transformation of T) operators introduced in [1].

In [29], we showed several properties of these classes introduced above, which are generalizations of the results on class A(s,t) and absolute-(s,t)-paranormal operators shown in [8][15][17][20][24][25][26][28].

Theorem 1.A ([29]). Let $s_0, t_0 > 0$ and $\{f_{s,t} \mid s \geq s_0, t \geq t_0\}$ be a family of non-negative operator monotone functions on $[0, \infty)$ satisfying $f_{s,t}(x^tg(x)^s) = x^t$, where g is a continuous function. If T is invertible and $T \in class\ A(s_0, t_0) - f_{s_0, t_0}$, then $T \in class\ A(s, t) - f_{s,t}$ for all $s > s_0$ and $t > t_0$.

Theorem 1.B ([29]). Let f be a non-negative, continuously differentiable and convex (or concave) function on $[0,\infty)$ satisfying $f(1) \leq 1$ and 0 < f'(1) < 1, and $p_0 > 0$. If T is invertible and $T \in class\ A(\theta'p,\theta p)-f$ for all $p \in (0,p_0)$, then T is log-hyponormal, where $\theta = f'(1)$ and $\theta + \theta' = 1$.

Theorem 1.C ([29]). Let f be a non-negative operator monotone function on $[0, \infty)$, and $s, t \in (0, 1]$. If $T \in class\ A(s, t)$ -f and $T \in class\ A$, then $T^n \in class\ A(\frac{s}{n}, \frac{t}{n})$ -f for every positive integer n.

Proposition 1.D ([29]). Let f be a non-negative operator monotone function on $[0, \infty)$, and $s, t \in (0,1]$. If $T \in class\ A(s,t)-f$, then $T|_{\mathcal{M}} \in class\ A(s,t)-f$, where $T|_{\mathcal{M}}$ is the restriction of T onto an invariant subspace \mathcal{M} .

Theorem 1.E ([29]). Let f and g be non-negative continuous increasing functions on $[0,\infty)$ satisfying f(t)g(t)=t and g(0)=0, and s,t>0. If $T\in class\ A(s,t)-f$, then the following hold, where T=U|T| is the polar decomposition and $\tilde{T}_{s,t}=|T|^sU|T|^t$:

- (i) $\tilde{T}_{s,t}$ is f-hyponormal if $f \circ g^{-1}$ is operator monotone and $x^t \geq (f \circ g^{-1})(x^s)$.
- (ii) $\tilde{T}_{s,t}$ is g-hyponormal if $g \circ f^{-1}$ is operator monotone and $(g \circ f^{-1})(x^t) \geq x^s$.

2 Furuta inequality and its generalizations

The following result is essential for the study of class A(s,t) operators.

Theorem F (Furuta inequality [9]).

If $A \ge B \ge 0$, then for each $r \ge 0$,

(i)
$$(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{1}{q}} \ge (B^{\frac{r}{2}}B^pB^{\frac{r}{2}})^{\frac{1}{q}}$$

and

(ii)
$$(A^{\frac{r}{2}}A^pA^{\frac{r}{2}})^{\frac{1}{q}} > (A^{\frac{r}{2}}B^pA^{\frac{r}{2}})^{\frac{1}{q}}$$

hold for $p \ge 0$ and $q \ge 1$ with $(1+r)q \ge p+r$.

We remark that Theorem F yields Löwner-Heinz theorem " $A \ge B \ge 0$ ensures $A^{\alpha} \ge B^{\alpha}$ for any $\alpha \in [0,1]$ " when we put r=0 in (i) or (ii) stated above. Other proofs are given in [5][18] and also an elementary one-page proof in [10]. It is shown in [21] that the domain of p, q and r is the best possible in Theorem F.

The chaotic order defined by $\log A \ge \log B$ for A, B > 0 is weaker than the usual order since $\log t$ is operator monotone. The following extension of a result in [3] can be obtained as an application of Theorem F. Other proofs are given in [7][22], and the best possibility is shown in [27].

