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1 Introduction

Let $\mathbb{Z}_{+}$ , $\mathbb{Q}_{+}$ and $\mathbb{R}_{+}$ denote the sets of nonnegative integers, rational numbers and real numbers,
respectively. Moreover, let $G=(V, E)$ be a simple undirected graph. We say that an edge
$e=(u, v)$ dominates edges incident to $u$ or $v$ , and define an edge dominating set (EDS) to be a
set $F$ of edges such that each edge in $E$ is dominated by at least one edge in $F$ . Given a cost
vector $w\in \mathbb{Q}_{+}^{E}$ together with $G$ , the EDS problem asks to find an EDS with the minimum cost.
This problem is one of the fundamental covering problems such as the well-known vertex cover
problem and has some useful applications $[2, 18]$ . The problem with a cost vector $w$ with $w(e)=1$

for all $e\in E$ is called the cardinality case; otherwise the problem is called the cost case. The
cardinality case is $\mathrm{N}\mathrm{P}$-hard even for some restricted classes of graphs such as planar or bipartite
graphs of maximum degree 3 $[10, 18]$ , Moreover, it is proven that the cardinality case is hard to
approximate within any constant factor smaller than 7/6 unless $\mathrm{P}_{--}^{-}\mathrm{N}\mathrm{P}[4]$ . In addition to these
hardness, some polynom ially solvable cases are also found for the cardinality case [10, 13, 17].

For the cost case, the problem is approximate within factor of $2r$ if there is an r-approximation
algorithm for the minimum cost vertex cover problem [3], where currently $r\leq 2$ is known. Fur-
thermore, Carr et al. [3] presented a 2.1-approximation algorithm. Their algorithm constructs an
instance of the minimum cost edge cover problem from the original instance and finds an optimal
edge cover for the resulting instance. A key property for this method is that an edge cover in
the resulting instance is also an EDS for the original instance and that its cost is at most 2.1
times of the minimum cost of an EDS in the original instance. The property is proved based on
a relation between the fractional edge dominating set polyhedron and the edge cover polyhedron.
The former is a polyhedron containing all incidence vectors of EDSs, which may not be the convex
hull of these vectors. In contrast the edge cover polyhedron is the convex hull of all incidence
vectors of edge covers, which is shown to be an integer polyhedron [16]. Afterwards, Pujito and
Nagamochi [6] gave a 2-approxim ation algorithm by using a refined EDS polyhedron. Moreover,
K\"onemann et al. proposed 3-approximation algorithms for the problem of finding a minim um cost
EDS which forms a tree or a tour [11].

In this PaPer, we discuss the approximability of the following four probJem $\mathrm{s}$ related to the
EDS problem.

The $(b, c)$ edge dominating set $((b, c)-\mathrm{E}\mathrm{D}\mathrm{S})$ problem This is a capacitated version of the
EDS problem. We are given a graph $G=(V, E)$ , a demand vector $b\in \mathbb{Z}_{+}^{E}$ , a capacity
vector $c\in \mathbb{Z}_{+}^{E}$ and acost vector $w\in \mathbb{Q}_{+}^{E}$ . A set $F$ of edges in $G$ is called a $(b, \mathrm{c})-\mathrm{E}\mathrm{D}\mathrm{S}$ if
each $e\in E$ is adjacent to at least $b(e)$ edges in $F$, where we allow $F$ to contain at most $\mathrm{c}(e)$

multiple copies of edge $e$ . The problem asks to find a minimum cost $(b, c)- \mathrm{E}\mathrm{D}\mathrm{S}$ . If $b(e)=1$

for all $e\in E$ , this problem is equivalent to the EDS problem.
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The $EDS$ problem in hypergraphs (HEDS problem) This is an extension of the EDS to a
hypergraph. We are given a hypergraph $H=(V_{\dot{l}}E)$ , and a cost vector $w\in \mathbb{Q}_{+}^{E}$ . The
problem asks to find a minimum cost hyperedge set $F$ such that each hyperedge $e\in E$ is
either contained in $F$ or adjacent to a hyperedge in$\mathrm{n}F$ .

The $(d, c)$ -edge cover with degree constraints over subsets This is an extension of the edge
cover. We are given a graph $G=(V, E)$ , a cost vector $w\in \mathbb{Q}_{+}^{E}$ , a family $S\subseteq 2^{V}$ of vertex
sets, a demand vector $b$ $\in \mathbb{Z}_{+}^{S}$ , and a capacity vector $c\in \mathbb{Z}_{+}^{E}$ . The problem asks to find a
minimum cost edge set $F$ such that the sum of degrees in graph $(V, F)$ over $S\in S$ is at least
$b(S)$ , where $F$ can contain at most $\mathrm{c}(e)$ multiple copies of edge $e$ .

The $(b, c)$ -edge packing problem This is a packing problem. As in the $(b, \mathrm{c})- \mathrm{E}\mathrm{D}\mathrm{S}$ problem, we
are given $G=(V, E)$ , $b\in \mathbb{Z}_{+}^{E}$ , $c\in \mathbb{Z}_{+}^{E}$ and $w\in \mathbb{Q}_{+}^{E}$ . A set $F$ of edges in $G$ is called a
$(b, c)$ -edge packing if each $e\in E$ is adjacent to at most $b(e)$ edges in $F$ , where we allow $F$ to
contain at most $c(e)$ multiple copies of edge $e$ . The problem asks to find a maximum cost
$(b, c)$ -edge packing.

The first two problems are proposed and analyzed by O. Parekh in [15]. The third problem is
shown in [7] and the fourth problem is proposed in [8], In this paPer, we introduce these results
and give more detailed analysis.

The paper is organized as follows. Section 2 introduces notations used in this paper. Sections
3, 6, 4 and 5 describe the above four problems and propose the approximation algorithms for
them, respectively.

2 Preliminaries
We denote by $\theta_{k}\in \mathbb{Q}_{+}$ the fc-th harmonic number $\sum_{i=1}^{k}\frac{1}{i}$ , Let $G=(V, E)$ denote a simple
undirected graph with a vertex set $V$ and an edge set $E$ . An edge $e=(u, v)\in E$ in $G$ is defined as
a pair of distinct vertices $u$ and $v$ . Let $H=(V, E)$ denote a hypergraph, where an edge is defined
by a set of two or more vertices and an edge in $H$ may be called a hyperedge. For a vertex $v$ ,
$\delta(v)$ denotes the set of edges incident to $v$ . For an edge $e$ , $\delta(e)$ denotes the set of edges incident
to vertices contained in $e$ , i.e., $\delta(e)=\{e’\in E|e\cap e’\neq\phi\}$ . For a subset $S\underline{\mathrm{C}}V$ , $\delta(S)$ denotes the
set of edges $e=(u,v)$ with $u\in S$ and $v\in V-S$ , and $E[S]$ denotes the set of edges contained in
$S$ , i.e., $E[S]=\{e\in E|e\underline{\subseteq}S\}$ . Let $x$ be an $|E|$-dimensional nonnegative real vector, $\mathrm{i}.\mathrm{e}.$ , $x\in \mathbb{R}_{+}^{E}$ .
We indicate the entry in $x$ corresponding to an edge $e$ by $x(e)$ . For a subset $F$ of $E$ , we denote
$\mathrm{x}(\mathrm{F})$ $= \sum_{e\in F}x(e)$ . For an edge set $F$ such that each edge $e’\in F$ corresponds to an edge $e\in E$ ,
$x\langle F\rangle\in \mathbb{R}_{+}^{F}$ denotes a projection of $x$ to $F$ , $\mathrm{i}.\mathrm{e}.$ , $x\langle F\rangle(e’)=x(e)$ for all $e’\in F$ .

