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1 Introduction
In this note we will discuss “tracial” analogs of the Rokhlin property for actions of discrete

groups, mainly, an integer group $\mathrm{Z}$ and a finite group $G$ . This property is formally weaker than

the various Rokhlin properties which have appeared in the literature, such as in [19], [26], and [21],

at least for C’-algebras which are tracially AF in $\mathrm{t}\mathrm{I}_{1}\mathrm{e}$ sense of [29] (those $\mathrm{C}$ ’-algebra are said to
have tracial rank zero), in roughly the same way that being tracially AF is weaker than the local
characterization of AF algebras.

Our main $\mathrm{r}$ esults are as follows,

(1) Let $A$ be a stably finite simple unital $\mathrm{C}$ ’-algebra. and let $\alpha$ be an automorphism of $A$ which has
the tracial Rokhlin property Suppose $A$ has real rank zero and stable rank one, and suppose
that the order on projections over $A$ is determined by traces (Blackadar $\backslash \mathrm{s}$ Second Fundamental
Comparability Question, 1.3.1 of [2], for $AlI_{\infty}(A))$ . Then a crossed product $C^{*}(\mathrm{Z}, A, \alpha)$ of $A$

by $\mathrm{Z}$ also has these three properties.
(2) Let $A$ be a simple separable unital C’-algebra with tracial rank zero, and suppose that $A$ has

a unique tracial state $\tau$ . Let $\pi_{\tau}$ : $Aarrow L(H_{\tau})$ be the Gelfand-Naimark-Segal representation

associated with $\tau$ . Let $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ . Then the following condition are equivalent: (i) $\alpha$ has the
tracial Rokhlin property, (ii) The automorphism of $\pi_{\tau}(A)$ ” induced by $a^{n}$ is outer for every
$n\neq 0$ , that is, $c\iota^{n}$ is not weakly inner in $\pi_{\tau}$ for any $n$ $\neq 0$ , (iii) $C^{*}(\mathrm{Z}, A, \alpha)$ has a unique tracial
state, (iv) $C^{*}(\mathrm{Z}, A, \alpha)$ has real rank zero.

(3) Let $A$ be a simple separable unital $\mathrm{C}^{*}$-algebra which satisfies the Universal Coefficient Theo-
rem, which has tracial rank zero, and which has a unique tracial state. If $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ has the
Rokhlin property and if $\alpha^{n}$ is an approximately inner for some $n>0$ , then $C^{*}(\mathrm{Z}, A, \alpha)$ is a
simple AH algebras with no dimensional growth and real rank zero.

(4) We introduce a general class of automorphisms of rotation algebras, the noncommutative
Furstenb erg transformations, We Prove that irrational noncommutative Furstenberg transfor
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mations have the tracial Rokhlin property.
(5) The crossed product of an infinite dimensional simple unital $\mathrm{C}’\sim \mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a}$ with tracial rank no

more than one by an action of a cyclic group $\mathrm{w}$ ith the tracial Rokhlin property again has

tracial rank no more than one.

Kishimoto proved ([26]) that if $A$ is a simple unital AT algebra with real rank zero which has

a unique tracial state, and $\alpha$ $\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ satisfies the approximate innerness, then $\mathrm{Q}$ has Rokhlin

property is equivalent to each of three conditions (ii), (iii), (iv) in (2). Moreover, if $\alpha$ is homotopic

to an inner automorphism, then $C”(\mathrm{Z}, A,\alpha)$ is again a simple unital AT algebra with real rank zero

(Theorem 6.4 of [27]). (2) and (3) are generalization of Kishimoto’s result. It seems reasonable

to hope that whenever $A$ is a simple tracially AF and $\zeta f$ has the tracial Rokhlin property, then
$C^{*}$ $(\mathrm{Z}, A, \alpha)$ is again tracially $\mathrm{A}\mathrm{F}$ . (This is still opened.) However, using the observation of (1) we

have automorphisms of C’-algebras which are not tracially AF and for which the crossed products

are also not tracially $\mathrm{A}\mathrm{F}$ . (4) is our motivating example to consider the tracial Rokhlin property.

On the contrary, Phillips has proved recently ([44]) that the crossed product of an infinite

dimensional simple unital C’-algebra with tracial rank zero by an action of a finite group with the

tracial Rokhlin property again has tracial rank zero. (5) is generalization of this result. We note

that there is an action of period 2 on UHF-algebra with no tracial Rokhlin property whose crossed

product is not tracially AF ([10] $\rangle$ .

2 Classification of simple $\mathrm{C}^{*}$-algebras of tracial rank zero

The following conventions will be used in this paper. Let $A$ be a unital C’-algebra.

(i) We denote by Aut (A) the set of all automorphisms on A and by $\mathrm{T}(A)$ the tracial state space

of $A$ .