Theorem C ([6][11]). Let A, B > 0. The following are mutually equivalent:

- (i) $\log A \ge \log B$.
- (ii) $(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^r$ for all $p \ge 0$ and $r \ge 0$.
- (iii) $A^r \ge (A^{\frac{r}{2}}B^pA^{\frac{r}{2}})^{\frac{r}{p+r}}$ for all $p \ge 0$ and $r \ge 0$.

A lot of related studies to Theorem F and Theorem C have been done. Among others, we here introduce the following result.

Theorem 2.A ([13] et al.). Let A, B > 0 and $\alpha_0, \beta_0 > 0$. If

$$(B^{\frac{\beta_0}{2}} A^{\alpha_0} B^{\frac{\beta_0}{2}})^{\frac{\beta_0}{\alpha_0 + \beta_0}} \ge B^{\beta_0} \quad or \quad A^{\alpha_0} \ge (A^{\frac{\alpha_0}{2}} B^{\beta_0} A^{\frac{\alpha_0}{2}})^{\frac{\alpha_0}{\alpha_0 + \beta_0}},$$
 (2.1)

then for each real number δ ,

$$B^{\frac{-\beta}{2}} (B^{\frac{\beta}{2}} A^{\alpha} B^{\frac{\beta}{2}})^{\frac{\delta+\beta}{\alpha+\beta}} B^{\frac{-\beta}{2}} \quad and \quad A^{\frac{-\alpha}{2}} (A^{\frac{\alpha}{2}} B^{\beta} A^{\frac{\alpha}{2}})^{\frac{-\delta+\alpha}{\alpha+\beta}} A^{\frac{-\alpha}{2}}$$
 (2.2)

is increasing and decreasing, respectively, for $\alpha \geq \max\{\alpha_0, \delta\}$ and $\beta \geq \max\{\beta_0, -\delta\}$.

The "order-like" relations between $A, B \geq 0$ defined by the inequalities in (2.1) for some fixed $\alpha_0, \beta_0 > 0$ are weaker than the usual and chaotic orders by Theorem F and Theorem C. For A, B > 0, the inequalities in (2.1) are mutually equivalent and each function in (2.2) is the inverse of the other since

$$S^{\frac{1}{2}}(S^{\frac{-1}{2}}TS^{\frac{-1}{2}})^{\alpha}S^{\frac{1}{2}} = S \sharp_{\alpha} T = T \sharp_{1-\alpha} S = T^{\frac{1}{2}}(T^{\frac{-1}{2}}ST^{\frac{-1}{2}})^{1-\alpha}T^{\frac{1}{2}}$$

for S, T > 0 and $\alpha \in [0, 1]$. Hence Theorem 2.A can be summarized as follows: for each p, a > 0 and $\delta \in [-a, p]$,

$$(B^{\frac{a}{2}}AB^{\frac{a}{2}})^{\frac{a}{p+a}} \ge B^{a} \Longrightarrow B^{\frac{-r}{2}}(B^{\frac{r}{2}}AB^{\frac{r}{2}})^{\frac{\delta+r}{p+r}}B^{\frac{-r}{2}} \text{ is increasing for } r \ge a,$$

$$A^{a} \ge (A^{\frac{a}{2}}BA^{\frac{a}{2}})^{\frac{a}{p+a}} \Longrightarrow A^{\frac{-r}{2}}(A^{\frac{r}{2}}BA^{\frac{r}{2}})^{\frac{\delta+r}{p+r}}A^{\frac{-r}{2}} \text{ is decreasing for } r \ge a,$$

$$(2.3)$$

and it turns out by scrutinizing the proof of Theorem 2.A that (2.3) is still valid even if the hypotheses are weakened to

$$\log(B^{\frac{a}{2}}AB^{\frac{a}{2}})^{\frac{a}{p+a}} \ge \log B^a \quad \text{and} \quad \log A^a \ge \log(A^{\frac{a}{2}}BA^{\frac{a}{2}})^{\frac{a}{p+a}}.$$

