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Operator means and comparison of their norms:
general theory and examples

FuK - BB i A
Hideki Kosaki (Kyushu University)

The classical Heinz inequality ([4]) states

(1 |HCX K'Y + X KO < ||HX + XK]|| (0<8<1)
for Hilbert space operators H, K, X with H, K > 0. This inequality remains valid
for an arbitrary unitarily invariant norm ||| - |||, and the special case § = 1/2 of this

generalized version is the “arithmetic-geometric mean” inequality obtained in [1]:
1
| X | < SIIHX + XK]|,

In recent years such operator (and/or matrix) means and comparison of their norms
are under active investigation (see [2, 5, 6, 8, 10] for instance). We will briefly
explain the general apparatus (obtained in [7]) to deal with such problems. More
details as well as a more complete list of references can be found in my survey article
in “Sugaku” to be published shortly (or in [7]).

, 1. OPERATOR {MATRIX) MEANS

In this article a scalar (symmetric homogeneous) mean will mean a continuous
function M(s,t) on on [0, 00) X [0, c0) satisfying

(a) M(s,t) = M(t,s),

(b) M(as,at) = aM(s,t) for o > 0,

(c) M(s,t) increasing in each variable,

(d) min{s,#} < M(s,t) < max{s,t}.
The set of all such means will be denoted by 9%. Typical examples are

(st)}?, (s —t)/(log s — logt) (: /1 sxtl"‘dz),
s+t SO0 4 st ’
2 2
To each M(s,t) € 9 a corresponding operator mean (denoted by M(H, K)X) will
be associated.

To get more intuition on the subject matter, we begin with the matrix case
(H,K,X € M,(C) and H,K > 0). At first we diagonalize H, K:

H= Udl&g(tl, tz, ey, tn)U*, K= Vdi&g(é‘l, 8o, 0, sn)V*
with unitary matrices U, V. For each M € 9 we define

(with 0 < 6 < 1).

M(H, K)X = U([M(si,ij)} o (U*XV)) v

i,j=1,2, -,
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with the Schur product o. If M(s,t) is of the form ¥f_; fx(s)gx(t), we simply have
¢
M(H,K)X =3 fi H) X ge(K).
. k=1
Let us consider the projections P; = UE;U*,Q; = VE;;V*. Then, H = Y1, s;F;,

K = ¥7_1t;Q; are the spectral decompositions of H,K, and we observe that the
above matrix mean M(H, K)X can be also expressed as

i,7=1

We now move to the general (operator) case. Let H, K be positive operators with
the spectral decompositions

HHY K
H=/ sdE,, K:/ tdF,
0 0

The above expression involving 3°,; suggests that an operator mean M(H,K)X
should be something like

&= KN
mammp% £<mww&mg

(at least formally). Of course the meaning of this double integral has to be justified,
however fortunately the well-developed theory of Stieltjes double integral transfor-
mations (see the recent survey article [3]) is at our disposal. Also the problem on
multipliers has to be taken carge of.

2. STIELTJES DOUBLE INTEGRAL TRANSFORMATIONS
Given a function ¢(s,z) € L¥([0, | H||] x [0, | K|I}; Ax ) (with A ~ dE; and p ~ dF}
in the absolute continuity sense), we would like to make a sense out of

=1 K
2) ym:A L (s,1) dE, X dF, (€ B(H)) for X € B(H).
We begin with the case X € C3(H), the Hilbert-Schmidt operators. For Borel subsets
Ao, EC K

7o(Ep), 7(Fz) are commuting| projections acting on Co(H), where wo(+), mr(-) mean
the left and right multiplications acting on Ca(H). Let us consider the correspondence

AxEC0,]|H|] x [0, |1K|l] — me(Ea)m-(F5) € B(Ca(H))projs

which can be easily extended to a spectral family. Therefore, we can perform func-
tional calculus relative to this spectral family. Thus, we have

a0y = [ gty By (R € BeaD),

and ®(X) (& Ca(H)) makes a perfect sense. The right side of (2) should be understood
in this way (for X € Co(H)).
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The discussion so far is indeed the starting point of the theory of Stieltjes double
transformations by Birmann-Solomjak. For each practical purpose the definition
domain of ®(-) should be enlarged as much as possible (to C,(H),Ci(H), B(H), etc.
depending upon available regularity assumption}. Various important applications to
many subjects (such as perturbation theory, Volterra operators, Hankel operators
and so on) are known.