3 (b,$c)-\mathrm{E}\mathrm{D}\mathrm{S}$ problem

3.1 (b,$\mathrm{c})- \mathrm{E}\mathrm{D}\mathrm{S}$ (d,$c)$ -edge cover and polytopes

For a graph $G=(V, E)$ , a demand vector $b\in \mathbb{Z}_{+}^{E}$ , a capacity vector $c\in \mathbb{Z}_{+}^{E}$ and a cost vector
$w\in \mathbb{Q}_{+}^{E}$ , an integer program of the $(b, c)- \mathrm{E}\mathrm{D}\mathrm{S}$ is given as

minimize $w^{T}x$

subject to $x(e)\leq c(e)$ for each $e\in E$ , (1)
$x(\delta(e))\geq b(e\rangle$ for each $e\in E$ ,
$x\in \mathbb{Z}_{+}^{E}$ .
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A vector $x\in \mathbb{Z}_{+}^{E}$ satisfying (1) is called a $(b, c)- \mathrm{E}\mathrm{D}\mathrm{S}$ .
Let us define a polytope EDS(G, $b$ , $c$) as the set of vectors $x\in \mathbb{R}_{+}^{E}$ such that

(a) $0\leq x(e)\leq c(e)$ for each $e\in E$ ,
(b) $x(\delta(e))\geq b(e)$ for each $e\in E$ .

This is the feasible region of an LP relaxation of problem (1). Thus the cost of an optimal solution
in EDS(G, $b$ , $c$) is a lower bound on the minimum cost of a given instance $(G, b, c, w)$ .

We now review some results on the $(d, c)$ - edge cover problem., which is another important
covering problem. This problem consists of a simple undirected graph $G=(V, E)$ , a demand
vector $d\in \mathbb{Z}_{+}^{V}$ defined on $V$ , a capacity vector $c\in \mathbb{Z}_{+}^{E}$ and a cost vector $w\in \mathbb{Q}_{\dashv}^{E}$ . An integer
vector $x\in \mathbb{Z}_{+}^{E}$ is called a $(d, c)$ -elge cover if $x(\delta(v\rangle)\geq d(v)$ for each $v\in V$ and $x(e)\leq c(e)$ for
each $e\in E$ . The objective of the $(d, c)$-edge cover problem is to find a minimum cost $(d, c)$ edge
cover which is formulated as

minimize $w^{T}x$

subject to $x(e)\leq c(e)$ for each $e\in E$ , (2)
$x(\delta(v))\geq d(v)$ for each $v\in V$ ,
$x\in \mathbb{Z}_{+}^{E}$ .

There exists a polynomial time algorithm for this problem [14]. Furthermore, it is known [16] that
this problem has an equivalent linear program formulation, where the convex hull of all feasible
solutions is characterized by the following set of inequalities:

(c) $0\leq x(e)\leq c(e)$ for each $e\in E$ ,
(d) $x(\delta(v))\geq d(v)$ for each $v\in V$ ,

(e) $x(E[U])+x( \delta(U))-x(F)\geq\lceil\frac{d\{U]- c(F)}{2}\rceil$ for each $U\underline{\mathrm{C}}V$ , $F\subseteq\delta(U)$ with odd $d(U)-c(F)$ .

Let $\mathrm{E}\mathrm{C}(G, d, c)$ denote the polytope represented by these inequalities.

3.2 Approximation algorithm

Given an instance $(G, b, c, w)$ of the $(6, c)-\mathrm{E}\mathrm{D}\mathrm{S}$ problem, we first construct an instance of the $(d, c)-$

edge cover and then computes an optimal solution for it as an approximate solution to the input
instance. Formal description is given in Algorithm 1. A parameter $f$ is given to the algorithm.

If the input instance is infeasible, then there exists an edge $e\in E$ with $c(\delta(e))<b(e)$ . Then,
the LP relaxation to be solved in Step 1 is also infeasible. Hence DOMINATE(f) stops in Step 1
at that time.

We first show that $\overline{x}$ is a $(b, c)- \mathrm{F}_{\lrcorner}\mathrm{D}\mathrm{S}$ . For an edge $e=(u, v)\in E$ , let us suppose $x^{*}(\delta(u)-E’)\geq$

$x^{*}(\delta(v)-E’)$ . Then,
$\overline{x}(\delta(u)-E’)\geq d_{x}*(u)\geq b(e)-c(\delta(e)\cap E’)$.

The above first inequality holds since $\overline{x}\langle E-E’\rangle$ is a $d_{x^{*}}$ -edge cover, and the second one holds by
the definition of $d_{x^{*}}$ . Since $\overline{x}(\delta(e)\cap E’\rangle=c(\delta(e)\cap E’)$ , it holds

$x(\delta(e))\geq x(\delta(u)-E’)+x(\delta(e\rangle\cap E’)\geq b(e)$ .
We can easily check that $0\leq\overline{x}(e)\leq c(e)$ also holds. Hence, $\overline{x}$ is a $(b, c)- \mathrm{E}\mathrm{D}\mathrm{S}$ and algorithm
DOMINATE(f) outputs a feasible solution.

We then analyze the approximation factor of algorithm DOMINATE(/) by establishing a
relation between EDS(G, $b$, $c$) and $\mathrm{E}\mathrm{C}(G, d_{x}*, c)$ . In the following discussion, we suppose that
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Algorithm 1 DOMINATE(/)

Input: An instance (G, b, c, w) of the (b,$c)- \mathrm{E}\mathrm{D}\mathrm{S}$ problem.
Output: A (b,$c)- \mathrm{E}\mathrm{D}\mathrm{S}$ to instance (G, b, c, w) and a real f $>0$ .

Step 1: Compute an optimal solution $x^{*}\in \mathbb{R}_{\dashv}^{E}$ to the linear program that minimizes $\min w^{T}x$

subject to $x\in$ EDS(G, $b$ , $c$). If it is infeasible, outputs “infeasible”. Moreover, let $E’:=\emptyset$ .
Step 2: For each $e\in E$ with $fx^{*}(e)>c(e)$ , let $\overline{x}(e):=c(e)$ , $E’:=E’\cup\{e\}$ and set $b(e’):=$

$\max\{0,b(e’)-c(e)\}$ for all $e’\in\delta(e)$ .
Step 3: For each edge $e=(u, v)\in E$ , let $b_{x}’*(u, e):=b(e)$ and $b_{x^{*}}’(v,$ $e\rangle$ $:=0$ if $x^{*}(\delta(u)-E’)\geq$

$x^{*}(\delta(v)-E’)$ , and let $b_{x^{*}}’(u, e):=0$ and $b_{x^{*}}’(v, e):=b(e)$ otherwise.
Step 4: For each vertex $v\in V$ , let $d_{x}* \langle v):=\max_{e\in\delta(v)}b_{x^{*}}’(v, e)$ .
Step 5: Set $x\langle E-E’\rangle$ to a minimum cost $(d_{x}*, c)$ -edge cover for $G’=(V, E-E’)$ and $w\{E-E’\rangle$ .

Then output $\overline{x}$ as $\mathrm{a}$ $(b, c)- \mathrm{E}\mathrm{D}\mathrm{S}$ to (Gy $b,$ $c,$ $w$ ).