The following generalizations of Theorem F, Theorem C and Theorem 2.A are shown in the recent paper [23] by M. Uchiyama. In fact, Theorem 2.B yields Theorem F and Theorem C by putting $\psi_r(x) = x^{\frac{r}{p+r}}$, $\phi_r(x) = x^{\frac{1+r}{p+r}}$, $g(x) = x^p$ and h(x) = x. Theorem 2.B also yields (2.3) by putting $\psi_r(x) = x^{\frac{r}{p+r}}$, $\phi_r(x) = x^{\frac{\delta+r}{p+r}}$, $g(x) = x^p$ and $h(x) = x^{\delta}$.

Theorem 2.B ([23]). Let $\{\psi_r \mid r > 0\}$ and $\{\phi_r \mid r > 0\}$ be families of non-negative operator monotone functions satisfying

$$\psi_r(x^r g(x)) = x^r$$
 and $\phi_r(x^r g(x)) = x^r h(x)$,

where g and h are non-negative continuous functions. If $A \ge B \ge 0$ or if A, B > 0 and $\log A \ge \log B$, then for r > 0,

$$\psi_r(B^{\frac{r}{2}}g(A)B^{\frac{r}{2}}) \ge B^r, \qquad A^r \ge \psi_r(A^{\frac{r}{2}}g(B)A^{\frac{r}{2}}),$$
$$\phi_r(B^{\frac{r}{2}}g(A)B^{\frac{r}{2}}) \ge B^{\frac{r}{2}}h(A)B^{\frac{r}{2}}, \qquad A^{\frac{r}{2}}h(B)A^{\frac{r}{2}} \ge \phi_r(A^{\frac{r}{2}}g(B)A^{\frac{r}{2}}).$$

Theorem 2.C ([23]). Let $A, B \ge 0$ and a > 0, and let $\{\psi_r \mid r \ge a\}$ and $\{\phi_r \mid r \ge a\}$ be families of non-negative operator monotone functions satisfying

$$\psi_r(x^r g(x)) = x^r$$
 and $\phi_r(x^r g(x)) = x^r h(x)$,

where g and h are non-negative continuous functions. Then the following hold:

- (i) If $A^a \sigma_{\psi_a} B \geq I$, then $A^r \sigma_{\phi_r} B$ is increasing for $r \geq a$.
- (ii) If A, B > 0 and $A^a \sigma_{\psi_a} B \leq I$, then $A^r \sigma_{\phi_r} B$ is decreasing for $r \geq a$.

Here σ_f denotes the operator mean whose representing function is f.

Theorem 2.B and Theorem 2.C play important roles for the study of class A(s,t)-f and A(s,t)-f-paranormal operators. Particularly, the proof of Theorem 1.A is based on Theorem 2.C. In this report, we shall give modifications of Theorem 2.C and Theorem 1.A.

3 Results

The following is a modification of Theorem 2.C.

Theorem 3.1. Let $A, B \ge 0$ and a > 0, and let $\{\psi_r \mid r \ge a\}$ and $\{\phi_r \mid r \ge a\}$ be families of non-negative operator monotone functions satisfying

$$\psi_r(x^r g(x)) = x^r \quad and \quad \phi_r(x^r g(x)) = x^r h(x), \tag{3.1}$$

where g and h are non-negative continuous functions. Then the following hold for $a \le s \le t$:

(i) If
$$\psi_a(B^{\frac{a}{2}}AB^{\frac{a}{2}}) \ge B^a$$
, or if $A, B > 0$ and $\log \psi_a(B^{\frac{a}{2}}AB^{\frac{a}{2}}) \ge \log B^a$, then
$$B^{\frac{t-s}{2}}\phi_s(B^{\frac{s}{2}}AB^{\frac{s}{2}})B^{\frac{t-s}{2}} \le \phi_t(B^{\frac{t}{2}}AB^{\frac{t}{2}}).$$

