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Abstract

In this article, I give abrief review of some recent results concerning numerical schemes
to approximate solutions of stochastic differential equations We concentrate on results about
weak approximation.

1 Introduction

The Euler-Maruyama scheme is a naive approximation method for the solution of various types of
stochastic differential equations. It helps not only to simulate the solutions of stochastic equations
but it also serves theoretical purposes (see e.g. the articles of E. Gobet on the LAMN property in
$\mathrm{s}\mathrm{t}$atistics).

To introduce this notion consider the stochastic differential equation

$X(t)=x+ \int_{0}^{t}b(X(s))ds+\sum_{j=1}^{r}\int_{0}^{t}\sigma_{j}(X(s))dZ^{j}(s)$ , (1)

where $b$ , $\sigma_{i}$ : $\mathbb{R}^{d}arrow \mathbb{R}^{d}$ , $\mathrm{i}=1$ , $\ldots$ , $r$ , are Lipschitz coefficients. $Z$ is a L\’evy process. That is, a
stochastically continuous process with independent increments with characteristic function given by

$E[ \exp(\mathrm{i}\langle\theta, Z(t)\rangle)]=\exp(-\frac{1}{2}||\theta||^{2}t-\{b\backslash$ $\theta\rangle t-\int_{\mathrm{R}^{\tau}}(\exp(\mathrm{i}\langle\theta, x\rangle)-1-\mathrm{i}\theta x1\{x\leq 1\})\nu(dx))$

where $\theta\in \mathbb{R}^{r}$ and $\nu$ is a measure satisfying $f_{1\mathrm{R}^{7}}$ (1 A $|x|^{2}$ ) $\mathit{1}/(dx)<\infty$ . When $b=\iota/=0$ then $Z$ is a

standard $r$-dimensional Wiener process. $b$ denotes the drift of the process and $\nu$ 1s the L\’evy measure
associated to the process $Z$ . We note that in comparison with the Wiener process case not all
moments of $Z$ are finite. In fact the moment of order $k$ of $Z$ is bounded if $\int_{\mathrm{R}^{\Gamma}}|x|^{k}1(x\geq 1)\mathrm{v}(\mathrm{d}\mathrm{x})$ $<$

$\infty$ .
The existence and uniqueness of the above equation (1) is assured by standard theorems that

can be found in e.g. Protter under Lipschitz assumptions on the coefficients $b$ and $\sigma$ . Nevertheless
it is not clear under which conditions the moments of the solution are finite if $Z$ is a L\’evy process,
except for the case of bounded coefficients.
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In particular, we do not know how the finite mom ent property transfers from $Z$ into $X$ when
the coefficients are Lipschitz. These properties are important in order to determine the convergence
properties of the Euler scheme. The situation in the case that $\sigma$ is constant is already difficult
enough, Nevertheless, this is an interesting problem.

We quote here some results of the article Kohatsu-Yamazato that study this problem in the
particular case that $\sigma$ is constant.

For example, consider for simplicity the one dimensional case $r=d=1$ and $\nu$ is a measure
concentrated on $(0, \infty)$ . Then consider $E(X(t)^{\beta})$ for $\beta>0$ .

$b(y)=y^{\alpha}$ $\beta$ Criteria
$0\leq\alpha\leq 1$ $\beta>0$ $\int$

$\infty$

$y^{\beta}\nu(dy)$

$\alpha>1$ $\beta<\alpha-1$ always finite
$\alpha>1$ $\beta=\alpha-1$ $I$

$\infty$

$\log$ $(y)$ $\nu(dy)$

$\alpha>1$ $\beta>\alpha-1$
$\infty$

$y^{\beta-\alpha+1}\nu(dy)$

The last column in the table above determines if the corresponding moment is finite or not. In
the same lines of the above table, but in another set uP, Grigoriu-Samorodnistsky studied the tail
behavior of $X(t)$ . In either case the conclusions are similar.

The rule seem $\mathrm{s}$ to be that if the drift coefficient is sublinear then the drift does not influence
the finite moment property of $Z$ and it transfers directly to X. If the drift is superlinear then the
situation is different. That is, the finite moment property depends on the difference of power betw een
the drift and the moment to be evaluated. Therefore, it can be conjectured that this is the situation
in the Lipschitz cases.

Currently, as far as my knowledge goes it is not known if $X$ has finite moments even if the
exponential mom ents of $Z$ are bounded unless one imposes a series of stringent conditions. In most
papers found in the literature besides this assumption one also has to make the assumption that the
moments of $X$ are bounded which is an unaccomplished feature of this problem.