$b(e)\geq 1$ for at least one edge $e\in F_{\lrcorner}$ because, if $b(e)=0$ for all edges $e\in E$ , DOMINATE(f)
apparently outputs the optimal solution $x=0^{E}$ . Moreover, we consider the case of $c=+\infty$ at
first. In this case, parameter $f$ makes no effect on the choice of $E’$ in the algorithm and it always
holds $E’=\emptyset$ .

Lemma 1. Let $x$ be a vector in EDS(G $=(V$, $E$ ), $b,$ $+\infty$ ) and $d_{x}\in \mathbb{Z}_{+}^{V}$ be a vector constructed

from $x$ by Step 4 of algorithm DOMINATE(f). Then vector $2x\in \mathbb{R}_{\mathrm{T}}^{E}|$ satisfies conditions (c) and
(d) for $\mathrm{E}\mathrm{C}(G, d_{x}, +\infty)$ .

Proof: Let $x\in$ EDS $(G,b, +\infty)$ . Then vector $2x$ satisfies condition (c) for EC($G$ , $d_{x},$ $+$oo) because
$x\in \mathbb{R}_{+}^{E}$ holds by (a) for EDS(G, $6,$ $+\infty$ ). We now show that $2x$ satisfies (d), $\mathrm{i}.\mathrm{e}.$ , $2x(\delta(v))\geq d_{x}(v)$

for all $v\in V$ . Let $v$ be a vertex in $V$ . Then there is an edge $e=(u, v)\in E$ such that
$dx(v)=b_{x}’(v, e)$ . If $b_{x}’(v, e)=0$ , then we have $2x(\delta(v))\geq 0$ $=d_{x}(v)$ since $x\in \mathbb{R}_{+}^{B}$ holds. Therefore,
let us assume $b_{x}’(v, e)>0$ . Then $b_{x}^{J}(v, e)=b(e)$ and $x(\delta(v))\geq x(\delta(u))$ hold. Now $x(\delta(e))\geq b(e)$

holds by (b) for $\mathrm{E}\mathrm{D}\mathrm{S}(G, b, +\infty)$ , which implies $x(\delta(v))+x(\delta(u))=x(\delta(e))+x(e)\geq b(e)+x(e)$

holds. Then we have

$2x(\delta(v))\geq x(\delta(u))+x(\delta(v\rangle)\geq b(e)+x(e)\geq b(e)=b_{x}’(v, e)=d_{x}(v)$ .
Therefore, (d) also holds for $2\mathrm{a}$ .

$\square$

If $c=+\infty$ , condition (e) for $\mathrm{E}\mathrm{C}(G, b, c)$ is equivalent to

$x(E[U])+x( \delta(U))\geq\lceil\frac{d(U)}{2}\rceil$ for each $U\underline{\mathrm{C}}V$ with odd $d(U)$ .

This is because $d(U)-c(F)=-\infty$ for $F\neq\emptyset$ .

Lemma 2. For a simple undirected graph $G=(V, E)$ and a demand vector $d\in \mathbb{Z}_{+}^{V}$ , let $\beta=$

$\min_{v\in Vb(v)\neq 0},d(v)$ . Then for any vectorx’ $\in \mathbb{R}_{\dashv-}^{E}$ satisfying conditions (c) and (d) for $\mathrm{E}\mathrm{C}(G,d, +\infty)$ ,

vector
$y=(1+ \frac{1}{2\lfloor 3\beta/2\rfloor+1})x’\in \mathbb{R}_{+}^{E}$

satisfies condition (e) for $\mathrm{E}\mathrm{C}(G, d, +\infty)$ .
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Proof: Let $U$ be a subset of $V$ such that $d(U)$ is odd. It suffices to show that (e) holds for
$x=y$ and $U$ . If $U$ contains a vertex $v$ such that $d(v)=0$ , then (e) follows inductively from that
$y(E[U’])+y(\delta(U’))\geq\lceil d(U’)/2\rceil$ for $U’=U-\{v\}$ since $y(E[U])+y(\delta(U\rangle)\geq y(E[U’])+y(\delta(U’))$

and $d(U)=d(U’)$ hold. Hence we assume without loss of generality that $d(v)\geq\beta$ for all $v\in U$ .
Moreover, if $|U|=1$ , then (e) is implied by (d) since for $U=\{v\}$ , $y(E[U])+y(\delta(U))=y(\delta(v))\geq$

$x’(\delta(v))\geq d(v)\geq\lceil d(v)/2\rceil$ . We now consider the case of $|U|=2$ . Let $U=\{v_{1}, v_{2}\}$ . Since
$d(U)=d(v_{1})+d(v_{2})$ is odd, $d(v_{1})\neq d(v_{2})$ holds, where we assume without loss of generality
$d(v_{1})>d(v_{2})$ . Then

$\lceil\frac{d(U)}{2}\rceil=\lceil\frac{d(v_{1})+d(v_{2})}{2}\rceil\leq d(v_{1})$ .

We have
$x’(E[U])+x’(\delta(U\rangle\rangle\geq x’(\delta(v1))$

because $E[U]\mathrm{U}\delta(U)\supseteq\delta(v_{1})$ . Since $x’$ satisfies $x’(\delta\{v1))\geq d(v1)$ by (d), we have

$y(E[U])+y(\delta(U))$ $\geq$ $x’(E[U]\rangle+x’(\delta(U))$

$\geq$ $x’( \delta(v_{1}))\geq d(v_{1})\geq\lceil\frac{d(v_{1})+d(v_{2})}{2}\rceil=\lceil\frac{d(U)}{2}\rceil$ .

In what follows, we assume that $|U|\geq 3$ and $d(v)\geq\beta$ for all $v\in U$ .
Since $x’\langle\delta(v))\geq d(v)$ holds for all $v\in U$ by (d) for $\mathrm{E}\mathrm{C}(G, d, +\infty)$ , we have

$2x’(E[U])+x’( \delta(U))=\sum_{v\in U}x’(\delta(v))\geq d(U)$
,

for which it holds
$x’(E[U])\succ$ $x’( \delta(U))\geq\frac{d(U)+x’(\delta(U))}{2}\geq\frac{d(U)}{2}$ .

To show (e), we only have to prove that

$\frac{\lceil d(U)/2]}{d(U)/2}=1+\frac{1}{d(U)}\leq 1+\frac{1}{2\lfloor 3\beta/2\rfloor+1}$,

or equivalently
$d(U)\geq 2\lfloor 3\beta/2\rfloor+1$ . (3)

Prom the assum ption, $d(U)\geq 3\beta$ holds. Moreover, since $d(U)$ is odd, $d(U)\geq 3\beta+1$ if $3\beta$ is even.
This implies (3). $\square$

Theorem 1. Let $\beta=\min_{\mathrm{e}\in E,b(e)\neq 0}b(e)$ . Algorithm DOMINATE(/) delivers an approximate
solution of a cost within a factor of