(ii) If $A^a \geq \psi_a(A^{\frac{a}{2}}BA^{\frac{a}{2}})$ and $\overline{R(A)} \cap N(B) = \{0\}$, or if A, B > 0 and $\log A^a \geq \log \psi_a(A^{\frac{a}{2}}BA^{\frac{a}{2}})$, then

$$A^{\frac{t-s}{2}}\phi_s(A^{\frac{s}{2}}BA^{\frac{s}{2}})A^{\frac{t-s}{2}} \ge P\phi_t(A^{\frac{t}{2}}BA^{\frac{t}{2}})P,$$

where P is the projection onto $N(A)^{\perp}$.

The following is a modification of Theorem 1.A.

Theorem 3.2. Let $s_0, t_0 > 0$ and $\{f_{s,t} | s \ge s_0, t \ge t_0\}$ be a family of non-negative operator monotone functions on $[0, \infty)$ satisfying $f_{s,t}(x^t g(x)^s) = x^t$, where g is a continuous function. If $T \in class\ A(s_0, t_0) - f_{s_0, t_0}$, then $T \in class\ A(s, t) - f_{s,t}$ for all $s > s_0$ and $t > t_0$.

4 Proofs

We use the following well-known results in order to give a proof of Theorem 3.1.

Theorem 4.A ([14]). Let X and A be bounded linear operators on a Hilbert space H. We suppose that $X \geq 0$ and $||A|| \leq 1$. If f is an operator convex function defined on $[0,\infty)$ such that $f(0) \leq 0$, then

$$A^*f(X)A \ge f(A^*XA).$$

Theorem 4.B ([4]). Let A and B be bounded linear operators on a Hilbert space H. The following statements are equivalent;

- (1) $R(A) \subseteq R(B)$;
- (2) $AA^* \leq \lambda^2 BB^*$ for some $\lambda \geq 0$; and
- (3) there exists a bounded linear operator C on H so that A = BC.

Moreover, if (1), (2) and (3) are valid, then there exists a unique operator C so that

- (a) $||C||^2 = \inf\{\mu \mid AA^* \le \mu BB^*\};$
- (b) N(A) = N(C); and
- (c) $R(C) \subseteq \overline{R(B^*)}$.

We consider when the operator C, determined uniquely in Theorem 4.B, satisfies the equality of (c).

Lemma 4.1. Let A and B be operators which satisfy (1), (2) and (3) of Theorem 4.B, and C be the operator which is given in (3) and determined uniquely by (a), (b) and (c) of Theorem 4.B. Then $\overline{R(C)} = \overline{R(B^*)}$ if and only if $N(A^*) = N(B^*)$.

Proof. $N(C^*) \supseteq N(B)$ by (c) of Theorem 4.B, so that $N(C^*) = N(B) \oplus (N(C^*) \cap \overline{R(B^*)})$. Hence $\overline{R(C)} = \overline{R(B^*)}$ is equivalent to $N(C^*) \cap R(B^*) = \{0\}$, which is equivalent to $N(A^*) \subseteq N(B^*)$ since $N(C^*) \cap R(B^*) = \{B^*x \mid x \in N(A^*)\}$ by (3) of Theorem 4.B. $N(A^*) \supseteq N(B^*)$ follows from (2) of Theorem 4.B, hence the proof of complete.

