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Error Bounds of P-matrix Linear
Complementarity Problems:

Xiaojun Chen? Shuhuang Xiang®

1 Introduction

The linear complementarity problem is to find a vector # € R™ such that
Mz+¢>0, 220, oT(Mz+q)=0,

or to show that no such vector exists, where M € B™*™ and ¢ € R". We denote this

problem by LCP(M, q). A matrix M is called a P-matrix if

Tax, z;(Mz); >0 forall z#0.

It is well-known that M is a P-matrix if and only if the LCP(}, g) has a unique solution

for any g € R [6]. Recall the following definitions for an n X n matrix.
M is called an M-matrix, if M~ > 0and M;; <0 (i #j) ford,j =1,2,...,n
M is called an H-matrix, if its comparison matrix is an M-matrix.

It is known that an H-matrix with positive diagonals is a P-matrix. Moreover, if M
is a P-matrix, then there is a neighborhood M of M, such that all matrices in M are
P-matrices. Hence, we can define a solution function z(A,b) : M x R® — R[, where
z(A,b) is the solution of LCP(4,b) and R} ={z € R" [z 2 0}.

Tt is easy to verify that z* solves the LCP(M, ¢) if and only if x* solves

r(z) = min(z, Mz +q) = 0,

where the min operator denotes the componentwise minimum of two vectors. The func-
tion r is called the natural residual of the LCP(M,g), and often used in error analysis.

Error bounds for the LCP(M, ¢) have been studied extensively, see [3, 6, 7, 11, 9, 12, 15].
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2 Global error bounds for P-matrix linear complementar-

ity problems

For M being a P-matrix, Mathias and Pang [11] present the following error bound

for any =z € R®, where

(M) = | I]1|r1i11_1 { max wi(Ma:)i} .

1<itn
This error bound is well known and widely cited. However, the quantity ¢(M) in (2.1) is
not easy to find. For M being an H-matrix with positive diagonals, Mathias and Pang
[11] gave a computable lower bound for ¢{M),
(m{in bs) (miin(M ~1b):)
(max(3170)

(M) > =: &(b), (2.2)

for any vector b > 0, where M is the comparison matrix of M, that is
My = M Mij = —|My;| for 4 # j.

However, finding a large value of &(b) is not easy. For some b, é(b) can be very small,

and thus the error coefficient
) = L1 (23)
can be very large.
Interval methods for validation of solution of the LCP(M,g) have been studied in
[1, 14]. When a numerical validation condition for the existence of a solution holds, a
numerical error bound is provided. However, the numerical validation condition is not

ensured to be held at every point z.

In [4], we observed that for every z,y € R,
min(z;, ;) — min(z}, ) = (1 — di) (i — z}) + di{yi — 7)), ieN (2.4)

where
0 ifyiz,q;i, y;,"zm;ﬁ
dz': 1 ifyiS:L'i, y:sm;“
min(z;,y;) — min(ef, yf) + of — T

otherwise.



Moreover, we have d; € [0,1]. Hence putting y = Mz + g and y* = Mz* +q in (2.4), we
obtain

r(z)= (I —-D+DM)(z - z"), {(2.5)

where D is a diagonal matrix whose diagonal elements are d = (d1,da, .. .,dy) € [0,1]™
1t is known that M is a P-matrix if and only if I —~ D + DM is nonsingular for any
diagonal matrix D =diag(d) with 0 < d; < 1 [10]. This together with (2.5) yields upper

and lower error bounds,

Ir ()]
o 1= o < o=@l < mes 1= D+ DM @) (26)

Moreover, it is not difficult to verify that if M is a P-matrix and D =diag(d) with
d € [0,1]", we have

Joax, z;((I — D+ DM)z); >0, forallz #0,

that is, (I — D + DM) is a P-matrix. Therefore, computation of rigorous error bounds
can be turned into || - || optimization problems over a P-matrix interval set, which is
related to linear P-matrix interval systems.