For a partition of the interval $[0, T]$ denoted as $\pi$ : $0=t_{0}<\ldots<t_{n}=T$, we define the
norm of the partition as $|| \pi||=\max\{t_{i+1}-l_{i}\cdot \mathrm{i}|=0, \ldots, n-1\}$ and $\eta_{1}(s)=\sup\{t_{i;}t_{\mathrm{i}}\leq t\}$ and
($\mathrm{X}(\mathrm{t})=\inf\{t_{i;}t_{\mathrm{i}}\geq t\}$ . Then the Euler-Maruyama schem $\mathrm{e}$ is defined as

$X^{n}(t_{i+1})=X^{n}(t_{l})+b(X^{n}(t_{i}))(t_{i+1}-t_{i})+ \sum_{j=1}^{r}\sigma_{j}(X^{n}(t_{i}))(Z^{j}(t_{i+1})-Z^{j}(t_{i}))$ .

The simplicity of this scheme and the generality of the possibility of applications are the main
attractions ot this scheme. First we mention the strong convergence rate result.

Theorem 1 Suppose that Z has exponential moments and that X has finite moments Then

$E[ \sup_{t\leq T}||X(t)-X^{n}(t)||^{2p}]\leq C||\pi||^{\mathrm{p}}$

where the constant $C$ depends on $T$, $x$ and the Lipschitz coefficients.
The proof of this result is standard and goes through the same methodology to prove existence

of solutions. This result can also be generalized to various equations without changing the essential
ideas.

One remarkable different case is the situation of reflecting stochastic differential equations- In
general if the domain is closed and convex then the results can be usually obtain as generalizations
of the non-reflecting case. The main difference lies in how the inequalities are obtained. In fact,
instead of using strong type inequalities directly on the error process $X(t)-X^{n}(t$}, one has to use
Ito’s formula and the fact that when the reflecting process is acting then $\langle X(t)-X^{n}(t)$ , $d(K_{t}-Kf))$

where $K$ and $K^{n}$ are the reflecting processes (or local times) of $X$ and $X^{n}$ respectively. If the domain
is more general then the results are no longer valid. In fact, as proven by Pettersson (later refined
by Slominski) the rates can decay slightly depending on the properties of the domain.

This is true but we do not discuss here and we refer the reader to a recent thesis by Menozzi
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2 From the weak error a la Jacod-Kurtz-Protter to the weak

error a la Talay-Platen etc.
If one is trying to approach the problem of weak convergence of the error process then the first
natural approach is to study the weak convergence of the process

$\sqrt{n}$ $(X(t) -X^{n}(t))$ .

This is done in a series of articles by Jacod, Kurtz and Protter, To simplify thhe ideas suppose that
we are dealing with the Wiener case in one dimension, $b\equiv 0$ and that the partition is uniform. Then
we can write a continuous extension of the process $X^{n}$ as

$Sn \{t)=x+\int_{0}^{t}\sigma(X^{n}(\eta(s)))dW(s)$ .

Then we have that

$X(t)-X^{n}(t)= \int_{0}^{t}\sigma_{1}^{n}(s)(X(s) -X^{n}(s))dW(s)+\int_{0}^{t}\sigma_{2}^{n}(s)$ $(W(s)-W(\eta(s)))dW(s)$ (2)

where

$\sigma_{1}^{n}(s)=\int_{0}^{1}\sigma’(\alpha X(s)+(1 -\mathrm{a})X^{n}(s))d\alpha$

$\sigma_{2}^{n}(s)=\int_{0}^{1}\sigma’(\alpha X^{n}(s)+(1-\alpha)X^{n}(\eta(s)))d\alpha\sigma(X^{n}(\eta(s)))$ .

Given the strong convergence result and assuming smoothness of a one has that $\sigma_{1}^{n}$ and $\sigma_{2}^{n}$ converge
in the $L^{\mathrm{p}}(C[0, T],\mathbb{R})$ -norm to

$\sigma_{1}(s)=\sigma’(X(s))$

$\sigma_{2}(s)=\sigma’\sigma(X(s))$ .