Proof of Theorem 3.1. (i-1) In case $\psi_a(B^{\frac{a}{2}}AB^{\frac{a}{2}}) \geq B^a$, it suffices to show that

$$\psi_s(B^{\frac{s}{2}}AB^{\frac{s}{2}}) \ge B^s \Longrightarrow B^{\frac{t-s}{2}}\phi_s(B^{\frac{s}{2}}AB^{\frac{s}{2}})B^{\frac{t-s}{2}} \le \phi_t(B^{\frac{t}{2}}AB^{\frac{t}{2}}) \tag{4.1}$$

holds for $a \leq s \leq t \leq 2s$ since we obtain

$$\psi_s(B^{\frac{s}{2}}AB^{\frac{s}{2}}) \ge B^s \Longrightarrow \psi_t(B^{\frac{t}{2}}AB^{\frac{t}{2}}) \ge B^{\frac{t-s}{2}}\psi_s(B^{\frac{s}{2}}AB^{\frac{s}{2}})B^{\frac{t-s}{2}} \ge B^t$$

by choosing $\{\psi_r\}$ as $\{\phi_r\}$ in (4.1). If $\psi_s(B^{\frac{s}{2}}AB^{\frac{s}{2}}) \geq B^s$, then there exists a contraction X such that

$$X^* \left(\psi_s(B^{\frac{s}{2}} A B^{\frac{s}{2}}) \right)^{\frac{t-s}{2s}} = \left(\psi_s(B^{\frac{s}{2}} A B^{\frac{s}{2}}) \right)^{\frac{t-s}{2s}} X = B^{\frac{t-s}{2}}$$

$$\tag{4.2}$$

by Löwner-Heinz theorem and Theorem 4.B. Hense we have

$$\phi_{t}(B^{\frac{t}{2}}AB^{\frac{t}{2}}) = \phi_{t}\left(X^{*}\left(\psi_{s}(B^{\frac{s}{2}}AB^{\frac{s}{2}})\right)^{\frac{t-s}{2s}}B^{\frac{s}{2}}AB^{\frac{s}{2}}\left(\psi_{s}(B^{\frac{s}{2}}AB^{\frac{s}{2}})\right)^{\frac{t-s}{2s}}X\right) \quad \text{by (4.2)}$$

$$\geq X^{*}\phi_{t}\left(\left(B^{\frac{s}{2}}AB^{\frac{s}{2}}\right)\left(\psi_{s}(B^{\frac{s}{2}}AB^{\frac{s}{2}})\right)^{\frac{t-s}{s}}\right)X \quad \text{by Theorem 4.A}$$

$$= X^{*}\phi_{s}(B^{\frac{s}{2}}AB^{\frac{s}{2}})\left(\psi_{s}(B^{\frac{s}{2}}AB^{\frac{s}{2}})\right)^{\frac{t-s}{s}}X \quad \text{by (4.3)}$$

$$= B^{\frac{t-s}{2}}\phi_{s}(B^{\frac{s}{2}}AB^{\frac{s}{2}})B^{\frac{t-s}{2}} \quad \text{by (4.2)}.$$

The equality on the third line of the above formula can be shown by (3.1) as follows:

$$\phi_t\left(x\left(\psi_s(x)\right)^{\frac{t-s}{s}}\right) = \phi_t\left(y^t g(y)\right) = y^{t-s}\phi_s\left(y^s g(y)\right) = \left(\psi_s(x)\right)^{\frac{t-s}{s}}\phi_s(x),\tag{4.3}$$

where $x = y^s g(y)$, or equivalently, $y = (\psi_s(x))^{\frac{1}{s}}$.

(i-2) In case A, B > 0 and $\log \psi_a(B^{\frac{a}{2}}AB^{\frac{a}{2}}) \ge \log B^a$, put $A_1 = \psi_a(B^{\frac{a}{2}}AB^{\frac{a}{2}})$, $B_1 = B^a$ and $r_1 = \frac{s}{a} - 1 \ge 0$, then we have

$$\Psi_{r_1}(B_1^{\frac{r_1}{2}}G(A_1)B_1^{\frac{r_1}{2}}) \ge B_1^{r_1},\tag{4.4}$$

where $G(x) = \psi_a^{-1}(x) = xg(x^{\frac{1}{a}})$ and $\Psi_r(x) = (\psi_{a(1+r)}(x))^{\frac{r}{1+r}}$, which satisfy

$$\Psi_r(x^r G(x)) = \left(\psi_{a(1+r)}\left(x^{1+r} g(x^{\frac{1}{a}})\right)\right)^{\frac{r}{1+r}} = x^r.$$

