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1 Class A-f and A-f-paranormality

In what follows, a capital letter means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive (denoted by T > 0) if (Tz,z) > 0 for all
« € H, and also T is said to be strictly positive (denoted by T > 0} if T' is positive and
invertible. Following [12], class A is a class of non-normal operators T' such that

7% > [T

It is also shown in [12] that class A includes p-hyponormal (T*T) > (TT*)? for p > 0)
and log-hyponermal (T is invertible and logT*T > log TT*) operators, and is included in
the classes of paranormal (||T2z| > |Tz||?* for every unit vector z € H) and normaloid
(IIT| = (T (the spectral radius)) operators. It is shown in [24] that T" belongs to class
A if and only if .
(TTPT)? 2 1T

and in [2] that T is paranormal if and only if T*"T? — 2XT*T + NI >0foral A>0,or
equivalently,

% (I + X|T*|TPT) = AT*? for all A> 0.
From these points of view, we introduced generalizations of class A and paranormality in
[29].

Definition 1.A ([29]). Let f be a non-negative continuous function on [0, co).
(i) T € class A-f <= F(IT*||ITP|T*]) > [T
(ii) T is A-f-paranormal <= AT € class A-f for all A > 0.

When f is a representing function of an operator connection o (see [19]), we also call class
A-f and A-f-paranormal class A-oc and A-o-paranormal, respectively.
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In fact, class A and paranormality coincide with class A-} and A-V-paranormality,
respectively, where V and § are the arithmetic and geometric means, that is,

]. =1 — 1
AV B=3(A+B) and Al B=A}(ATBA7 )3 45

Hence we can explain the inclusion relation between class A and the class of paranormal
operators shown in [12] in terms of class A-f and A-f-paranormality as follows:

T € class A <= T € class A-f by Definition 1.A
<= T is A-f-paranormal  since fy(\’t) = (Azt)% = M7 = Afy(t)
== T is A-V-paranormal since fy(t) = £ < 2(1+1) = folt)
<= T is paranormal by Definition 1.A.

Furthermore, in [29], we introduced parametrized generalizations of class A-f and
A- f-paranormality.

Definition 1.B ([29]). Let f be a non-negative continuous function on [0,00), and
s,t> 0.

(i) T € class A(s,t)-f <= f(IT*TP*|IT"1) = |T*|%.
(ii) T is A(s,t)-f-paranormal <= AT € class A(s,t)-f for all A > 0.

When f is a representing function of an operator connection & (see [19]), we also call class
A(s,t)-f and A(s, t)-f-paranormal class A(s, t)-0 and A(s, t)-o-paranormal, respectively.

We remark that class A(s, 1)+ and A(s, 1)-V_t, -paranormality, introduced in [8]
i

and [26], coincide with class A(s,?) (|T*P|T\| T )= > |T*[*) and absolute-(s, t)-

paranormality (3551 + LN T T T > A T*|* for all X > 0), respectively, where

AV,B=(1—a)A+aB and Al B= AS(ATBAT)*A? fora€0,1].

Particularly, it is pointed out in [17] that class A(},3) coincides with the class of w-
hyponormal (|T} > |T| > |(T)*|, where T is the Aluthge transformation of T') operators
introduced in {1].

In [29], we showed several properties of these classes introduced above, which are
generalizations of the results on class A(s,t) and absolute-(s, t)-paranormal operators
shown in [8][15][17]{20}(24][25](26](28].

Theorem 1.A ([29]). Let sp,to > 0 and {for | 8> 50, t =10} bea family of non-negative
operator monotone functions on [0, oo) satisfying fs.(ztg(z)*) = xt, where g is a contin-
uous function. If T is invertible and T € class A(so,t0)-fsoitar then T € class A(s,t)-fsu
for all 5 > s¢ and t > to.
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Theorem 1.B ([29]). Let f be a non-negative, continuously differentiable and convez
(or concave) function on [0,00) satisfying f(1) < 1 and 0 < f'(1) <1, and pp > 0. If
T is invertible and T € class A(8'p, 6p)-f for all p € (0,pq), then T is log-hyponormal,
where 8 = f'(1) and 6 +6' = 1.

Theorem 1.C ([29]). Let f be a non-negative operator monotone function on [0,00),
and s,t € (0,1]. If T € class A(s,t)-f and T € class A, then T™ € class A(£,L)-f for
every positive integer n.