$\rho=2$ $(1+ \frac{1}{2\lfloor 3\beta/2\rfloor+1}$) $( \leq\frac{8}{3})$

to the $(b, +\infty)- \mathrm{E}\mathrm{D}\mathrm{S}$ problem
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Proof: Let $\overline{x}\in \mathbb{Z}_{+}^{E}$ be a vector obtained by algorithm DOMINATE(f). We have already observed
that $\overline{x}$ is a $(b, +\infty)- \mathrm{E}\mathrm{D}\mathrm{S}$ to instance $(G, b, \dashv\infty, w)$ . We show that $\overline{x}$ is a -approximate solution.
We denote by OPT the minimum cost of $\mathrm{a}(b, +\infty)- \mathrm{E}\mathrm{D}\mathrm{S}$ for $(G, b, +\infty, w)$ . Let $x^{*}\in \mathbb{R}_{+}^{E}$ be a
vector computed in Step 1 of DOMINATE(/). Since EDS(G , $b,$ $+\infty$ ) contains a minimum cost
$(b, +\infty)- \mathrm{E}\mathrm{D}\mathrm{S}$ , it holds $w^{T}x^{*}\leq$ OPT. By Lemma 1 vector $2x$ ’ satisfies conditions (c) and (d)
for $\mathrm{E}\mathrm{C}(G, d_{x^{*}}, +\infty)$ . Since $b(e)\geq\beta$ for all $e\in E$ such that $b(e)\neq 0_{2}$ we see that $d_{iB}*(v)\geq\beta$

or $d_{x}*(v)=0$ holds for each $v\in V$ . Therefore, from Lemma 2, we have $\rho x\in \mathrm{E}\mathrm{C}(G, d_{x^{*}}, +\infty)$ .
Since algorithm DOMINATE(/) outputs a solution $\overline{x}$ of the minimum cost over all vectors in
$\mathrm{E}\mathrm{C}(G, d_{x}*, +\infty)$ , we have $w^{T}\overline{x}\leq\rho w^{T}x^{*}$ , from which it follows $w^{T}\overline{x}\leq \mathrm{p}\mathrm{O}\mathrm{P}\mathrm{T}$ , as requlred. $\square$

In addition, algorithm DOMINATE(f) achieves a better approximation factor in some special
cases. We introduce some results (but omit the proofs).

Theorem 2. For a demand vector $b\in \mathbb{Z}_{+}^{E}such$ that $\beta=\min_{e\in E}b(e)\geq 1$ , algorithm DOMINATE(f)
delivers an approximate solution of a cost within a factor of

$\rho=2(1+\frac{1}{4\beta+1})(\leq\frac{12}{5})$

to the $(b, +\infty)- EDS$ problem.

Theorem 3. DOMINATE(f) is a 2-approximation algorithm for the (b,$+\infty)- EDS$ problera in
bipartite graphs.

Theorem 4. Suppose that $b(e)=\beta$ for all e $\in E$ . Then algorithm DOMINATE(/) ) delivers an
approximate solution of a cost within a factor of 2.1 if $\beta=1$ or a factor of 2 if $\beta\geq 2$ .

Before closing this section, we mention the analysis shown in [15] for the case where $c$ takes
finite values for some edges. In this case, we need to set $f$ to be an appropriate value. Let
$\mathit{7}\mathit{3}=\min_{U\subseteq V,F\subseteq\delta(U)-E’}dx(U)-c\langle F\rangle$ and $\rho$ be the factor in Theorem 2 (resp., in Theorem 3) if the
graph is not bipartite (resp., the graph is bipartite). If $f\geq\rho$ , we can prove that $\rho x\langle E-E’\rangle\in$

$\mathrm{E}\mathrm{C}(\mathrm{G}, =(V, E-E’), d_{x}, c)$ , where $x\in$ EDS(G, $b$ , $c$) and $\rho=2(1+1/\beta)$ (the proof is similar with
that of Lemmas 1 and 2). Then, algorithm DOMINATE(f) achieves the approximation factor of
$f$ because of the following reasons; The cost of output edges in $E’$ is bounded as

$w\langle E’\rangle^{T}\overline{x}\langle E’\rangle\leq w\langle E’\rangle^{T}c(E’\rangle<fw\langle E’\rangle^{T}x^{*}\langle E’\rangle$ .

With regard to edges in $E-E’$ , it holds

$w\langle E-E’\rangle^{T}\overline{x}\langle E-E’\rangle\leq\rho w\langle E-E’\rangle^{T}x^{*}\langle E-E’\rangle$

from the above-mentioned relation. Hence, it holds

$w^{T}\overline{x}=w\langle E’\rangle^{T}\overline{x}\langle E’\rangle+w\langle E-E’\rangle^{T}\overline{x}\langle E-E’\rangle<fw^{T}x^{*}\leq f\mathrm{O}\mathrm{P}\mathrm{T}$ ,

where OPT denotes the cost of the optimal solution. Notice that $\rho$ depends on $f$ . As we
make $f$ smaller with keeping $f$ $\geq\rho$ , we can obtain better approximation factor. Especially,
DOMINATE(8/3) is a 8/3-approximation algorithm.

Theorem 5. DOMINATE(8/3) is a 8/3-approximation algorithm for the (b,$c)- EDS$ problem.

We also obtain the same results described in Theorems 3 and 4.

Theorem 6. DOMINATE(2) is a 2-approximation algorithm for the (b,$c)- EDS$ problem in bi-
partite graphs.



102

4 Hyperedge dominating set problem

We discuss the hypergraph version of the edge dominating set problem. The following result is
also shown in [15].

Given a hypergraph $Jif$ $=(V, E)$ and a cost vector $w\in \mathbb{Q}_{+}^{E}$ , the problem is formulated as

minimize $w^{T}x$

subject to
$x\in \mathbb{Z}_{+}^{E}x(\delta(e)).\geq 1$

for each $e\in E$ , (4)

An HEDS is defined as a vector $x\in \mathbb{Z}_{+}^{E}$ such that $x(\delta(e))\geq 1$ for each $e\in E$ . In addition, we call
the LP relaxation of the HEDS problem the fractional HEDS problem and its feasible solution a
fractional HEDS

To obtain an approximate solution to the HEDS problem, we transform a given instance of
the HEDS problem to an instance of the set cover problem. The set cover problem is considered
as a hypergraph version of the edge cover problem. A hyperedge set $F\subseteq E$ is called a set cover
of hypergraph $H=(V, E)$ if $\bigcup_{e\in F}e=V$ and the set cover problem asks to find a minimum cost
set cover. Given a hypergraph $H=(V, E)$ and a cost vector $w\in \mathbb{Q}_{+}^{E}$ , the formulation of the set
cover problem is given as follows.

minimize $w^{T}x$

subject to
$x\in \mathbb{Z}_{+}^{E}x(\delta(v)).\geq 1$

for each $v\in V$ , (5)

Note that this problem is proven to be $\mathrm{N}\mathrm{P}$-hard [9]. Moreover, the LP relaxation of the set cover
problem is called the fractional set cover problem and its feasible solution is called a fractional
set cover. It is known that a simple greedy algorithm finds an approximate solution for the set
cover problem, and that the cost of the solution is bounded in terms of the minimum cost of $\mathrm{a}$

fractional set cover, as described in the following theorem.

Theorem 7. $[5, 12]$ Let $w\in \mathbb{Q}_{+}^{E}$ be a given cost vector, $x^{\mathrm{A}}$ be a minimum cost fractional set cover
for a hypergraph $H=(V, E)$ , and $k$ be the maximum size of a hyperedge in H. Then a set cover
whose cost is at most $\theta_{k}w^{T}\hat{x}$ can be obtained in polynomial time.