(4.4) can be rewritten as $\left(\psi_s(B^{\frac{s}{2}}AB^{\frac{s}{2}})\right)^{\frac{s-a}{s}} \geq B^{s-a}$, so that

$$\left(\psi_s(B^{\frac{s}{2}}AB^{\frac{s}{2}})\right)^{\frac{t-s}{s}} \ge B^{t-s}$$

holds for $a \le s \le t \le 2s - a$ by Löwner-Heinz theorem. The rest of the proof can be done in the same way as (i-1).

(ii-1) In case $A^a \ge \psi_a(A^{\frac{a}{2}}BA^{\frac{a}{2}})$ and $\overline{R(A)} \cap N(B) = \{0\}$, it suffices to show that

$$A^{s} \ge \psi_{s}(A^{\frac{s}{2}}BA^{\frac{s}{2}}) \Longrightarrow A^{\frac{t-s}{2}}\phi_{s}(A^{\frac{s}{2}}BA^{\frac{s}{2}})A^{\frac{t-s}{2}} \ge \phi_{t}(A^{\frac{t}{2}}BA^{\frac{t}{2}})$$
(4.5)

holds for $a \leq s \leq t \leq 2s$ since we obtain

$$A^{s} \ge \psi_{s}(A^{\frac{s}{2}}BA^{\frac{s}{2}}) \Longrightarrow \psi_{t}(A^{\frac{t}{2}}BA^{\frac{t}{2}}) \le A^{\frac{t-s}{2}}\phi_{s}(A^{\frac{s}{2}}BA^{\frac{s}{2}})A^{\frac{t-s}{2}} \le A^{t}$$

by choosing $\{\psi_r\}$ as $\{\phi_r\}$ in (4.5). If $A^s \geq \psi_s(A^{\frac{s}{2}}BA^{\frac{s}{2}})$, then there exists a contraction X such that

$$X^* A^{\frac{t-s}{2}} = A^{\frac{t-s}{2}} X = P \left(\psi_s (A^{\frac{s}{2}} B A^{\frac{s}{2}}) \right)^{\frac{t-s}{2s}} P \tag{4.6}$$

by Löwner-Heinz theorem and Theorem 4.B, where P is the projection onto $N(A)^{\perp}$. Hense we have

$$X^* \phi_t (A^{\frac{t}{2}} B A^{\frac{t}{2}}) X \leq \phi_t \left(X^* A^{\frac{t-s}{2}} A^{\frac{s}{2}} B A^{\frac{s}{2}} A^{\frac{t-s}{2}} X \right) \quad \text{by Theorem 4.A}$$

$$= \phi_t \left(\left(A^{\frac{s}{2}} B A^{\frac{s}{2}} \right) \left(\psi_s (A^{\frac{s}{2}} B A^{\frac{s}{2}}) \right)^{\frac{t-s}{s}} \right) \quad \text{by (4.6)}$$

$$= \phi_s (A^{\frac{s}{2}} B A^{\frac{s}{2}}) \left(\psi_s (A^{\frac{s}{2}} B A^{\frac{s}{2}}) \right)^{\frac{t-s}{s}} \quad \text{by (4.3)}$$

$$= X^* A^{\frac{t-s}{2}} \phi_s (A^{\frac{s}{2}} B A^{\frac{s}{2}}) A^{\frac{t-s}{2}} X \quad \text{by (4.6)},$$

and the proof is complete since $\overline{R(A)} \cap N(B) = \{0\}$ implies $\overline{R(X)} = \overline{R(A)}$ by Lemma 4.1.