(ii) Two projections $p$ , $q\in A$ are said to be equivalent if they are Murray-von Neumann equiva-

lent. That is, there exists a partial isometry $w\in A$ such that $w^{*}w=p$ and $ww^{*}=q$ . Then

we write $p\sim q$ .

(iii) Let $F$ and $S$ be subsets of $A$ and $\epsilon$ $>0$ . We write $x\in_{\epsilon}S$ if there exists $y\in S$ such that

$||x-y||<\epsilon$ , and write $F\mathrm{c}_{\epsilon}S$ if $x\in_{\epsilon}S$ for all $x\in F$ .

We begin by introducing the tracial rank zero for a simple unital $\mathrm{C}$ ’-algebra.

Definition 2.1. ([30]) Let $A$ be a simple unital $\mathrm{C}$ ’-algebra Then $A$ has tracial rank no more than

one (write $\mathrm{T}\mathrm{R}(A)$ $\leq 1$ ) if the following holds: For any $\epsilon$ $>0$ and any finite set $F$ $\subset A$ containing

a nonzero positive element $a\in A^{+}\dot,$ there is a $\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{C}^{*}$-algebra $C$ in $A$ where $C=\oplus^{\mathrm{k}}:=1M_{n}.(C(X_{i}))$

and $X_{\mathrm{t}}$ is a finite CW complex with dimension no more than one such that $1c=p$ satisfying the

following
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$\langle$ $\mathrm{i})||px$ - $xp||<\epsilon$ for $x\in F$,
(ii) $pxp\in_{\epsilon}C$ for any $x\in F$ and

(iii) $1-p$ is equivalent to a projection in pAp.

When each $X_{i}$ is a point, $A$ is said to have tracial rank zero and write $\mathrm{T}\mathrm{R}(A)$ $=0$ .

If each $X_{i}$ is a point and $p=1$ , the above definition gives $\mathrm{A}\mathrm{F}$-algebras. The definition says that
in a simple unital $\mathrm{C}$ ’-algebra $A$ with $\mathrm{T}\mathrm{R}(A)$ $=0$ , the part that may not be approximated by finite

dimensional C’-algebras must have small “measur\"e. This observation comes from the following:

Theorem 2.2. ([30, Corolary 6.15]) Let $A$ be a simple unital C’-algebra with stable rank one
which satisfies the Fundamental Comparison Property. Then $\mathrm{T}\mathrm{R}(\cdot 4)$ $\leq 1$ if and only if for any

finite set $F$ $\subset A$ , $\epsilon>0$ , and any non-zero positive element $a\in A$ , there exists a subC’-algebra
$C\subset A$ , where $C$ $=\oplus_{\dot{\mathrm{c}}=1}^{k}\lambda I_{n_{i}}(C(X_{t}))$, and $X_{i}$ is a finite CW complex with dimension no more than
one such that $1\mathrm{c}$ $=p$ satisfying the following:

(1) $||[x,p]||<\epsilon$ for all $x\in F$,

(2) $pxp\in_{\epsilon}C$ for all $x\in F$,

(3) $\tau(1-p)<\epsilon$ for all $\tau\in \mathrm{T}(A)$ .

For a unital separable simple unital C’-algebra with tracial rank no more than one we have

Theorem 2.3. ([30]) Let $A$ be a unital separable simple unital C’-algebra with $\mathrm{T}\mathrm{R}(A)$ $\leq 1$ . Then

. $A$ is quasidaigonal (i.e. there exsits a faithful representation $\pi$ : $Aarrow B\langle H$ ) and an increasing
sequence of finite rank projections $p_{1}\leq p_{2}\leq\cdots$ such that $||p_{n}\pi(a)-\pi(a)p_{n}||arrow 0(\forall a\in A))$

and $p_{n}arrow 1_{H}$ (strongly operator topology) $(narrow\infty))$ ;. $A$ has real rank zero (i.e. any self-adjoint element in $A$ can be approximated by an in-
vertible self-adjoint element in $A$) or one (i.e. any se$1\mathrm{f}$-adjoint elements Xi, $x_{2}\in A$ can $\dot{\mathrm{t}}$) $\mathrm{e}$

approximated by sclf-adjoint elements $y_{1}$ , $y_{2}\in A$ such that $y_{1}^{2}+y_{2}^{2}$ is invertible.) ([7]) $\cdot$,. $A$ has stable rank one (i.e. any element in $A$ can be approximated by an invertible element
in $A$ ) $(\sim\lceil 49])$ ;. $K_{0}(A)$ is weakly unperforated (i.e. $r\iota x$ $>0$ for so ne $n>0$ implies $x>0$ ) and with Riesz
interpolation property (i.e. $x_{1}$ , $x_{2}$ , $y_{\mathrm{J}}$ , $y_{2}\in K_{0}(A)$ with $x_{1}$ , $x_{2}\leq y_{1}$ , $y_{2}$ , then there is a $z\in$

$K_{0}(A)$ with $x_{1}$ , x2 $\leq z$ $\leq y_{1},y_{2}$ );. $A$ has the fundamental comparison property (Blackadar’s Fundamental Comparability Ques-
tion): if $p$ , $q\in A$ are two projections and $\mathrm{r}(\mathrm{p})<\tau(q)$ for all $\mathrm{T}(A)$ , then $p\sim q’$ with $q’\leq q$ .