Since the HEDS problem is a subclass of the set cover problem, the HEDS problem can be
reduced to the set cover problem directly Let $(H=(V, E),$ $w\rangle$ be a given instance of the HEDS
problem. Construct a hypergraph $H’=(V’, E’)$ such that its vertex set $V’$ consists of vertices $v_{e}’$

corresponding to its edges $e\in E$ and edge set $E’$ consists of $e_{e}’=\{v_{e}’,/|e’\in\delta(e)\}$ corresponding
to $\delta(e)$ . A component of the cost vector $w’(e_{e}’)$ is set to be $w(e)$ . Then, it is easy to see that a set
cover for $(H’, w’)$ gives an HEDS for $(H, w)$ of same cost and vice versa. Let $d$ be the maximum
size of a hyperedge in $E’$ , i.e., the maximum size of $\delta(e)$ for all $e\in E$ , where $d=O(|V|^{k})$

holds for the maximum size $k$ of a hyperedge in $H$ . By Theorem 7, this direct reduction gives a
$\theta_{d}$-approximation algorithm for the HEDS problem. Note that $\theta_{d}=O(k \log|V|)$ .

In algorithm HYPER described in Algorithm 2, an instance of the HEDS problem is trans-
formed into an instance of the set cover problem. To prove that the approximation factor of
HYPER is $k\theta_{k}$ by using Theorem 7 we show that for a vector $x^{*}$ obtained in Step 1, vector $k’x^{*}$

is a fractional set cover to $(H_{x}*, w’)$ .

Lemma 3. Let x $\in \mathbb{R}^{E}$ be a fractional HEDS for a hypergraph H $=(V,E)$ , $H_{x}=(V’, E’)$ be
a hypergraph obtained in Step 3 of HYPER from x and k be the maximum hyperedge size of H.
Then vector $kx\langle E’\rangle\in \mathbb{R}^{E^{J}}$ is a fractional set cover for $H_{x}$ .
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Algorithm 2 HYPER

Input: A hypergraph $H=(V, E)$ and a cost vector $w\in \mathbb{Q}_{+}^{E}$ .
Output: An HEDS for $H$ .

Step 1: Find a minimum cost solution $x^{*}\in$ ]$\mathrm{R}^{E}$ to the fractional HEDS problem for $H$ and $w$ .
Step 2: Let $V’:=$ { $v \in V|x^{*}(\delta(v))=\max_{u\in e}x^{*}(\delta(u))$ for some $e\in E$}, $E’:=\{e\cap V’|e\in E\}$ ,

and $w’:=w\langle E’\rangle\in \mathbb{Q}_{+}^{E’}$ .
Step 3: Find a set cover $\overline{x}$ for hypergraph $H_{x^{*}}=(V’, E’)$ such that $w^{\gamma T}\overline{x}$ is at most $\theta_{k}$ times the

minimum cost of a fractional set cover, and output $\overline{x}\langle E\rangle$ as an HEDS for $H$ .

Proof: Suppose that $v\in V’$ is a vertex in a hyperedge $e\in E’$ such that $x(\delta(v))\geq x(\delta(u))$ for all
$u\in e$ . Since $\sum_{u\in e}x(\delta(u))\geq x(\delta(e))\geq 1$, we have $x(\delta(v))\geq 1/k$ . Therefore $kx\langle E’\rangle(\delta(v))\geq 1$ ,

which means that $kx\{E’\rangle$ $\in \mathbb{R}^{E’}$ is a fractional set cover for $H_{x}$ . $\square$

Theorem 8. The algorithm HYPER achieves approximation factor of $k\theta k$ for the HEDS problem,
where A is the maximum size of a hyperedge.

Proof: Let $w’(F)$ be the minimum weight of fractional set covers of $H_{x^{*}}$ . As described in the
algorithm, $w^{\prime T}\overline{x}\leq\theta_{k}w’(F)$ . Moreover, Lemma 3indicates $w’(F)\leq kw^{\prime T}x^{*}\langle E’\rangle$ . Hence

$w^{\prime T}\overline{x}\leq\theta_{k}w’(\Gamma\leq k\theta_{k}w^{rr}x^{*}\langle E’\rangle=k\theta_{k}w^{T}x^{*}$ .

Since $w^{\gamma p}\overline{x}$ is the cost of solution algorithm outputs and $w^{T}x^{*}$ is a lower bound of the optimal
cost, it completes the proof. $\square$

Note that the approximation factor $k\theta k=O(k\log k)$ of algorithm HYPER is superior to that
of the algorithm obtained from the direct reduction if $k\theta_{k}<\theta_{d}$ , i.e., $H$ is a dense hypergraph such
that $d=\Omega(|V|^{k})$ .

5 (d,$c)$-edge cover with degree constraints over subsets

Given an undirected graph $G=(V, E)$ , a cost vector $w\in \mathbb{Q}_{+}^{E}$ , a family $S\subseteq 2^{V}$ of subsets of $V$ , $\mathrm{a}$

demand vector $d\in \mathbb{Z}_{1}^{\mathrm{S}}$ and capacity vector $c\in \mathbb{Z}_{+}^{E}$ , the $(d, c)$-edge cover with degree constralnts
over subsets is formulated by

minimize $w^{T}x$

subject to $\sum_{v\in S}x(\delta(v))$ $\geq d(S)$ for each $S\in \mathrm{S}$ , (6)
$\mathrm{x}(\mathrm{e})\leq c(e)$ for each $e$ (; $E$ ,
$x\in \mathbb{Z}_{+}^{E}$ .

Note that if $S=\{\{v\}|v\in V\}$ , then problem (6) is equivalent to the $(d, c)$-edge cover problem

(2). If $S=\{\{u, v\}|(u, v)\in E\}$ , then problem (6) seems similar to the $(b, c)- \mathrm{E}\mathrm{D}\mathrm{S}$ problem, but

its first constraint $x(\delta(u))+x(\delta(v))\geq b(e)$ ori each $e=(u, v)\in E$ is different from the constraint
$x(\delta(e))\geq b(e)$ for the $(b, c)- \mathrm{E}\mathrm{D}\mathrm{S}$ . Let $\mathrm{D}\mathrm{C}(G, \mathrm{S}, d, c)$ denote the set of all vectors $x\in \mathbb{R}_{+}^{E}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\gamma \mathrm{i}\mathrm{n}\mathrm{g}$

inequalities in (6), i.e., the relaxation of the covering problem. We show that problem (6) $1\mathrm{s}$

approximable by algorithm COVER(f) described $\ln$ Algorithm 3.
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graph $G=(V, E)$ , acost vector $w\in \mathbb{Q}_{+}^{E}$ , afamily $S\underline{\subseteq}2^{V}$ of subsets

of $V$ , a demand vector $d\in \mathbb{Z}_{+}^{\mathrm{S}}$ , a capacity vector $c\in \mathbb{Z}_{+}^{E}$ , and a real $f>0$ .
Output: A vector $x\in \mathbb{Z}_{+}^{E}$ feasible to the covering problem (6).

Step 1: Let $E’:=\emptyset$ . Moreover, find a minimum cost vector $x^{*}$ over $\mathrm{D}\mathrm{C}(G, \mathrm{S}, d, c)$ and let it $x^{*}$ .
If $\mathrm{E}\mathrm{C}(\mathrm{G}, \mathrm{S}, d, c)=\emptyset$ , output Unfeasibl\"e.