(ii-2) In case A, B > 0 and $\log A^a \ge \log \psi_a(A^{\frac{a}{2}}BA^{\frac{a}{2}})$, put $A_1 = A^a$, $B_1 = \psi_a(A^{\frac{a}{2}}BA^{\frac{a}{2}})$ and $r_1 = \frac{s}{a} - 1 \ge 0$, then we have

$$A_1^{r_1} \ge \Psi_{r_1}(A_1^{\frac{r_1}{2}}G(B_1)A_1^{\frac{r_1}{2}}),$$
 (4.7)

where G(x) and $\Psi_r(x)$ are as defined in (i-2). (4.7) can be rewritten as $A^{s-a} \ge \left(\psi_s(A^{\frac{s}{2}}BA^{\frac{s}{2}})\right)^{\frac{s-a}{s}}$, so that

$$A^{t-s} \ge \left(\psi_s(A^{\frac{s}{2}}BA^{\frac{s}{2}})\right)^{\frac{t-s}{s}}$$

holds for $a \le s \le t \le 2s - a$ by Löwner-Heinz theorem. The rest of the proof can be done in the same way as (ii-1).

We use the following result in order to give a proof of Theorem 3.2.

Theorem 4.C ([16]). Let A and B be positive operators, and let f and g be non-negative continuous functions on $[0, \infty)$ satisfying f(x)g(x) = x. Then the following hold:

(i)
$$f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) \ge B$$
 ensures $A - g(A^{\frac{1}{2}}BA^{\frac{1}{2}}) \ge A^{\frac{1}{2}}E_BA^{\frac{1}{2}} - g(0)E_{A^{\frac{1}{2}}BA^{\frac{1}{2}}}$

(ii) $A \ge g(A^{\frac{1}{2}}BA^{\frac{1}{2}})$ ensures $f(B^{\frac{1}{2}}AB^{\frac{1}{2}}) - B \ge f(0)E_{B^{\frac{1}{2}}AB^{\frac{1}{2}}} - B^{\frac{1}{2}}E_AB^{\frac{1}{2}}$.

Here E_X denotes the projection onto N(X).

Proof of Theorem 3.2. T belongs to class $A(s_0, t_0)$ - f_{s_0,t_0} if and only if

$$f_{s_0,t_0}(|T^*|^{t_0}|T|^{2s_0}|T^*|^{t_0}) \ge |T^*|^{2t_0}.$$

By (i) of Theorem 3.1, we have

$$f_{s_0,t}(|T^*|^t|T|^{2s_0}|T^*|^t) \ge |T^*|^{t-t_0}f_{s_0,t_0}(|T^*|^{t_0}|T|^{2s_0}|T^*|^{t_0})|T^*|^{t-t_0} \ge |T^*|^{2t}$$
(4.8)

holds for $t \geq t_0$. Put $f_{s,t}^{\perp}(x) = \frac{x}{f_{s,t}(x)}$, then (4.8) implies

$$|T|^{2s_0} \ge f_{s_0,t}^{\perp}(|T|^{s_0}|T^*|^{2t}|T|^{s_0}) \tag{4.9}$$

by (i) of Theorem 4.C. Since

$$f_{s_0,t}(x) = f_{s,t}(xg(y)^{s-s_0}) = f_{s,t}\left(xf_{s_0,t}^{\perp}(x)^{\frac{s-s_0}{s_0}}\right)$$
(4.10)

holds where $x = y^t g(y)^{s_0}$, we have

$$f_{s_0,t}(|T^*|^t|T|^{2s_0}|T^*|^t) = f_{s,t}\left(|T^*|^t|T|^{2s_0}|T^*|^tf_{s_0,t}^{\perp}(|T^*|^t|T|^{2s_0}|T^*|^t)^{\frac{s-s_0}{s_0}}\right) \quad \text{by (4.10)}$$

$$= f_{s,t}\left(|T^*|^t|T|^{s_0}f_{s_0,t}^{\perp}(|T|^{s_0}|T^*|^{2t}|T|^{s_0})^{\frac{s-s_0}{s_0}}|T|^{s_0}|T^*|^t\right)$$

$$\leq f_{s,t}(|T^*|^t|T|^{2s}|T^*|^t) \quad \text{by (4.9) and L\"owner-Heinz theorem,}$$

so that $f_{s,t}(|T^*|^t|T|^{2s}|T^*|^t) \ge |T^*|^{2t}$ holds for $s_0 \le s \le 2s_0$. We obtain the desired conclusion by repeating this process.