The linear interval system has been studied intensively and some highly efficient
numerical methods have been developed, see [13, 14] for references. In the rest part of

this section, we give some simple upper bounds for

max ||(I - D + DM}
defo,1]™

Theorem 2.1 [4] Suppose that M is an H-matriz with positive diagonals. Then we have

e (I — D+DM)™ || < | M~ max(A, T)]. (2.7)

Remark 1. Since M~ max(A, I) > 0, we have
13~ max(A, D)||oo = || M max(A, el

and

157" max(A, Dz = [|(e7 3~ max(A, 1)) oo

The upper error bound in (2.7) with || - Jleo or || - ||1 can be computed by solving a linear

system of equations min(A™%, DMz =e or M  min(A™}, I)z = .
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Theorem 2.2 [{] Suppose that M is an M-matriz. Let V = {v | MTy < e,v > 0} and
flv)= mex (e+v— M%v);. Then we have

% I(I-D+DM) ;= max Flv). (2.8)

Theorem 2.3 [{] If M is a P-matriz, then for any x € R", the following inequalities
hold.

——||Ir{z)[leo (Mathias-Pang [11])

1+ HM ”oo

< W{]r(m)ﬂw ( Cottle-Pang-Stone [6])
_ 1

- 0%, I - D+ DM|w Ir(@)les

< e = 2%{loo

< max ||(I = D+ DM) Hoollr(@)]oo

delo,1j"
< 2elb Pl e o))
= 2l ) - 2 I o)
<12 t(l%“w Ir(@)|  (Mathias-Pang [11])).

Theorem 2.4 [4] If M is an H-matriz with positive diagonals, then for any xz,b € R,
b > 0, the following inequalities hold.

lz — 2"l

< jmax |(I—D+DM) Hloo () oo

< 1M max(A, I)|oofir(2) oo
< (u(b) = | M7 min(A, T loo) I (2) oo
< p(B)|ir(z)]| o (Mathias-Pang [11]}).

In addition, if M is an M-matriz, then for any x € R™, the following inequalities hold.

e = 2o

< M7 max(A, 1) oo () |oo
1+ HMHoo

J1+ i

— M)

= 1M~ min(A, D)l (z)llo

ir(z) o {Mathias-Pang {11)).



Applying Theorem 2.1, we obtain the following relative error bounds

Corollary 2.1 /4] Suppose M is an H-matriz with positive diagonals. For any = € R",
we have
_r@)l <z =2l [ M|}~ max(A, 1) | ||r(z)
A+ MM max(A, DI (=)« = =¥ 7 (=)l '

3 Perturbation bounds of P-matrix linear complementar-

ity problems

In [6], Cottle, Pang and Stone introduced the following Lemma which has been widely
applied in perturbation bounds based on the fundamental quantity associated with a
P-matrix,

(M) = rﬁlin max {z;(Mz)i}.

e]co=11<1<n

Lemma 3.1 [6] Let M € R™ " be a P-matriz. The following statements hold:

(i) for any two vectors ¢ and p in R",

1

lz(M,q) — z(M,p)lloc < E(_M_)“q — Plloo

(ii) for each wvector ¢ € R", there exist a neighborhood U of the pair (M,q) and a
constant cg > 0 such that for any (A,b), (B,p) €U, A, B are P-matrices and

12(4,b) = 2(B,p)llso < coll4 — Blloo + b~ plloo)-

Lemma 3.1 shows that when M is a P-matrix, for each g, z(4,b) is a locally Lip-
schitzian function of (4,b) in a neighborhood of (M,q), and z(M,b) is a globally Lip-
schitzian function of b. This property plays a very important rule in the study of the
LCP and mathematical programs with LCP constraints [8]. However, the constant ¢(M)
is difficult to compute, and cg is not specified. It is hard to use this lemma for verifying
accuracy of a computed solution of the LCP when the data (M, g) contain errors.

For M being a P-matrix, we [5] introduce the following constant

B(M) = mex (I~ D+ DM)™D.