Step 2: For each $e\in E$ , $fx^{*}(e)>c(e)$ , then let $\overline{x}(e):=c(e)$ , $E’:=E’\cup$ $\{e\}$ , $d(S):=$

$\max\{0, d(S)-2c(e)\}$ for each $S$ $\in S$ with $e\in E[S]$ , and $d(S)$ $:= \max\{0, d(S)-c(e)\}$

for each $S\in S$ with $e\in\delta(S)$ .
Step 3: For each $S$ $\in S$ , $d_{x}’*(v, S)$ $:=d(S)$ if $x^{*}(\delta(v)-E’)\geq x^{*}(\delta(u)-E’)$ for all $u\in S$ and

$d_{x^{*}}’(v, S):=0$ otherwise.
Step 4: For each v $\in V,\tilde{d}_{x}*(v):=\mathrm{m}\mathrm{a}\mathrm{x}s\in Sv\in s^{d_{x^{*}}’(v,S)}$ .
Step 4: Compute a minimum cost $(\tilde{d}_{x}*, c)\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}$ cover $\overline{x}\langle E-E’\rangle$ for $G’=(V, E-E’)$ and

$w\langle E-E’\rangle$ , and output $\overline{x}$ as a solution to (6).

For each $S$ $\in S$ , the vector $v= \arg\max_{u\in S}x^{*}(\delta(u)-E’)$ satisfies $\sum_{u\in S}\overline{x}(\delta(u)-E’)\geq$

$\overline{x}(\delta(v)-E’)\geq\tilde{d}_{x}*(v)\geq d(S)-2c(E[S]\cap E’)-c(\delta(S)\cap E’)$ . Since $\sum_{u\in S}\overline{x}(\delta(u))\geq\sum_{u\in \mathrm{S}}\overline{x}(\delta(u)-$

$E’)+2\mathrm{x}(\mathrm{E}[\mathrm{S}]\cap E’)+\overline{x}(\delta(S)\cap E’)\geq \mathrm{d}(\mathrm{S})$ , we can see that $\overline{x}$ is a feasible for problem (6). In
which follows, we discuss the approximation factor of COVER(f). It can be derived analogously
to that of algorithm DOMINATE(f). First, let us consider the case of $c(e)=+\infty$ . Notice that
$E’=\emptyset$ for any $f$ in this case.

Lemma 4. Let x $\in \mathrm{D}\mathrm{C}(G,$S, d,$+\infty)$ and h $= \max_{S\in \mathrm{S}}|S|$ . Then vector hx satisfies conditions (c)
and (d) for $\mathrm{E}\mathrm{C}(G,\tilde{d}_{x}, 1- 00)$ , where $\tilde{d}_{x}\in \mathbb{Z}_{+}^{V}$ is a vector obtained from x in Step 4 of COVER(/).

Proof; Since $x\in \mathbb{R}_{+}^{E-E’}$ , vector $hx$ satisfies (a) for $\mathrm{E}\mathrm{C}(G,\tilde{d}_{x}, +\infty)$ . We show that $hx$ satisfies
(b), i.e., $hx(\delta(v))\geq\tilde{d}_{x}(v)$ for each $v\in V$ . Let $v$ be a vertex in $V$ . If $\tilde{d}_{x}(v)=0_{\dot{J}}$ then $hx(\delta(v))\geq$

$0=\tilde{d}_{x}(v)$ holds. Then assume $\tilde{d}_{x}(v)>0$ . There exists a subset $S\in S$ such that $x(\delta(v))\geq$

$x(\delta(u)\}$ holds for all $u\in S$ and $\tilde{d}_{x}(v)=d_{x}’(v, S)$ $=d(S)$ . From this inequality and the condition
$\sum_{u\in S}x(\delta(u))\geq d(S\mathrm{I}$, for $\mathrm{E}\mathrm{C}(\mathrm{G}, S, d, +\infty)$ , we have

$hx( \delta(v))\geq|S|x(\delta(v))\geq\sum_{u\in \mathit{3}}x(\delta(u))\geq d(S)$
$=d_{x}’(v, S)$ $=\tilde{d}_{x}(v)$ .

This implies that $hx$ satisfies (b) for $\mathrm{E}\mathrm{C}(G’,\tilde{d}_{x}, +\infty)$ . $\square$

Lemmas 2 and 4 indicate the following theorem.

Theorem 9. Algorithm COVER(/) achieves the approximation factor of

$h$ . $(1+ \frac{1}{2\lfloor 3\beta/2\rfloor+1})(\leq\frac{4}{3}h)$

for problem (6) with $c(e)=+\infty$ , where $h= \max\{|S||S\in \mathrm{S}\}$ and $\beta=\mathrm{m}\mathrm{i}\mathrm{n}s\in \mathrm{S},b(s)\neq 0^{b(S)}$ ,
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Proof: Let $y=h$ . $(1+(2\lfloor 3\beta/2\rfloor+1)^{--1})x^{*}$ . By Lemmas 2 and 4, it holds $y\in \mathrm{E}\mathrm{C}(G,\tilde{d}_{x}, +\infty)_{1}$

which implies that $w^{T}y$ is at least the minimum cost over $\mathrm{E}\mathrm{C}(G,\tilde{d}_{x}, +\infty)$ . Since the algorithm
outputs a vector of minimum cost over $\mathrm{E}\mathrm{C}(G,\tilde{d}_{x}, +\infty)$ and $w^{T}x^{*}$ is a lower bound of the optim ai
cost, the proof is completed. $\square$

For the case where $c(e)$ is finite, we can also derive an approximation factor as in the $(b, c)- \mathrm{E}\mathrm{D}\mathrm{S}$

problem. In the worst case, it achieves the factor of (4/3)h.

6 The (b,$c)$ -edge packing problem

6.1 (b,$c)$ -edge packing, (d,$c)$-matching and polytopes

We now consider the edge packing problem, where $b(e)$ denotes an upper bound on the number
of edges dominating $e$ . The objective is to maximize the sum of costs of chosen edges. Formally
the problem is described as follows.

maximize $w^{T}x$

subject to $x(\delta(e))\leq b(e)$ for each $e\in E$ , (7)
$x(e)\leq c(e)$ for each $e\in E$ ,
$x\in \mathbb{Z}_{+}^{B}$ .

We call a feasible solution of this problem a $(b, c)$-edge packing, and this problem the $(b, c)$ edge
packing problem.

Let $\mathrm{E}\mathrm{P}(G, b, c)$ be the set of vectors $x\in \mathbb{R}_{+}^{E}$ satisfying

(a) $0\leq x(e)\leq c(e)$ for each $e\in E$ ,
(b) $x(\delta\{e))\leq b(e)$ for each $e\in E$ .

Observe that $\mathrm{E}\mathrm{P}(G, b, \mathrm{c})$ represents the feasible region of the linear programming problem obtained
from problem (7) by relaxing its integer constraints. Although $\mathrm{E}\mathrm{P}(G, b, c)$ contains all feasible
solutions of (7), the set of all optimal solutions over the region may not include any integer
solut ions .

To approximate the $(b, c)$-edge packing problem, we consider the matching problem, which is
one of the well-studied problems in the combinatorial optimization. This problem is generalized
into the following capacitated $d$-matching problem.

maximize $w^{T}x$

subject to $x(\delta(v))\leq d(v)$ for each $v\in E$ , (8)
$\mathrm{x}(\mathrm{e})\leq c(e)$ for each $e\in E$ ,
$x\in \mathbb{Z}_{+}^{E}$ ,

where $d\in \mathbb{Z}_{+}^{V}$ and $c\in \mathbb{Z}_{+}^{E}$ are given capacities. In the following, we call the capacitated d-
matching problem with capacities $d$ and $c$ the $(d, c)$ matching problem and its feasible solution a
$(d, c)$-matching. Note that in the $(d, c)$-matching problem, the second constraint $x(e)\leq c(e)$ is

not essential because all instances of the $(d, c)$-matching problem can be reduced to a special case
of $(d, c)$-matching problem where $c=+\infty[16]$ .