Proposition 1.D ([29]). Let f be a non-negative operator monotone function on [0, c0),
and s,t € (0,1]. If T € class A(s,t)-f, then T|p € class A(s,t)-f, where T|p is the
restriction of T' onto an invariant subspace M. :

Theorem 1.E ([29]). Let f and g be non-negative continuous increasing functions on
[0,00) satisfying f(t)g(t) =t and g(0) =0, and s,t > 0. If T € class A(s,t)-f, then the
following hold, where T = U|T| is the polar decomposition and Tyo = |TIPU|TE:

() T,y is f-hyponormal if f o g~* is operator monotone and z* > (f o g7%)(2*).

(it) T, is g-hyponormal if go f~1 is operator monotone and (go f~)(z*) > =*.

2 Furuta inequality and its generalizations

The following result is essential for the study of class A(s, t) operators.

Theorem F (Furuta inequality [9]). et (l+rjg=p+r
If A> B > 0, then for each r > 0,

(i)  (BEAPBE)s > (BiBPBi)s

and

(i)  (A3APA%)T > (ABBPAR) —]

0, —r
hold forp>0andg>1 with(1+r)g>p+r. @ FIGURE

(1,0 q

We remark that Theorem F yields Léwner-Heinz theorem “A > B > 0 ensures A* >
B* for any « € [0,1]” when we put r = 0 in (i) or (ii) stated above. Other proofs are
given in [5][18] and also an elementary one-page proof in [10]. It is shown in {21] that the
domain of p, g and r is the best possible in Theorem F.

The chaotic order defined by log A > log B for A, B > 0 is weaker than the usual
order since logt is operator monotone. The following extension of a result in {3] can be
obtained as an application of Theorem F. Other proofs are given in [7][22], and the best
possibility is shown in [27].
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Theorem C ([6][11]). Let A, B > 0. The following are mutually equivalent:
(i) logA > log B.
(ii) (BiAPB%)5+ > B for allp > 0 andr > 0.
(iii) A" > (AngAg)PLH for allp >0 and r > 0.

A lot of related studies to Theorem F and Theorem C have been done. Among others,
we here introduce the following resmuit.

Theorem 2.A ([13] et al.). Let A,B >0 and ag, 5o > 0. If
(B# A~ B3 Pyaim > B or A® > (ATBPAT #ymorm, (2.1)

then for each real number §,

(B aBHEE BT and AT (ATBAT)FF AT (2.2)

is increasing and decreasing, respectively, for o 2> max{ap, 8} and B > max{fo, —4}.

The “order-like” relations between A, B > 0 defined by the inequalities in (2.1) for
some fixed ag, Og > 0 are weaker than the usual and chaotic orders by Theorem F and
Theorem C. For A, B > 0, the inequalities in (2.1) are mutually equivalent and each
function in (2.2) is the inverse of the other since

SHEFTST)SH = St T = Tth-a S = THT T ST )T

for S,T > 0 and o € [0,1]. Hence Theorem 2.A can be summarized as follows: for each
p,a>0and § € [—a,p|,

(B%AB%)F:{? > B = B%(BgABg)i%B% is increasing for r > a,

.. e r (2.3)
A% > (A'?'BAf)T = AT (A3BA? )P+T A is decreasing for r 2 a,

and it turns out by scrutinizing the proof of Theorem 2.A that (2.3) is still valid even if
the hypotheses are weakened to

log(B8AB%)5%: > log B* and logA® 2> log(A3 BA%)v+a,

The following generalizations of Theorem F, Theorem C and Theorem 2.A are shown
in the recent paper {23] by M. Uchlyama In fact Theorem 2.B yields Theorem F and
Theorem C by putting ¥.(x) = T, ¢r(x) = g¥ir, g(z) = 7 and h(z) = z. Theorem
2.B also yields (2.3) by putting ¢, (z) = o7, ¢p(z) = xgif g(z) = zP and h(z) = a
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Theorem 2.B ([23]). Let {¢, | » > 0} and {¢, | v > 0} be families of non-negative
operator monotone functions satisfying

U(a7g(e)) = 2" and (z7g(z)) = 2" h(z),

where g and h are non-negative continuous functions. If A> B >0 or if A,B >0 and
log A > log B, then forr >0,

Y (Big(A)B%) > B, A" >4, (Aig(B)A3),
$.(Big(A)BE) > Bin(A)BE,  A3h(B)AF > ¢,(A3g(B)A%).