Definition. ¢(s,t) is called a Schur multiplier (more precisely, C1-Schur multiplier
relative to (H, K)) when ®{(C,(H)) C C:(H).

Theorem (V.V. Peller’s characterization, [9])

For ¢ € L*([0, || HI[] x [0, | K]|}; A x 1) the following conditions are all equivalent:

(i) ¢ is a Schur multiplier (relative to (H, K));

(ii) whenever a measurable function & : [0, |H|[] x [0, |K]l]] — C is the kernel
of a trace class operator L2([0, [|H|[};; A) — L*([0, | K|[]; u), so is the product
@(s, t)k(s, t);

(iif) one can find a finite measure space (Q, o) and functions o € L°([0, || H{]] x
QA x o), e L=(0,|K]|]] x Q; px o) satisfying

(3) B(s,t) :/Qa(s,;r)ﬂ(t,m)dcr(m);

(iv) one can find a measure space (£, o) and measurable functions a, 8 on [0, || H|f] x
Q, [0, | K|] x © respectively satisfying (3) and

'_/Q]a(-,x)lma(g:) /Qlﬁ(';l')l?'do(x)

When ¢(s, 1) is a Schur multiplier, @ : C;(H) — C1(H) is a bounded linear operator
(by the closed graph theorem) so that we have the transpose '® : B(H) = C;(H)* —
B(H) = C,(H)*. Starting from the decomposition (3), one can prove

< 0.
Lo (p)

Lea(x)

f "H“/m é(s,t) dE, X dF, = / a(H,2) X B(K, z)do(z)
o o 3 s t | o 3 b} .

3. NORM INEQUALITIES FOR OPERATOR MEANS

When a scalar mean M (s,t) (€ M) is a Schur multiplier, we define
17y piK
M(H,K)X = fc /O M(s,t) dE,XdF, € B(H) (for each X € B(H)).

Theorem (F. Hiai and H. Kosaki, [6, 7])
For M, N € 9 the following conditions are all equivalent:

(i) There exists a symmetric probability measure » on R with the following prop-
erty: if N is a Schur multiplier relative to (H, K) of non-singular positive
operators, then so is Af and

M(H,K)X = /_ ~ H=(N(H, K)X)K~®dv(z) for X € B(H);



(i) If N is a Schur multiplier relative to a pair (H, K} of positive operators, then
so is M and
MH, K)X||| < [[IN(H, K)X]]
" for all unitarily invariant norms and all X € B(H);
(i) |M(H, H)X|| < |IN(H, H)X|| for all X of finite rank and for all # 2 0;
(iv) For each n and Aj, Az, -+, A >0

[M(Ai,,\j)} oo
1,j=1,2,~-,n B

N(A;, X))
Me*, 1
(v) M < N, ie., W(;—:—l—)) is a positive definite function.
This theorem explains the Heinz inequality (1) as follows: We set
Lo, il | l-a lic
t t t
M(s,t) = S22 ;5 P N =T (e, ).

The ratio is
M(e®,1) el15%)r 4 (5% _ cosh (az/2)
N(e=,1) e +1 ~ cosh (z/2)
whose Fourier transform is given by
/00 cosh (az/2) ., Ly 4 cosh(my) cos (an/2) 50
—eo cosh (z/2) cosh(2my) + cos (ar) )
Bochner’s theorem thus yields M < N.
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