It is known that the $(d, c)$-matching problem can be solved in strongly polynomial time $[1, 16]$ .

Let MA(G, $d$ , $c$) be the set of vectors $x\in \mathbb{R}_{+}^{E}$ such that

(c) $0\leq \mathrm{x}(\mathrm{e})\leq c(e)$ for each $e\in E$ ,
(d) $0\leq \mathrm{x}(6(\mathrm{v}))\leq d(v)$ for each $v\in V$ ,

(e) $x(E[U])+x(F) \leq\lfloor\frac{d\{U)+c(F]}{2}\rfloor$ $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}d(U)+c(F)\mathrm{o}\mathrm{d}\mathrm{d}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{c}\mathrm{h}U\subseteq V,F^{\Gamma}\simeq\delta.(U)$
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MA(G, $d$ , $c$) is an integer polytope, whose all extreme points are represented by integer vectors [17].
Since every integer vector satisfying conditions (c) and (d) is a ( $d$ , $c\rangle$-matching in $G$ , maximizing
$w^{T}x$ over the polytope MA(G, $d$ , $c$) is essentially equivalent to solving problem (8). Note that,
in the $(b, c)$-edge packing problem, $b$ is an $|E|$-dimensional vector, while $d$ is defined as $\mathrm{a}|V|-$

dimensional vector in the $(\mathrm{d}\mathrm{t}c)$ -matching problem.

6.2 Approximation algorithm

To construct an approximate solution to a given instance $(G, b, c, w)$ of the $(b, c)$ -edge packing
problem, we solve an instance $(G, d, c, w)$ of the $(d, c)$-matching problem. The capacity vector
$d$ will be defined so that a $(d, c)$-matching is also a $(b, c)$-edge packing in $G$ . The algorithm is
described in Algorithm 4.

Algorithm 4 PACK

Input: An instance $(G, b, c, w)$ of the $(b, c)$ -edge packing problem.
Output: A $(b, c)$ -edge packing.

Step 1: For each $e=(u, v)\in E$ , $b’(u, e):=\lfloor b(e)/2\rfloor$ and $b’(v,e):=\lceil b(e)/2\rceil$ .
Step 2: For each $v\in V$ , $d(v):= \min_{e\in\delta(v)}b’(v, e)$ .
Step 3: Compute a maximum cost ( $d$ , $c\rangle$-matching $\overline{x}\in \mathbb{Z}_{+}^{E}$ for the graph $G$ and the cost vector

$w$ , and output $\overline{x}$ as a $(b, c)$-edge packing.

Integer vectors $x\in \mathbb{Z}^{E}$ satisfying (c) and (d) of MA(G, $d,$ $c$) are $(b, c)$ -edge packings because
$x(\delta(e))\leq x(\delta(u))\dashv- x(\delta(v))\leq d(u)+d(v)\leq b(e)$ hold. In the following, we analyze the approxi-
mation factor of algorithm PACK.

Lemma 5. Let $x\in \mathrm{E}\mathrm{P}(G, b, c)$ , and $d\in \mathbb{Z}_{+}^{V}$ be a vector obtrmnea in Step 2 of algorithm PACK.
Vector

$x’=\{$
$\frac{1}{2}(1-\frac{1}{\beta_{1}})x$ if there is an edge with odd $b(e)$

$\frac{1}{2}x$ otherwise

satisfies conditions (c) and (d) for MA(G, $d$ , $c$), where $\beta_{1}=\min_{e\in E,b(e)xs}$ odd $b(e)$ .

Proof: Since $x\in \mathrm{E}\mathrm{P}(G,b, c)$ satisfies $0\leq x(e)\leq c(e)$ for each $e\in E$ , it is immediate to see that
$x’$ satisfies (c) for MA $(G, d, c)$ . Then, we show that $x’(\delta(v))\leq d(v)$ holds for each $v\in V$ .

Let $v\in V$ . There is an edge $e=(u, v)\in E$ such that $d(v)=b’(v, e)$ . Note that $x(\delta(v))\leq$

$x(\delta(e))\leq b(e)$ hold by (b) for EDS(G, $b$ , $c$). If $b’(v, e)=\lceil b(e)/2\rceil$ , then it holds

$x’( \delta(v))\leq\frac{1}{2}x(\delta(v))\leq\frac{x(\delta(e))}{2}\leq\frac{b(e)}{2}\leq \mathrm{r}\frac{b(e)}{2}\rceil=d(v)$ ,

This implies that $x’(\delta(v))$ satisfies (d) in MA(G, $d$, $c$),
Consider the other case, $b’(v, e)<\lceil b(e)/2\rceil$ , i.e., $\mathrm{f}\mathrm{c}(\mathrm{e})$ is odd and $b’(v, e)=\lfloor b(e)/2\rfloor$ . Since

$x(\delta(v))\leq b(e)$ and $d(v)=b’(v, e)=(b(e)-1)/2$ , we have

$\frac{d(v)}{x(\delta(v))}\geq\frac{b(e)-1}{2b(uv)}=\frac{1}{2}-\frac{1}{2b(e)}$.
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Prom the assumption, $b(e)\geq\beta_{1}$ . Then,

$\frac{1}{2}-\frac{1}{2b(e)}\geq\frac{1}{2}(1-\frac{1}{\beta_{1}})$ .

Therefore $x’(\delta(v))$ satisfies $\langle$ $\mathrm{d})$ for MA(G, $d$, $c$). $\square$

Lemma 6. Let $x\in \mathbb{R}_{+}^{E}$ satisfy (c) and (d) for MA$(G, d, c)$ and $\beta_{2}=\lfloor\min_{e\in E,b(e)\neq 0}b(e)/2\rfloor$ . Then
vector

$(1- \frac{1}{2\lfloor 3\beta_{2}/2\rfloor+1})x$

satisfies (e) for $\mathrm{M}\mathrm{A}(G_{1}d,c)$ ,

Proof: Let $U$ be a nonempty subset of $V$ , and $F$ be a subset of $\delta(U)$ which can be empty. It
suffices to show that

$x(E[U])+x(F) \leq\lfloor\frac{d(U)+c(F)}{2}\rfloor$ .

We can assume that $U$ contains no vertices $v$ such that $d(v)=0$ (i.e., $x(\delta(v))=0$ ) because the
above inequality for such $U$ and any $F$ is obtained from the one for $U-\{v\}$ and $F-\delta(v)$ .

Since $x$ satisfies (d) for MA(G, $d,$ $c$), it holds

$2x(E[U])+x( \delta(U))=\sum_{v\in U}x(\delta(v))\leq\sum_{v\in U}d(v)$
$=d(U)$ ,

from which we have
$x(E[U]) \leq\frac{d(U)-x(\delta(U))}{2}$ . $\langle$9)

From (c), $x(F)= \sum_{e\in F}x(e)\leq\sum_{e\epsilon F}\mathrm{b}(\mathrm{e})=c(F)$ holds. From this inequality and (9), we have

$x(E[U])+x(F) \leq\frac{d(U)+c(F)-(x(\delta(U))-x(F))}{\underline{9}}$ .