In the follows, we compare S{M) with ¢(M)™* in || - [lcc and give a simple version of
B(M) for M being an M-matrix, a symmetric positive definite matrix, and positive

definite matrix.
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Theorem 3.1 [5] Let M be a P-matriz. Then
1
o (M) = I—D+DM) "' Diw £ -
5ue(M) = . (I =D+ DM) ™ Dllo < 75
It is known that an H-matrix with positive diagonals is a P-matrix, and a positive

definite matrix is a P-matrix [6]. Now, we consider the two subclasses of P-matrix.
Theorem 3.2 [5] Let M be an H-matriz with positive diagonals. Then
(M) < |7,

where M is the comparison matriz of M. In particular, if M is an M-matriz, then the

equality holds.
Theorem 3.3 /5] Let M be a symmetric positive definite matriz. Then

Ba(M) := S (I =D+ DM)™'Dll2 = {|M||2.

In comparison to Lemma 3.1, the following theorem gives sharp perturbation error

estimates for the P-matrix LCP
Theorem 3.4 [5] Let M € R™*™ be a P-matriz. Then the following statements hold:

(i) For any two vectors ¢ and p in R,
l2(M, q) — =(M,p)|| < B(M)]iq - p.
(ii) Every matriz A € M :={A | B(M)||M — A}| £ n < 1} is a P-matriz. Let
() = 7= B(M).
Then for any A,B € M and q,p € R*

Iz(4,9) — 2(B, )l S a(M)?[[(=p)+|lllA - Bll + «(M)]lg - pl-

From Theorem 3.2 and Theorem 3.3, the Lipschitz constants §(M) and a(M) can be
estimated by matrix norms, if M is an H-matrix with positive diagonals or a symmetric

positive definite matrix. In particular, we have the following two corollaries.

Corollary 3.1 [5/ Let M € R™™ be an H-matriz with positive diagonals. Then the

following statements hold:



a1

(i) For any two vectors q and p in R",
l2(M,q) = 2(M,p)lloo < [~ loollg ~ Plleo

(i) Bvery matriz A € Moo i= {A | |M || M — Aleo <71 < 1} is an H-matriz with

positive diagonals. Let
1 .
oo M) = ——||M"|oo-
oo (M) = 7= 137 o

Then for any A, B € Mu and ¢,p € R”
Jiz(A, q) = 2(B,)lloo < oo(M)?[|(=2)+lloo/l4 = Blloo + oo (M)]lg — Pllco-

Corollary 3.2 [5] Let M € R™ ™ be a symmetric positive definite matriz. Then the

following statements hold:

(i) For any two vectors q and p in R,
lz(M,q) — =(M,p)|l2 < [M~*|l2lla — pli2

(ii) Every matriz A € My = {4 | M2l M — Allz < 1 < 1} is a P-matriz. Let
oa(M) = —=— (|17
2 =1o, 2-
Then for any A,B € My and q,p € R”
l2(4, q) — 2(B,p)ll2 < 0a(M)?||(=p)+[2ll4 — Bll2 + ca(M)llg - plla-
A matrix A is called positive definite if
zTAz >0, O#zeR™

rA+ AT A+ AT

Since zTAz = ¢ z, A is positive definite if and only if

is symmetric
positive definite. Note that a positive definite matrix is not necessarily symmetric. Such
asymmetric matrices frequently appear in the context of the LCP.

Combining the ideas of Mathias and Pang [11] and Corollary 3.2, we present pertur-

bation bounds for the positive definite matrix LCP.

Theorem 3.5 [5] Let M € R™" be a positive definite matriz. Then the following

statements hold:
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(i) For any two vectors q and p in R",

M+ MT

5" llella = pllz-

ll2(M, q) — =(M,p)ll2 < II(

(i4) Bvery matriz A € My := {A | |(MMT) L[| M — All2 < n < 1} is positive definite.