S5

Remark 2.4. If A is a simple separable unital C’-algebra with $\mathrm{T}\mathrm{R}(A)$ $\leq 1$ and real rank zero,

then $\mathrm{T}\mathrm{R}(A)$ $=0$ .

Theorem 2.3 and Remark 2.4 suggest that the class of separable nuclear simple unital $\mathrm{C}^{*}-$

algebras with $\mathrm{T}\mathrm{R}(A)$ $=0$ reasonable replacement for the class of separable nuclear simple unital

quasidaigonal C’-algebras with real rank zero, stable rank one and with weaky unperforated $K_{0^{-}}$

groups. But there exists an exact, quasidaigonal simple $\mathrm{C}^{*}$-algebra with real rank zero, stable rank

one, the Universal Coefficient Theorem, unperforated $K_{0}$-group, Riesz interpolation property, and

the fundamental comparison property which has not tracial rank zero ([8, Corollary 7,2]).

Recall that a C’-algebra $A$ is AH if

$A= \lim_{\mathrm{n}arrow\infty}A_{11}$ ,

where $A_{n}=\oplus_{\iota=1}^{k(\tau\iota)}P_{(i_{\mathrm{i}}n)}\Lambda f_{(i.n)}(C(\lambda^{r}(i,n))P_{(i,n)},$ $P_{(i,n)}\in C(\lambda_{(i,\tau\iota)}’)$ is a projection and $X_{(\mathrm{a},n)}$ is a
connected $\mathrm{C}\mathrm{W}$-complex. If $A$ is simple, we say $A$ has slow dimension growth if

$\lim_{narrow\infty}\max_{i}\frac{\dim X_{(\iota,n)}}{1+\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}P_{(i,n)}}=0$.

$A$ is said to have no dimension growth, if there is integer $m>0$ such that

$\dim X_{(\mathrm{r},n)}\leq m$

for all $\mathrm{i}$ and $n$ . When each $X_{(i,n)}$ is an interval $I$ (resp. a circle $S^{1}$ ), then -4 is said to be an
$\mathrm{A}\mathrm{I}$-algebra (resp. $\mathrm{a}\mathrm{x}\mathrm{l}$

$\mathrm{A}\mathbb{T}$-algebra).

Note that simple AH algebras with the slow dimension growth and with real rank zero have no

dimension growth $($ [9], [14], $[1_{\partial}^{r}])$

Elliott and Gong ([12]) showed that every simple $\mathrm{A}\mathrm{H}$-algebra with no dimension growth and

with real rank zero has tracial rank zero.

Theorem 2.5. ([12]) Let $A$ and $B$ be two simple unital $\mathrm{A}\mathrm{H}$-algebras with slow dimension growth

and with real rank zero. Then $A\cong B$ if and only if

$(K_{0}(A_{\grave{J}}, K_{0}(A)_{+},$ $[1_{A}]_{0}$ , $K_{1}(A))\cong(K_{0}(B), K_{0}(B)_{+}$ , $[1_{B}]_{0}$ , $K_{1}(B))$ .

For simple separable unital C’-algebras with tracial rank zero Lin showed

Theorem 2.6. ([31]) Let $A$ and $B$ be two simple, separable, nuclear unital C’-algebras with

$\mathrm{T}\mathrm{R}(A)=\mathrm{T}\mathrm{R}(B)=0$ which satisfy the Universal Coefficient Theorem. Then $A\cong B$ if and only if

$(K_{0}(A), K_{0}(A)_{+}$ , $[1_{A}]_{0}$ , $K_{1}(A))\cong(K_{0}(B), K_{0}(B)_{+},$ $[1_{B}]_{0}$ , $K_{1}(B))$ .

Note that the above two classes of simple C’-algebras in Theorems 2.5 and 2.6 coincide ([31])
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3 Tracial Rokhlin property: Integer group Z case
3.1 Definition and basic facts

We start by defining the tracial Rokhlin property for single automorphisms (actions of $\mathrm{Z}$ ). It
is closely related to, but slightly weaker than, the approximate Rokhlin property of Definition 4.2

of [24]. To our knowledge, the idea was first introduced in [5]. It is closely related to the tracial

Rokhlin property for actions of finite cyclic groups, as in [44].

