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English summary
By a knot we mean an embedding from $S^{1}$ into $S^{3}$ or $\mathbb{R}^{3}$ , or its image.

By a link we mean a disjoint union of knots. We only study 2-component

links.
Let $K$ be a knot, and let $x,y$ be a pair of distinct points on $K$ . Let

$\Sigma(x, x+dx, y, y+dy)$ be a sphere through the four points $x$ , $x+dx,y$ , $y+$

$dy$ . It is uniquely determined unless these four points are concircular. By

identifying $\Sigma(x, x+dx, y,y+dy)$ with the complex sphere $\mathbb{C}\cup\{\infty\}$ , we

can consider four points $x,x+dx_{?}y$ , and $y+dy$ as four complex numbers.

Let $\Omega$ denote the cross ratio of these four complex numbers, and call it the

infinitesimal cross ratio of a knot $K$ . Although the four complex numbers

are not uniquely determined, their cross ratio can be uniquely defined. The

infinitesimal cross ratio can be considered as a complex valued 2-form on
$K\mathrm{x}$ $K\backslash \triangle$ . It is, by definition, invariant under Mobius transformations.

We show that the energy of knots $E_{\mathrm{o}}^{(2)}$ can be expressed in terms of the

infinitesimal cross ratio. An energy of knots is a functional on the space of

knots which blows up as a knot degenerates to a singular knot with double

points. It was introduced to produce a “canonical embedding” for each knot

type as an embedding which gives the minimum value of the energy within

its isotopy class. $E_{\mathrm{o}}^{(2)}$ is defined by

$E_{\mathrm{o}}^{(?)}.(K)=-4+ \iint_{K\mathrm{x}K}(\frac{1}{|x-y|^{2}}-\frac{1}{d_{K}(x,y)^{2}})$ dxdy,

where $d_{K}(x, y)$ denotes the arc-length between $x$ and $y$ .
We then give interpretations of the real and imaginary parts of the in-

finitesimal cross ratio from a conformal geometric viewpoints, i.e. by using
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what is invariant under M\"obius transformations.
The first interpretation of the real part of the infinitesimal cross ration

is given as follows. A pair of ordered distinct points can be considered as
an oriented 0-sphere $S^{0}$ . Let $\mathrm{S}(3, 0)$ be a space of oriented $S^{0}$ in $S^{3}$ . It

is homeomorphic to the two points configuration space $S^{3}\mathrm{x}$ $S^{3}\backslash$ L. It

can also be identified with the total space of the cotangent bundle $T^{*}S^{3}$ .
Then the real part of the infinitesimal cross ratio is equal to the pull-back

of the standard symplectic form of $T^{*}g^{3}\underline{\simeq}s^{3}$ )$\langle$ $S^{3}\backslash$ A by an inclusion map
$K\mathrm{x}$ $K\backslash$ IIS $\mathrm{C}arrow tS^{3}\mathrm{x}$ $S^{3}\backslash$ L.

The second interpretation of the real part of the infinitesimal cross ration

is given as follows. Let us first consider $S^{3}$ as the set of the points at

infinity of the upper half light cone in the Minkowski space $\mathbb{R}^{4,1}$ . Then we
can consider $\mathrm{S}(3,0)$ as the oriented Grassmannian manifold of the set of

2-dimensional vector subspace of mixed-type in $\mathbb{R}^{4,1}$ . It allows us to endow
semi-Riemannian structure with signature $(3, 3)$ to $\mathrm{S}(3,0)$ . (This fact can

be proved in several ways, for example, by using PKicker coordinates, or

by considering $\mathrm{S}(3_{7}0)$ as a homogeneous space $SO(4_{?}1)/SO(3)\mathrm{x}$ SO $(\mathit{1}, 1)$ .

But it is convenient to use of pencils of codimension 1 spheres in $S^{1}$ for

proofs.) As points $x$ and $y$ move along $K$ , the set of pairs $(x, y)$ form a
surface in $\mathrm{S}(3,0)$ . Then the real part of the infinitesimal cross ratio is equal

to the “imaginary” area element of this surface.
Unlike the real part, the imaginary part of the infinitesimal cross ratio

cannot have a global interpretation. If we consider $S^{3}$ as the boundary of

thhe hyperbolic 4-space, the imaginary part of the infinitesimal cross ratio

is locally equal to the “transversal area form” of geodesies in $\mathbb{H}^{4}$ joining $x$

and $y$ .