Theorem 2.C ([23]). Let A,B >0 and a >0, and let {¢, | r > a} and {$, | r > a} be
families of non-negative operator monotone functions satisfying

d(z"g(z)) =2 and ,(z"g(x)) = < h{z},
where g and h are non-negative continuous functions. Then the following hold:
(i) If A%oy, B> I, then A" o4, B is increasing for v 2 a.
(ii) If A, B > 0 and A% oy, B < I, then A" o4, B is decreasing for r > a.
Here o; denotes the operator mean whose representing function is f.

Theorem 2.B and Theorem 2.C play important roles for the study of class A(s,t)-f
and A(s,t)-f-paranormal operators. Particularly, the proof of Theorem 1.A is based on

Theorem 2.C. In this report, we shall give modifications of Theorem 2.C and Theorem
1L.A.

3 Results

The following is a modification of Theorem 2.C.

Theorem 3.1. Let A, B >0 anda > 0, and let {¢. |7 > a} and {¢, | r > a} be families
of non-negative operator monotone functions satisfying

Yo(z"g(z)) = 2" and ¢ (z"g(z)) = 2"h(z), (3.1)

where g and h are non-negative continuous functions. Then the following hold for a <
s <t

(i) If $o(BEAB%) > B®, or if A, B > 0 and log.(B3 AB%) > log B%, then

BT ¢,(B3AB%)BS" < ¢,(B:AB3).
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(il) If A° > 1a(ASBA%) and R(A) N N(B) = {0}, or if A,B > 0 and logA® >
log1.(A% BA%), then

AT o (ASBABAT > Pg,(A3BA3)P,
where P is the projection onto N(A)*.
The following is a modification of Theorem 1.A.

Theorem 3.2. Let so,to > 0 and {fs:]5 > S0, > to} be a family of non-negative oper-
ator monotone functions on [0,00) satisfying f..(z'g(x)*) = z*, where g is a continuous
function. If T € class A(sg, t0)-fsotas then T € class A(s,t)-fsz for all s > 55 and > to.

4 Proofs

We use the following well-known results in order to give a proof of Theorem 3.1.

Theorem 4.A ([14]). Let X and A be bounded linear operators on a Hilbert space H.
We suppose that X > 0 and ||A]] £ 1. If f is an operator convez function defined on
[0,00) such that f(0) <0, then

AF(X)A > f(A*XA).

Theorem 4.B ([4]). Let A and B be bounded linear operators on a Hilbert space H. The
following statements are equivalent;

(1) R(4) € R(B);
(2) AA* < XN2BB* for some A > 0; and
(3) there exists a bounded linear operator C on H so0 that A= BC.
Moreover, if (1), (2) and (8) are valid, then there ezists a unique operator C so that
(a) | = nf{ | A" < uBB"};
(b) N(A) = N(C); and
(¢) R(C) S R(B").

We consider when the operator C, determined uniquely in Theorem 4.B, satisfies the
equality of (c).

Lemma 4.1. Let A and B be operators which satisfy (1), (2) and (8) of Theorem 4.B,
and C be the operator which is given in (3) and determined uniquely by (a), (b) and (c)
of Theorem 4.B. Then R(C) = R(B*) if and only if N(A*) = N(B*).
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Proof. N(C*) 2 N(B) by (c) of Theorem 4.B, so that N(C*) = N(B)@®(N(C*)NR(B")).
Hence R(C) = R(B*) is equivalent to N(C*) N R(B*) = {0}, which is equivalent to
N(A*) C N(B*) since N(C*) N R(B*) = {B*z | z € N(A")} by (3) of Theorem 4.B.
N(A*) D N(B”) follows from (2) of Theorem 4.B, hence the proof of complete. O

Proof of Theorem 3.1. (i-1) In case 1,( B3 AB%) > B, it suffices to show that
b (BSAB3) > B* = BT ¢,(B3AB3)B'T < ¢,(BiAB?) (4.1)
holds for o < s < t € 2s since we obtain
Wo(BiAB3) > B* = ¢, (Bt AB%) > B'T¢,(B3ABI)BT > B

by choosing {¢,} as {¢,} in (4.1). If ¢,(B3AB3) > B, then there exists a contraction
X such that . .
X* (4(B5AB%)) ® = (,(BIAB))* X = BF (4.2)

by Lowner-Heinz theorem and Theorem 4.B. Hense we have
¢(BIABY) = g, (X (pu(BEABY) F BIABY (,(B14BH) T X) by (42)
> X*¢, ((BABY) (u,(BiABE )7 )X by Theorem 4.A

= X*¢,(BSABH) (ws(B ABH) T X by (4.3)
= BT ¢,(BIABH)BT by (4.2).