Definition 3.1. ([39]) Let $A$ be a stably finite simple unital $\mathrm{C}^{*}$-algebra and let $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ .
We say that $\alpha$ has the tracial Rokhlin property if for every finite set $F\subset A$ , every $\in$ $>0$ , every
$n\in \mathrm{N}$ , and every nonzero positive element $x$ $\in A$ , there are mutually orthogonal projections

$e_{0}$ , $e_{1}$ , $\ldots$ , $e_{n}\in A$ such that:

(1) $||\alpha(e_{f})-e_{j+1}||<\epsilon$ for $0\leq j\leq n-1$ .

(2) $||e_{j}a-ae_{j}||<\epsilon$ for $0\leq j\leq n$ and all $a\in F$.

(3) With $e= \sum_{j=0}^{n}e_{j}$ , tne projection l-e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of $A$ generated by $x$ .

We do not say anything about $\alpha(e_{n})$ .
In all applications so far, in addition to the conditions in Definition 3.1, the algebra $A$ has real

rank zero, and the order on projections over $A$ is determined by traces. In this case, we can replace

the third condition by one involving traces:

Lemma 3.2. ([39]) Let $A$ be a stably finite simple unital $\mathrm{C}^{*}$-algebra such that $\mathrm{R}\mathrm{R}(A)$ $=0$ and
the order on projections over $A$ is determined by traces. Let $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ . Then a has the tracial
Rokhlin property if and only if for every finite set $F\subset A$ , every $\epsilon>0$ , and every $n\in \mathrm{N}_{1}$ there are
mutually orthogonal projections $\mathrm{e}\mathrm{y},-\mathrm{i}$ , $\ldots$ , $e_{r\iota}\in A$ such that:

(1) $||\alpha(e_{j})-e_{j+1}||<\epsilon$ for $0\leq j\leq n-1$ .

(2) $||e_{j}a-ae_{j}||<\in$ for $0\leq j\leq n$ and all $a$ $\in F$.

(3) With $\rho$ $= \sum_{j=0}^{\mathrm{n}}e_{j}$ , we have $\mathrm{r}(1-e)$ $<-C$ for all $\tau\in T(A)$ .

We now want to relate the tracial Rokhlin property to forms of the Rokhlin property which
have appeared in the literature. The most important of these is as follows. (See, for example.

Definition 2.5 of [21], and Condition (3) in Proposition 1.1 of [26].)

Definition 3.3. Let $A$ be a simple unital $\mathrm{C}^{*}$-algebra and let a $\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ . We say that $\alpha$ has
the Rokhlin property if for every finite set $F\subset A$ , every $\epsilon$ $>0$ , every $n\in \mathrm{N}$ , there are mutually
orthogonal projections

$e_{0}$ , $e_{1}$ , $\ldots$ , $e_{\iota-1},$ , $f_{0}$ , $f_{1}$ , ... ’
$f_{\tau\iota}\in A$
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such that:

(1) $||\alpha(e_{j})-e_{j+1}||<\epsilon$ for $0\leq j\leq n-2$ and $||\alpha(f_{j})-fj+1||<\vee c$ toz $0\leq \mathrm{j}\leq n$ $-1$ .

(2) $||e_{f}a-ae_{j}||<\epsilon$ for $0\leq j\leq n-1$ and all $a\in F$, and $||f_{j}a-af_{j}||<\hat{\mathrm{c}}$ for $0\leq j\leq n$ and all
$a\in F$.

(3) $\sum_{\mathrm{j}=0}^{\tau\iota-1}e_{j}+\sum^{\prod_{=0}},f_{j}=1$.

Generally, the tracial Rokhlin property is weaker than the above Rokhlin property as follows:

Theorem 3.4. ([39]) Let $A$ be a stably finite simple unital C’-algebra and let $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{A})$ . Assume

either that $A$ has tracial rank zero, or that $A$ is approximately divisible ([3]), every quasitrace on
$A$ is a $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ , and that projections in $A$ distinguish the tracial states of $A$ . Suppose that $\alpha$ has the

Rokhlin property in the sense of Definition 3.3. Then $\alpha$ has the tracial Rokhlin property.

We have no example of an automorphism on a simple $\mathrm{C}$ ’-algebra with tracial rank zero which

has the tracial Rokhlin property, but does not have the Rokhlin property.

Question 3.5. Let $A$ be a simple separable unital $\mathrm{C}$ ’-algebra with tracial rank zero and let
$\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ . Suppose that $\alpha$ has the tracial Rokhlin property.

Is this true that $\alpha$ has the Rokhlin property in the sense of Definition 3.3 ?

