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NON-DEGENERATE BILINEAR FORMS AND FIBER
FUNCTORS
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ABSTRACT. We shall review a categorical approach to the basic
quantum group SLq(2,C) or SU4(2) based on the preprint S. Ya-
magami, Fiber functors on Temperley-Lieb categories,
arXivimath.QA/0405517.

1. CLASSICAL TANNAKA DUALITY

The notion of tensor category is traced back to the celebrated work
of T. Tannaka on a duality theory of compact groups.
Given a compact group G, let

Rep(G) = the category of finite-dimensional unitary representations of G,

which is referred to as the Tannaka dual of G and provides a typlcal
example of tensor categories:
e Given two objects (representations) V, W, another object VoW
is associated functorially so that (U @V)@W =UQ (V@ W).
e There is a special object I, the trivial representation of GG, which
satisfies I V =V &I for any V.
o We have the operation of taking constragradient representation
V — V*, which is categorically characterized by the existence
of morphisms ¢ : V®@V* — I and § : I — V* @V such that the
compositions

V 1y ®6 V ® V* ® Yy =, eRly V>

Ve O o vy S Ly v
are identities.
The Tannaka dual has the special ferature that it is realized as a sub-
category of Vec, the category of finite-dimensional vector spaces, or
Hilb, the category of finite-dimensional Hilbert spaces.
The celebrated Tannaka duality states that the group G itself is
recovered by looking at the categorical information on representations.
Here are some important generalizations to quantum groups.
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~
Unitary version (Woronowicz, 1988):
Compact quantum groups
<= rigid C*-tensor categories C Hilb. J
\.
a Y

Algebraic version (Ulbrich, 1990):

Algebraic quantum groups

<= rigid tensor categories C Vec.
N ,/
Typical examples are SU,(2) (g € R*) and SL,(2,C) (¢ € C).

2. FIBER FUNCTORS

We shall here split the relevant information in Tannaka duality into
two parts. Given an abstract tensor category 7, a fiber functor on 7
is, by definition, a faithful tensor fuentor F : 7— Vvec: Each object X,
which is conisdered to an abstract label, produces a finite-dimensional
vector space F(X) in such a way that F(X ®@Y) = F(X)® F(Y). In
other words, a fiber functor is a kind of representation of an abstract
tensor category 7 in terms of the concrete tensor category Vec or Hilb.

Viewing quantum groups this way, we are naturally lead to the prob-
lem of their representation theoretical classifications: Again we have
two stages.

e Classify abstract tensor categories.
e Classify fiber functors on a tensor category up to equivalences.

Here ‘equivalences’ are with respect to a natural equivalence, say {ex},
preserving tensor products. '

F(X) 25 FI(X)

7 70, oxer —px®or.
F(Y) —— F(Y)

Py

3. TEMPERLEY-LIEB CATEGORIES

Generally classification is a difficult problem for tensor categories
because it consists of determining moduli for non-linear equations.
We shall here restrict ourselves to the simple but fundamental case
of Temperley-Lieb category 724 (d € C* being a complex parame-
ter), which is the linearization of the monoidal category of Kauffman’s
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monoids and turns out to be the representation category of the quan-
tum group SLy(2,C).

TLy = Rep(SL,(2.C)), withd=—g—q".

By definition, Kauffman’s monoids are isotopy classes of planar
strings stretched out between upper and lower boundaries of a strip.
Let K be the set of Kauffman’s monoids with m and n vertices
placed on upper and lower boundaries respectively. Here is a figure for
the case Ky 4.

| P AN | A

Objects in 7L4 are labeled by the natural numbers {0,1,2,...} with
hom-sets given by T£4(n,m) = C[Knm.y], the free vector space generated
by the set K, ,. We regard each n as representing n-th tensor product
of the object V labeled by 1:

n-times

n < V®~-®i7

The structure of tensor category is then defined as follows:

e The operation of composition is given by the concatenation of
‘monoids with each closed circle replaced by the complex number

d. U
22 TS,
G o

V@Y

e Tensor product is defined by the horizontal juxtaposition of
base monoids:

([ n)@’(l u) - S

T ETLy fd#d.

Note here that

With this geometrical presentation of Temperley-Lieb categories, we
have
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Ve N\
Theorem

[_I {{fiber functors on TLq} / ~)

deC*

o7

{non-degenerate bilinear forms} / ~

B~ B ¢ B'='TBT for some inbertible linear map 7.
.
Basic arcs in Kauffman’s monoids are repaced with non-degenerate
bilinear forms by fiber functors.

With a choice of linear basis, non-degenerate bilinear forms are rep-
resented by invertible matrices and the above classification problem
can be deal with by the following result:

- I
Williamson-Wall Theorem: Let

©:GL(n,C) 3 B—'B'B € GL(n,C).
Then
GL(n,C)/ ~ = ©O(GL(n,C))/similarity.
An invertible matrix M belongs to ©(GL(n,C)) if and only if
(1) par(z) = pps(277) for z € ¥,
(2) u{¥(1) is even for even k,

(3) u¥(=1) is even for odd k.

Here

pe(2) = (ufg (2), 182 (2), ),
denotes the multiplicity function of the matrix A: ,ug}} (2) is the multi-
plicity of 2-Jordan block of size k in M. Note here that the parameter
is related to 8(B) by the formula

d = trace(@(B)) = trace(*B~'B).

Example: We have the following identifications.

GL(2,C)/ ~ = (_Oq é)/(qu‘l)l__[ (_11 é)

( 0 1) > SLa(2,€),

—-q 0

with

(_11 (1)) +— Woronowicz’ Hopf algebra.
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More generally, algebraic quantum groups of Dubois-Violette and
Launer {1990), together with their representation categories, are clas-
sified in this way.

4. UNITARY FIBER FUNCTORS

A C*-tensor category is, by definition, a tensor category with a com-
patible C*-structure. It is well-known that the Temperley-Lieb cat-
egory TLq is a C*-tensor category if and only if d € R and |d| > 2.
Moreover the C*-structure is unique up to natural equivalences.

We can work out a similar characterization of unitary fiber functors
on the Temperley-Lieb C*-category TZg:

{unitary fiber functors on 7€} / ~= {i) V-V = =1 }/ ~,

where the equivalence relation ~ is defined by ® ~ *U®U with U a
unitary operator on V.

In terms of an eigenvalue-list of the positive part {®| of ®, we have
the following description:

~
Theorem:
An equivalence class of unitary fiber functors < an unordered se-
quence {h; > 0} such that
{r;'} = {;}, tx(|2") = ld],
(d/}d)™ =1, m = dimker(|®|— 1).
. ' J
o ZZ7TL LT T 7 I STSY LTI Y )22
LSS S = LI e
0 1

(i) n = 2: For each |d] > 2, 3 a unique
{(h,h Y h > LR+ R =d]
(il) n = 3: For d > 3, a new choice
(R, 1L,k > AP+ R+ 1=4d
(iii) n = 2k: For |d| > n,
{hj, B} by > 1, (B3 +h;%) = |dl.

J

35
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(iv) n =2k +1: For d > n,
{hy, 711 by 2 1Y (R 4+ h;Y) =d - 1.
J
Set t; = hZ + h;* — 2,

Sty=ld—2kor Y t;=d—2k—1
J J

Then the parameter space (moduli) of unitary fiber functors is the
k — 1-dimensional simplex

{(ts, .- ta)st; 20,3 t; =7}/S%.
J

b . |

—4 -2 0 1 2 3 4 d
In this way, we have multiparameter families of compact quantum

groups, which turns out to be Wang-Banica’s universal quantum group
of orthogonal type.