Let

T
(M) = ) e

Then for any A,B € My and g,p € R”

|2(A, q) — #(B,p)llz < ca(M)*[|[(~p)+[l2llA — B2 + c2(M)lig — p2-

Example 3.1 Theorem 3.1 shows that for every P-matrix, B (M) < c(M )~1. Now we

show that Buo(M) can be much smaller than ¢(3)~! in some case. Consider

M =
0 t
Fort > 1, M is an M-matrix. By Theorem 3.2, Boo(M) = | Moo = 2. For & = (1,t71),
we have

1
< ) Ty = —
o(M) < maxi(M2); = 3

Hence, c(M)™* >t — o0, as t = oc.

Using the results in the last section, we derive relative perturbation bounds expressed
in the term of B(M)||M|.

For the system of linear equations, A is nonsingular if and only if Az = b has a
unique solution for any vector b. A system of linear equations is considered to be well-
conditioned (ill-conditioned) if small changes in A or b result in small (large) changes in
the solution x. The condition number of A is a measure of sensitivity of the solution
of Az = b for A being a nonsingular matrix. For the linear complementarity problem,
M is a P-matrix if and only if LCP(M,q) has a unique solution for any vector g. A
linear complemehtarity problem is considered to be well-conditioned (ill-conditioned) if
small changes in M or g result in small (large) changes in the solution z. Based on the
preceding analysis, we are able to give a perturbation theorem for the P-matrix LCP,

and define a measure of sensitivity of the solution of LCP(M, q) for M being a P-matrix.
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Theorem 3.6 [5] Suppose

min{z, Mz +¢q) = 0 M e ™", 0+# (—q)+ € R"
min(y, (M + AM)y+g+2Ag) = 0 AM € R™", Aqe R™.
with
|aM| <e|M|,  [|Ag] < emax([[{(—g)+I|, lall — M=z + gl]).

If M is a P-matriz and (M) ||M|| =n < 1, then M + AM is a P-matriz and
ly—al _ 2

lzll —1-m

Theorem 3.6 indicates that B(M)||M]| is a measure of sensitivity of the solution of

the LCP(M, q) for M being a P-matrix. Application of Theorem 3.6 with Corollary 3.1,

Corollary 3.2 and Theorem 3.5 gives S(M )| M|| in the term of condition number for the

BM)[IM]].

H-matrix LCP, symmetric positive definite LCP and positive definite LCP.

Corollary 3.3 [5] Suppose
min(z, Mz +¢q) = 0 MeRY™ 0#(—q)+ €R"
min(y, (M +AM)y+qg+4Agq) = 0 AM € R™", Ag€ R™

(i) If M is an H-matriz with positive diagonals, hoo(M) =1 < 1, and

|AM o < €liMloo, [ Aalloo < emax([j(—q)+]loo, llglloo — 1M + qlloo)

then M + AM is an H-matriz with positive diagonals and

“y"f"”oo 2e Yy
ol = Toq )

(4i) If M is a symmetric positive definite matriz, exy (M)=n<1, and
[AM2 < elMlla,  |Adl2 < emax(||(~g)+l2 llallz — Mz + glj2),

then M + AM is a P-matriz and

ly — zl2 2e
ErEE ety

(iii) If M is a positive definite matriz, eng(M‘*'QMT) =7<1, and

T T
oo < LM, [ 8gla < emax(l(-0)+l el 1Mol R

then M + AM 1is a positive matriz, and

llz — ylla %¢ M+ MT
ol Si-n Tz )
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Remark 3.1. If Mz +¢ = 0, then (i) of Corollary 3.3 for M being an M-matrix and (i)
of Corollary 3.3 reduce to the perturbation bounds for the system of linear equations.
For the H-matrix LCP, componentwise perturbation bounds based on the Skeel con-

dition number ||{A~1}| M| can be represented as follows.

Theorem 3.7 [5] Suppose

min(z, Mz +¢q) = 0 MeR™™, 0+#(—q)+ €R®
min(y, (M + AM)y+g+2Aq) = 0 AM € R™™, Aqe R™
with
|AM| < elM|, |Ag < emax((—q)+,|q| — [Mz +g). (3.1)

If M is an H-matriz with positive diagonals and eroo (M) = n < 1, theh M + AM is an

H-matriz with positive diagonals and

ly = zlloo 2¢ =111 17
e e Lz L 2
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