Theorem 3.6. ([39]) Let $A$ be a stably finite simple unital $\mathrm{C}$ ’-algebra, and let $\alpha$ be an automor-

phism of $A$ which has the tracial Rokhlin property. Suppose $A$ has real rank zero and stable rank

one, and suppose that the order on projections over $A$ is determined by traces. Then $C^{*}$ ( $\mathrm{Z}$ , A. $\alpha$)

also has these three properties.

Question 3.7. Let $A$ be a simple unital $\mathrm{C}^{*}$-algebra with tracial rank zero. and let $\alpha$ be an
automorphism of $A$ which has the tracial Rokhlin property

Is it true that $C^{*}$ ( $\mathrm{Z}$ , A., $\alpha$ ) also has the tracial rank zero ?

There is an example of a simple $\mathrm{C}^{*}$ algebra $A$ which has three conditions in Theorem 3.6, but

does not have tracial rank zero, and an automorphism $\alpha$ on $A$ such that $\alpha$ has the tracial Rokhlin

property, but the crossed product algebra $C^{*}(\mathrm{Z},A,\alpha)$ does not have tracial rank zero.

Example 3.8. Let $n\in\{2,3, \ldots, \infty\}$ , let $F_{n}$ be the free group on $n$ generators, and let $\alpha$ be any

autom orphisrn of $C_{\mathrm{r}}^{*}(F_{n})$ . (An example which is particularly interesting in this context is to take

$n=\infty$ and to take $\alpha$ to be induced by an infinite order permutation of the free generators of $F_{n}$ .

Another possibility is to have $c\ell$ multiply the fc-th generating unitary by an irrational number $\lambda_{k}.$ )

Let $B$ be the 2” UHF atgebra and let $\beta\in$ Aut(B) have the Rokhlin property in [6]. Then $\alpha$ (&f3
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generates an action with the Rokhlin property from the elementary observation. Since $C_{\mathrm{r}}^{*}(F_{n})$ has

a unique tracial state, it follows from Corollary 6,6 of [50] that $C_{\mathrm{r}}^{*}(F_{n})\otimes B$ has stable rank one.
Moreover, $C_{\mathrm{r}}^{*}(F_{n})\otimes B$ is exact, so every quasitrace is a $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}([17][18])$ , whence Theorem 7.2 of [51]
implies that $C_{1}^{*},(F_{n})\otimes B$ has real rank zero and Theorem 5.2(b) of [51] implies that the order
on projections over $C_{\mathrm{r}}^{*}(F_{n})\otimes B$ is determined by traces. (In fact, $K_{0}(C_{\mathrm{r}}^{*}(F_{\tau\iota})\otimes B)$ is $\mathrm{Z}[\underline{.\frac{1}{\supset}}]$ with
its usual order.) We canl now use Theorem 3-4 to conclude that $\zeta f$ $\otimes\beta$ gen erates an action with
the tracial Rokhlin property. On the other hand, the corollary to Theorem Al of [52] shows that
$C_{\mathrm{r}}^{*}(F_{n})$ is not quasidiagonal so $C_{\mathrm{r}}^{*}(F_{a})$ ci $B$ is not quasidiagonal either. Theorem 3,4 of [29] (or

Theorem 2.3) therefore shows that $c_{\mathrm{r}}*(F_{n})\otimes B$ does not have tracial rank zero. Theorem 3.6 shows

that the crossed product $C^{*}(\mathrm{Z}, C_{\mathrm{r}}^{*}(F_{n})$ (& $B$ , a $\otimes\beta$ ) has real rank zero and stable rank one, and
that the order on projections over this algebra is determined by traces. However, it does not have
tracial rank zero by Theorem 2.3 because it contains the nonquasidiagonal $\mathrm{C}^{*}$ algebra $C_{\mathrm{r}}^{*}(F_{n})$ .

We can now give a version of Kishirnoto’s result, Theorem 2.1 of [26], giving conditions for the
Rokhlin property on a sim ple unital AT-algebra with real rank zero and a unique tracial state.

Theorem 3.9. ([40]) Let A be a simple separable unital C’-algebra with tracial rank zero, and
suppose that $A$ has a unique tracial state $\tau$ . Let $\pi_{\tau}$ : $Aarrow L(H_{\tau})$ be the Gelfand-Naimark-Segal
representation associated with $\tau$ . Let a $\in \mathrm{A}\mathrm{u}\mathrm{t}(A)$ . Then the following conditions are equivalent:

(1) $\alpha$ has the tracial Rokhlin property.

(2) The automorphism of $\pi_{\tau}(A)$
” induced by $\mathrm{r}\mathrm{z}^{n}$ is outer for every $n\neq 0$ , that is, $\alpha^{n}$ is not

weakly inner in $\pi_{\tau}$ for any $n\neq 0$ .

(3) $C^{*}(\mathrm{Z}, A, \mathrm{c}1)$ has a unique tracial state.