References

- [1] A. Aluthge and D. Wang, w-Hyponormal operators, Integral Equations Operator Theory 36 (2000), 1–10.
- [2] T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged) 33 (1972), 169–178.
- [3] T. Ando, On some operator inequalities, Math. Ann. 279 (1987), 157-159.
- [4] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
- [5] M. Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory 23 (1990), 67–72.

- [6] M. Fujii, T. Furuta and E. Kamei, Furuta's inequality and its application to Ando's theorem, Linear Algebra Appl. 179 (1993), 161–169.
- [7] M. Fujii, J. F. Jiang and E. Kamei, Characterization of chaotic order and its application to Furuta inequality, Proc. Amer. Math. Soc. 125 (1997), 3655–3658.
- [8] M. Fujii, D. Jung, S. H. Lee, M. Y. Lee and R. Nakamoto, Some classes of operators related to paranormal and log-hyponormal operators, Math. Japon. 51 (2000), 395– 402.
- [9] T. Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc. 101 (1987), 85–88.
- [10] T. Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), 126.
- [11] T. Furuta, Applications of order preserving operator inequalities, Oper. Theory Adv. Appl. 59 (1992), 180–190.
- [12] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), 389–403.
- [13] T. Furuta, T. Yamazaki and M. Yanagida, Operator functions implying generalized Furuta inequality, Math. Inequal. Appl. 1 (1998), 123–130.
- [14] F. Hansen, An operator inequality, Math. Ann. 246 (1979/80), 249-250.
- [15] M. Ito, Some classes of operators associated with generalized Aluthge transformation, SUT J. Math. 35 (1999), 149–165.
- [16] M. Ito, Relations between two operator inequalities via operator means, to appear in Integral Equations Operator Theory.
- [17] M. Ito and T. Yamazaki, Relations between two inequalities $(B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{p+r}} \geq B^r$ and $A^p \geq (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{p+r}}$ and their applications, Integral Equations Operator Theory 44 (2002), 442–450.
- [18] E. Kamei, A satellite to Furuta's inequality, Math. Japon. 33 (1988), 883–886.
- [19] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann. 246 (1979/80), 205-224.
- [20] S. M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida, Aluthge transform of class A(s,t) operators, preprint.

- [21] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 141–146.
- [22] M. Uchiyama, Some exponential operator inequalities, Math. Inequal. Appl. 2 (1999), 469–471.
- [23] M. Uchiyama, Criteria for monotonicity of operator means, J. Math. Soc. Japan 55 (2003), 197–207.
- [24] T. Yamazaki, On powers of class A(k) operators including p-hyponormal and log-hyponormal operators, Math. Inequal. Appl. 3 (2000), 97-104.
- [25] T. Yamazaki and M. Yanagida, A characterization of log-hyponormal operators via p-paranormality, Sci. Math. 3 (2000), 19–21.
- [26] T. Yamazaki and M. Yanagida, A further generalization of paranormal operators, Sci. Math. 3 (2000), 23–32.
- [27] M. Yanagida, Some applications of Tanahashi's result on the best possibility of Furuta inequality, Math. Inequal. Appl. 2 (1999), 297–305.
- [28] M. Yanagida, Powers of class wA(s,t) operators associated with generalized Aluthge transformation, J. Inequal. Appl. 7 (2002), 143–168.
- [29] M. Yanagida, Class A-f and A-f-paranormal operators, Role of Operator Inequalities in Operator Theory (Japanese) (Kyoto, 2004), Sūrikaisekikenkyūsho Kōkyūroku No. 1427 (2005), 21–30.