The equality on the third line of the above formula can be shown by (3.1) as follows:
( (e(z)) ™ ) be (4'9(W)) =40 (¥°9(¥)) = Wol@)) ™ (@),  (43)
where z = y®g(y), or equivalently, y = (zbs(x))é.

(i-2) In case A, B > 0 and log+,(B2AB%) > log B%, put Al Y.(B2AB?%), B; = B®
and r; = £ — 1 > 0, then we have

v.(B G(4)BT) 2 BT, (44)
where G(z) = 17! (z) = zg(zs) and U (z) = (@L‘a(lﬁ)(m))ﬁ, which satisfy
T 1+r i —f‘{'—" ta
V(2" G(@)) = (Yan (2479(29)) ) T =",
(4.4) can be rewritten as (@bs(BiABg))L;e > B*~°, s0 that

(h(BIABE) > B
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holds for a < s < t < 25— a by Lowner-Heinz theorem. The rest of the proof can be done
in the same way as {i-1).

(ii-1) In case A* > (A2 BA%) and R(A) N N(B) = {0}, it suffices to show that

A® > (A3 BAS) = AT 9,(AFBAR) AT > 6,(A3 BA3) (4.5)
holds for ¢ < s < t < 25 since we obtain
A° > (AT BAT) = 1, (ASBAT) < AT 9, (ATBARAT < A°

by choosing {1/,} as {¢.} in (4.5). If A® > (AT BA%), then there exists a contraction
X such that
X*AT = AT X = P (),(A3BA%)) = P (4.6)

by Lowner-Heinz theorem and Theorem 4.B, where P is the projection onto N(A)™..
Hense we have

i—-

X d(ASBADX < ¢, (X A ASBASAS X) by Theorem 4.A
= 6, ((ABAY) (B(ARBAD) 7)) by (46)

= ¢,(ABA?) (,(A3 BA%) by (4.3)
= X" A%%(q%BAe)A X by (46),

et

and the proof is complete since R(A)NN(B) = {0} implies R(X) = R(A) by Lemma 4.1.

(ii-2) In case A,B > 0 and log A* 2> log Y. (AT BA%R), put A; = A% B1 = Y, (A3 BAS)
and r; = £ — 1> 0, then we have

A >, (AP G(B)AT), (4.7)

where G(z) and ¥, (z) are as defined in (i-2). (4.7) can be rewritten as As=a > (1h,(AT BA%)) =,
so that .~
A7 2 ($o(ARBAR)) ©

holds for g < s < t < 25 —a by Lowner-Heinz theorem. The rest of the proof can be done
in the same way as (ii-1). O

We use the following result in order to give a proof of Theorem 3.2.

Theorem 4.C ([16]). Let A and B be positive operators, and let f and g be non-negative
continuous functions on [0, 00) satisfying f(x)g(x) = z. Then the following hold:

(i) f(BYAB¥) > B ensures A — g(A3BA3) > ASEpA% — g(0)E 3 1 13-
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(ii) A > g(A}BA%) ensures f(BiABY)— B > f(0)E,; .y — BiEBS.
Here Ex denotes the projection onto N(X).
Proof of Theorem 8.2. T belongs to class A(sg, io)-fsop, if and oxﬂy if
Foaao (TP IT 0T 1) 2 |T[*.

By (i) of Theorem 3.1, we have

FaoaIT*HIT PRI ") 2 T foo ao (ITF [T T )T 70 2 [T (48)
holds for ¢ > to. Put f;3(z) = 775, then (4.8) implies

TP > foo IT1°|T*|T1) (4.9)

by (i) of Theorem 4.C. Since

Feot@) = Fusl2g(0)**) = fus (2F5 (250" (4.10)
holds where z = y*g(y)®, we have
Fuos (T FITIT" 1) = fo (T T[0T £2, (THTE TS ) by (420)
— o ([T T £, T T P 5 Ty
< fo (IT*HTPE T by (4.9) and Lowner-Heinz theorem,

so that f,,(T*[*|T|%|T*|*) > |T** holds for s < s < 2s,. We obtain the desired
conclusion by repeating this process. |
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