(4) C’ $(\mathrm{Z}, A, \alpha)$ has real 1 ank zero.

When $\alpha$ satisfies the approximate innerness, we have the following:

Theorem 3.10. ([32]) Let $A$ be a simple separable unital $\mathrm{C}$ ’-algebra which satisfies the Universal
Coefficient Theorem, which has tracial rank zero, and which has a unique tracial state. If $\alpha\in$

Aut(A) has the Rokhlin property and if $\alpha^{n}$ is an approximately inner for some $n>0$ , then
$C^{*}(\mathrm{Z}, A, \alpha)$ is a simple $\mathrm{A}\mathrm{H}$-algebras with no dimensional growth and real rank zero.

3.2 Noncommutative Furstenberg transformations

Furstenberg introduced in [13] a family of homeomorphisms of $S^{1}$ )$\langle$
$S^{1}$ , now called Furstenberg

transformations. They have the form

$h_{\gamma,d,f}(\zeta_{1}, \zeta_{7}\sim)=(e^{2\pi i\gamma}\zeta_{1}, \exp(2\pi \mathrm{i}f(\zeta_{1}))(_{1}^{d}\zeta_{\underline{n}})$ ,
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with fixed $\gamma\in \mathrm{R}$ , $d\in \mathrm{Z}$, alld $f:S^{1}arrow \mathrm{R}$ continuous. For $\gamma\not\in$ $\mathrm{Q}$ and $d\neq 0$ , Furstenberg proved

that $h_{\gamma,d,f}$ is minimal. These homeomorphisms, and higher dimensional analogs (which also appear
in [13] $)$ , have attracted significant interest in operator algebras (see, for example, [42], [22], [28],

and [48] $)$ and in dynamics (see, for example, [20] and [53]).
For anv $\theta\in \mathrm{R}$, the formula for the automorphism $g\vdash+g\mathrm{o}h_{\gamma,d,f}$ of $C(S^{1}\mathrm{x} S^{1})$ also defines

an automorphism of the rotation algebra $A_{\theta}$ . Taking the generators of $A_{\theta}$ to be unitaries $u$ and $v$

satisfying $vu=e^{arrow?\pi i\theta}.uv$ , we obtain an automorphism $\alpha_{\theta,\gamma,d,f}$ of $A_{\theta}$ as follows:

Definition 3.11. ([40]) Let 0, $\gamma\in \mathrm{R}$ , let $d\in \mathrm{Z}$ , and let $f:S^{1}arrow \mathrm{R}$ be a continuous function.
The Fitrstenberg transformation on $A_{\theta}$ determined by $(\theta,\gamma, d, f)$ is the automorphism $\alpha\theta,\gamma,d,f$ of
$A_{\theta}$ such that

$a_{\theta,\gamma,d,f}(u)=e^{2\pi i\gamma}u$ and $\alpha\theta,\gamma,d,f(v)$ $=\mathrm{c}\mathrm{x}\mathrm{p}(27\mathrm{T}\mathrm{i}f(u))u^{d}v$ .

When $\theta\not\in \mathrm{Q}$ , it is the most general automorphism $\alpha$ of $A_{\theta}$ for which $\alpha(u)$ is a scalar multiple of
$u$ . That is,

Proposition 3.12. ([40]) Let $\theta\in \mathrm{R}$ $\backslash \mathrm{Q}$ and let $\gamma\in$ R. Let $\alpha\in \mathrm{A}\mathrm{u}\mathrm{t}(A_{\theta})$ be an automorphism

such that $\alpha(u)$
$=e^{2\pi i_{\urcorner}}u$. Then there exist $d\in \mathrm{Z}$ and a continuous function $f:S^{1}arrow \mathrm{R}$ such that

$\alpha=\alpha_{\theta,\gamma,d,f}$ .

The noncommutative Furstenberg transformations are our motivating example to define the

tracial Rokhlin property. In fact we can conclude the following.

Theorem 3.13. ([40]) Let $\theta$ , $\gamma\in \mathrm{R}$ and suppose that 1, $\theta$ , $\gamma$ are linearly independent over Q. Let
$d\in$ Z. Then the automorphism a $=a_{\theta,\gamma,d,f}\in \mathrm{A}\mathrm{u}\mathrm{t}(A_{\theta})$ , of Definition 3.11, has the tracial Rokhlin

property.

It follows from Theorem 4 and Remark 6 of [11] and Proposition 2,6 of [29] that when $\theta$ $($

$\mathrm{R}\backslash \mathrm{Q}$, $A_{\theta}$ has tracial rank zero. Also, $A_{\theta}$ has a unique tracial state $\tau$ . The statement comes from

Theorem 3.9(2).