Since $x(\delta(U\})$ - $\mathrm{x}(\mathrm{F})\geq 0$ holds by $F\subseteq\delta(U)$ , it holds

$x(E[U])+x(F) \leq\frac{d(U)+c(F)}{2}$ . (10)

The gap between $(d(U)+c(F))/2$ and $\lfloor(d(U)+c(F))/2\rfloor$ depends on the parity of $d(U)+c(F)$ .
Therefore we only have to consider the case where $d(U)+c(F)$ takes a minimum odd value. We
consider the following three sub case

Case 1: $|U|=1$ . Let $U=\{v\}$ . Then $x(E[U])=0$ . Therefore the left hand side of (e) equals to
$\mathrm{x}(\mathrm{F})$ . Since $d(U)+c(F)=d(v)+c(F)$ is assumed to be odd, it holds $d(v)\neq c(F)$ , which implies
$d(u)+c(F) \geq 2\min\{d(u), c(F)\}+1$ . From (c), $x(F)$ $\leq c(F)$ holds. Moreover, $x(F)$ $\leq x(\delta(v))\leq$

$d(v)$ holds since $F\underline{\mathrm{C}}\delta(v)$ . Therefore we have

$x(F) \leq\min\{c(F), d(v)\}\leq\frac{d(U)+c(F)-1}{2}=\lfloor\frac{d(U)+c(F)}{\underline{9}}\rfloor$ .
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Case 2: $|U|=2$ . Let $U=\{v_{1}, v_{2}\}$ , $F_{1}=\delta(v_{1})\cap F$ , and $F_{2}=\delta(v_{2})\cap F$ . Then $d(U)+c(F)=$
$d(v_{1})$ $+d(v_{2})+c(\Gamma_{1}^{\{})$ $+c(F_{2})$ . Prom the facts that $\delta(v_{1})$ $\cup F_{2}\supseteq E[U]\cup\Gamma\prec \mathrm{a}\mathrm{n}\mathrm{d}$ that $\delta(v2)\cup F_{1}\supseteq$

$E[U]\cup F$ , we have

$x(E[U])+x(F) \leq\min\{x(\delta(v_{1}))+x(F_{2}),x(\delta(v_{2}))+x(F_{1})\}$. (11)

It holds that $x(\delta(v_{1}))\leq d(v_{1})$ and $x(\delta(v_{2}))\leq d(v_{2})$ from (d). Moreover, we have $x(F_{1})\leq c(F_{1})$

and $x(F_{2})\leq c(F_{2})$ from (c). These relations and Inequality (11) lead to

$x(E[U])+x(F) \leq\min\{d(\delta(v_{1}))+c(F_{2}), d(\delta(v_{2}))+c(F_{1})\}$ . (12)

On the other hand; since $d(U)+c(F)$ is assumed to be odd, it holds $d(\delta(v_{1}))+c(F_{2})\neq d(\delta(v_{2}))+$

$c(F_{1})$ , which implies that

$\min\{d(\delta(v_{1}))+c(F_{2}), d(\delta(v_{2}))+c(F_{1})\}\leq\lfloor\frac{d(U\}+c(F)}{2}\rfloor$ . (13)

Prom (12) and (13), we have (e) for MA(G, $d$ , $c$).

Case 3: $|U|\geq 3$ . Since $b(e) \geq\min_{e\in E,b(e)\neq 0}b(e)$ for all $e\in E$ , it holds $d(v)\geq\beta_{2}$ for all $v\in V$ .
Hence $d(U)\geq 3\beta_{2}$ . Considering that $d(U)+c(F)$ is odd, we have

$d(U)+c(F) \geq 2\lfloor\frac{3\beta_{2}}{2}\rfloor+1$ .

Rrom (10) and the above inequality,

$\frac{\lfloor(d(U)+c(F))/2\rfloor}{x(E[U])+x(F)}\geq 1-\frac{1}{d(U)+c(F)}\geq 1-\frac{1}{2\lfloor 3\beta_{2}/\underline{?}\rfloor+1}$ .

This completes the proof of the lemma, $\square$

Theorem 10. Let $d$ be a vector constructed in Step 2 of algorithm PACK. Then MA(G, $d$ , $c\rangle$

is a polyhedron whose maimum cost extreme points are $\rho(\beta_{1}, \beta_{2})$ -approximate solutions of the
$(b, c)$ -edge packing problem for a graph $G$ , where

$\rho(\beta_{1},\beta_{2})=\{_{\frac{}{2}}^{\frac{1}{21}}\xi$

$1- \frac{1}{\beta_{1}})$ . $(1- \frac{1}{2\lfloor 3\beta_{2}/2\rfloor+1})$ \’if there is an $ed9e$ $e$ with odd $b(e)$ ,

$1- \frac{1}{2\mathrm{L}3\beta_{2}/2\rfloor_{\mathrm{T}^{\mathrm{I}}}1})$ otherwise,

$\beta_{1}=\min_{e\in E,b(e)is}$ $odd$ $b(e)$ an $d \beta_{2}=\lfloor\min_{e\in E,b(e)\neq 0}b(e)/2\rfloor$ .

Proof: We have already observed that an integer vector $x\in \mathbb{Z}_{+}^{E}$ in MA(G, $d,c$) is a $(b, c)$-edge
packing. Since MA(G, $d$ , $c$) is an integer polytope, every extreme point is a $(b, c)$-edge packing.

Denote by OPT the maximum cost of a solution to problem (7) with $(G, b, c, w)$ . In what
follows, we show that $f(\beta_{1}, \beta_{2})\mathrm{O}\mathrm{P}\mathrm{T}\leq w^{T}\overline{x}$ holds, where $\overline{x}$ is a maximum cost extreme point of
MA(G, $d$ , $c$). Let $x^{*}\in \mathrm{E}\mathrm{P}(G,b, c)$ be a vector of the maximum cost $w^{T}x^{*}$ for the cost $w\in \mathbb{Q}_{+}^{E}$ .
Because $\mathrm{E}\mathrm{P}(G, b, c)$ contains an optimal solution to problem (7), it holds

OPT $\leq w^{T}x^{*}$ .
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By Lemmas 5 and 6, we can see that vector $\rho(\beta_{1},\beta_{2})x$
’ belongs to MA(G, $d$ , $c$) . By the maximal ly

of $w^{T}\overline{x}$ over MA(G, $d$ , $c$), it holds
$\rho(\beta_{1},\beta_{2})w^{T}x^{*}\leq w^{T}\overline{x}$.

From the above two inequalities, we have
$p(\beta_{1}, \beta_{2})\mathrm{O}\mathrm{P}\mathrm{T}\leq w^{T}\overline{x}$ ,

as required, $\square$

The above theorem is equivalent to saying that the approximation factor of algorithm PACK is
$\rho(\beta_{1},\beta_{2})$ because algorithm PACK outputs a maximum cost vector over the polyhedron MA(G, $d$ , $c$).

Corollary 1. Let $\beta_{1}=\min_{e\in E,b(e)\mathrm{z}sodd}b(e)$ and $\beta_{2}=\lfloor\min_{e\in E,b(e)\neq 0}b(e)/2\rfloor$ . Then the approxi-
mation factor of algorithm PACK is $\rho(\beta_{1},$ $\beta_{2}\rangle$ .

Note that $\rho(\beta_{1}, \beta_{2})=0$ if $E$ contains an edge $e$ such that $b(e)=1$ . We know that this problem
cannot be approximated within a constant factor in the case where $b(e)=1$ for all $e\in E[8]$ .
Hence it would be appropriate to assume that $b(e)=0$ or $b(e)\geq 2$ for all $e\in E(\mathrm{i}.\mathrm{e}.,$ $\beta_{1}\geq 3$ and
$\beta_{2}\geq 1)$ . Particularly in the worst case, where $\beta_{1}=3$ and $\beta \mathrm{z}$ $=1$ , $\rho(\beta)=2/9$ holds.
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