Corollary 3.14. Let $\theta$ , $\gamma$
$\in \mathrm{R}$ and suppose that 1, $\theta$ , $\gamma$ are linearly independent over Q. Let

$d\in \mathrm{Z}$ . Let $\alpha_{\theta,\gamma,d,f}\in \mathrm{A}\mathrm{u}\mathrm{t}(A_{\theta})$ be as in Definition 3.11. Th en:

(1) $C^{*}(\mathrm{Z}, A_{\theta}, \alpha_{\theta,\gamma,d,f})$ is simple.

(2) $C^{*}$ ( $\mathrm{Z},$ $A_{\theta}$ , a $\theta,\gamma,d.f$ ) has a unique tracial state.

(3) $C^{*}(\mathrm{Z}, A_{\theta}, \alpha_{\theta,\gamma,d_{\backslash }f})$ has real rank zero.

(4) $C^{*}(\mathrm{Z}, \mathrm{A}\mathrm{O}, \alpha_{\theta,\gamma,d,f})$ has stable rank one.

(5) The order on projections over $C^{*}(\mathrm{Z}, A_{\theta}, \alpha_{\theta,\gamma.d.f})$ is determined by traces
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(6) $C^{*}(\mathrm{Z}, A_{\theta}, \alpha_{\theta,\gamma,d,f})$ satisfies the local approximation property of Popa [46] (is a Popa algebra

in the sense of Definition 1.2 of [8] $)$ .

The following problems are still open.

Question 3.15. Let $\theta$ , $\gamma\in \mathrm{R}$ and suppose that 1, $\theta$ , $\gamma$ are linearly independent over Q.

Does $\alpha_{\theta,\gamma,d,f}$ have the Rokhlin property ?

Question 3.16. Let $\theta$ , $\gamma\in \mathrm{R}$ and suppose that 1, 0, 7 are linearly independent over Q.

Does $C^{*}(\mathrm{Z}, A_{\theta}, \alpha_{\theta,\gamma,d,f})$ have tracial rank zeo 7

Recently, Lin and Phillips ([33]) proves that when $h_{\gamma,d.[}$ has uniquely ergodicity, then C’ $(\mathrm{Z},$ $S^{1}\mathrm{x}$

$S^{1},\alpha_{h_{\gamma,d,f}})$ has tracial rank zero, where $\alpha_{h_{\gamma,d}},$ ’ : $C(S^{1}\mathrm{x} S^{1})arrow C(S^{1}\mathrm{x} S^{1})$ by $\alpha_{h_{\gamma,d,f}}(g)=g\circ h_{\gamma,d,f}$ .
The method of proof of Theorem 3.13 applies to other example as well. For example, in a series

of papers [35], [36], [37], [38], [54], Milnes and Walters have studied the simple quotients of the
$\mathrm{C}$ ’-algebras of certain discrete subgroups of nilpotent Lie groups of dimension up to five, which
are a kind of generalization of the irrational rotation algebras, which occur when the Lie group
is the three dimensional He\‘isenberg group. Since each of these is the crossed product of a simple
$\mathrm{C}$ ’-algebra (the C’-algebra of an ordinary minimal Furstenberg transformation on $S^{1}\mathrm{x}$ $S^{1}$ ) by an
automorphism with the tracial Rokhlin property, we can conclude that these algebras have stable
rank one and real rank zero, and that the order on projections over them is determined by traces.

4 Tracial Rokhlin property: Finite group G case
We begin with Izumi’s definition of the Rokhlin property. To emphasize the difference, we call

it the strict Rokhlin property here.

Definition 4.1. Let $A$ be a unital $\mathrm{C}^{*}$-algebra, and let $\alpha:Garrow$ Aut(A) be an action of a finite
group $G$ on $A$ . We say that $\alpha$ has the strict Rokhlin property if for every finite set $F\subset A$ , and
every $\epsilon$ $>0$ , there are mutually orthogonal projections $e_{g}\in A$ for $g\in G$ such that:

(1) $||\alpha_{g}(e_{/\iota})-e_{gh}||<\epsilon$ for all 9, $h\in G$ .
(2) $||e_{\mathit{9}}a-ae_{g}||<\epsilon$ for a1J $g\in G$ and all $a\in F$.
(3) $\sum_{g\in G}e_{g}=1$ .

We note that if $\alpha$ is approximately inner, requiring $\sum_{g\in G}e_{\mathit{9}}=1$ forces $[1\mathrm{A}]\in K_{0}(A)$ to be
divisible by the order of $G$ , and therefore rules out many $\mathrm{C}^{*}$-algebras of interest.

The following might be well known.

Theorem 4.2. $(’[41])$ Let $A$ be a unital $\mathrm{A}\mathrm{I}$-algebra(resp. AT-algebra), and let $\alpha\in$ Aut(A) be an
automorphism which satisfies $\alpha^{n}=\mathrm{i}\mathrm{d}_{A}$ and such that the action of $\mathrm{Z}/n\mathrm{Z}$ generated by $\alpha$ has the
strict Rokhlin property. Then C’ $(\mathrm{Z}/n\mathrm{Z}, A, \alpha)$ is a simple unital $\mathrm{A}\mathrm{I}$-algebra(resp, AT-algebra),
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We now give the definition of the tracial Rokhlin property. The difference is that we do not

require that $\sum_{g\in G}e_{g}=1$ , only that 1 $- \sum_{g\in G}e_{\mathit{9}}$ be $‘’.\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}$
” in a tracial sense. Of course,

$\sum_{g\in G}e_{g}=1$ is allowed, in which case Conditions (3) and (4) in the definition are vacuous.

Definition 4.3. ([45]) Let $A$ be an infinite dimensional simple unital C’-algebra, and let $\alpha:Garrow$

Ant(A) be an action of a finite group $G$ on $A$ We say that $\alpha$ has the tracial Rokhlin property if

for every finite set $F\subset A$ , every $\epsilon$ $>0$ , and every positive element $x\in A$ with $||x||=1$ , there are
nonzero mutually orthogonal projections $e_{g}\in A$ for $g$ $\in G$ such that:

(1) $||\alpha_{g}(e_{h})-e_{gh}||<\epsilon$ for all $g$ , $h\in G$ .

(2) $||e_{g}a-ae_{g}||<\Xi$ for all $g\in G$ and il $a\in F$.

(3) With $e= \sum_{g\in G}e_{g}$ , the projections l-e is Murray-von Neumann equivalent to a projection

in the hereditary subalgebra of $A$ generated by $x$ .

(4) With $e$ as in (3), we have $||exe||>1-\epsilon$ .

Note that when $A$ is finite, the condition (4) in Definition 4.3 is unnecessary ([45]).

When $\alpha$ is an action of a simple $\mathrm{C}^{*}$-algebra $A$ with tracial rank zero by a finite group $G$ , the

crossed product $C^{*}(G, A, \alpha)$ has also tracial rank zero $([4_{\acute{i\mathrm{J}}}])$ . Moreover we have the following:

Theorem 4.4. ([41]) Let $A$ be a simple unital C’-algebra with $\mathrm{T}\mathrm{R}(A)$ $\leq 1$ . Suppose that $\alpha\in$

Aut(A) has the tracial Rokhlin property with $\alpha^{n}=1$ . Then

$\mathrm{T}\mathrm{R}(C^{*}(\mathrm{Z}/n\mathrm{Z},A,\alpha))\leq 1$.

Related to Question 3.5 we have an example of an action with tracial Rokhlin property which

does not have strictly Rokhlin property.

Definition 4.5. For and nuclear C’-algebra A, we Jet $\varphi_{A}$ : $A\otimes Aarrow A\otimes A$ denote the flip auto-

morphism, determined by $\varphi_{A}(a\otimes b)=b$ (& a for a, b $\in A$ .

Recall that a C’-algebra $A$ is subhomogeneous if every irreducible representation of $B$ is finite

dimensional. Further recall that an ASH-algebra is a C’-algebra $A$ such that for every finite set

$F\subset A$ and every $\epsilon>0$ , there is a unital subhomogeneous $B\subset A$ such that dist(o, $B$) $<\epsilon$ for

every $a\in F$

Proposition 4.6. $([41\rceil)\sim$ Let $A$ be a unital ASH-algebra. Then the action of $\mathrm{Z}/2\mathrm{Z}$ generated by

$\varphi_{A}$ does not have the strictly Rokhlin property.

In particular, the flip on a si npIe $\mathrm{A}\mathrm{H}$-algebra with (very) slow dimension growth never generates

an action with the Rokhlin property.
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Proposition 4.7. ([41]) Let $A$ be a simple unital C’-algebra which is approximately divisible in

the sense of [3]. Then the flip $\varphi_{A}$ on any symmetric tensor product $A\otimes A$ generates an action of
$\mathrm{Z}/2\mathrm{Z}$ with the tracial Rokhlin property.

Therefore, the flip on $A_{\theta}\otimes A_{\theta}$ has the tracial Rokhlin property, but does not have the strictly

Rokhlin property.
Finally, we give an example of an automorphism on UHF algebra of period 2 which does not

have the tracial Rokhlin property.

Example 4.8. Elliott constructed an automorphism $\alpha$ of period 2 on UHF such that $C^{*}(\mathrm{Z}/2\mathrm{Z}, UHF, \alpha)$

has real rank one (i.e. its tracial rank is not 0). Hence from Theorem 2.3 and [45] we know that ch

does not have the tracial Rokhlin property. Note that the dual action of $\alpha$ has the strictly Rokhlin

property ([41]).
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