Therefore if we solve (2), we obtain that

$X(t)$ $-X^{n} \{t)=\mathcal{E}^{n}(t)^{-1}\int_{0}^{t}\mathcal{E}^{n}(s)\sigma_{2}^{n}(s)(W(s)-W(\eta(s)))dW(s)$

$- \mathcal{E}^{n}(t)^{-1}\int_{0}^{t}\mathcal{E}^{n}(s)\sigma_{1}^{\mathit{7}1}\sigma_{2}^{n}(s)(W(s)-W(\eta(s)))ds$,

where
$\mathcal{E}^{n}(t)=\exp(-\int_{0}^{t}\sigma_{1}^{n}(s)dW(s)-\frac{1}{2}\int_{0}^{t}(\sigma_{1}^{n}(s))^{2}ds)$

is the Dolean $\mathrm{s}\sim \mathrm{D}\mathrm{a}\mathrm{d}\mathrm{e}$ exponential. Now consider the process

$\sqrt{n}\int_{0}^{t}(W(s)-W(\eta(s)))dW\langle s)=\frac{\sqrt{n}}{2}(\sum_{i=0}^{j(t\}}(W(t_{\mathrm{t}+1})-W(t_{i}))^{2}+(W(t)-W(\eta(t)))^{2}-t)$ ,

where $t_{j(t)}=\eta(t)$ . Then using Donsker’s theorem (see e.g. Billingsley p. 68) we have that

$\sqrt{n}\int_{0}$ $(W(s) -W(\eta(s)))dW(s)\supset W’$
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where $W’$ is a Wiener process independent of $W$ . This follows because

$\langle\sqrt{n}\int_{0}$

.
$(W(s)-W(\eta(s)))dW(s)$ , $W \rangle=\sqrt{n}\int_{0}(W(s)-W(\eta(s)))ds$

and
$\sqrt{n}\int_{0}$

.
$H_{s}(W(s)-W(\eta(s)))dW(s)arrow 0$

in probability in the space $C[0, T]$ . In fact, first suppose that $H$ is a simple bounded process, that is

$H_{t}= \sum_{j=1}^{m}H_{i}1(s_{j}<t\leq s_{j+1})$.

Then

$\sqrt{n}\int_{0}^{t}H_{s}(W(s)-W(\eta(s)))ds=\sum_{\mathrm{z}=1}^{m}\sqrt{n}H_{i}\sum_{j=j(i)}^{J(i+1)}\int_{\ell_{\mathrm{j}}}^{t_{j+1}}(W(s)-W(t_{j}))ds$

$= \sum_{i=1}^{m}\sqrt{n}H_{i}\sum_{j=j(i)}^{J(i+1)}\int_{t_{j}}^{t_{j+1}}(t_{j+1}-s)dW(s)\backslash$

Therefore

$E| \sum_{i=1}^{\tau n}\sqrt{n}H_{i}\sum_{j=j(i)}^{j(i+1)}\int_{t_{f}}^{t_{j+1}}(t_{j+1}-s)dW(s)|^{2}\leq C\sum_{\iota=1}^{m}n\sum_{j=j(i)}^{j(t+1)}(\int_{t_{\mathrm{j}}}^{t_{j+1}}(l_{j+1}-s)^{2}ds)$

$\leq Cn^{-1}$ .

Now suppose that $H$ is a bounded process and let $H_{m}$ be a sequence of bounded simple process that
converges to $H$ in the following sense

$m arrow\infty 1\overline{1}\mathrm{m}E\ovalbox{\tt\small REJECT}\int_{0}^{T}(H_{m}(s)-H(s))^{2}ds\ovalbox{\tt\small REJECT}=0$,

Then

$E \ovalbox{\tt\small REJECT}|\int_{0}^{T}(H_{m}(s)-H(s))\sqrt{n}(W(s)-W(\eta(s)))ds|^{2}\ovalbox{\tt\small REJECT}$

$\leq C(E\ovalbox{\tt\small REJECT}\int_{0}^{T}(H_{m}(s)-H(s))^{2}ds])^{1/2}($ $E[n \int_{0}^{T}(W(s)-W(\eta(s)))^{2}ds\ovalbox{\tt\small REJECT})^{1/2}$

$\leq C(E\ovalbox{\tt\small REJECT}\int_{0}^{T}(H_{m}(s)-H(s))^{2}ds\ovalbox{\tt\small REJECT})^{1/2}$

Therefore

$E[(\mathrm{Q}^{T}H_{s}\sqrt{n}(W(s)-W(\eta(s)))ds)^{2}\ovalbox{\tt\small REJECT}$

$\leq C$ ($E \ovalbox{\tt\small REJECT}\int_{0}^{T}(\mathrm{H}\mathrm{m}(s)-H(s))^{2}ds\ovalbox{\tt\small REJECT})^{1/2}+E\ovalbox{\tt\small REJECT}(\sqrt{n}\int_{0}^{T}H_{m}(s)(W(s)-W(\eta(s)))ds)^{2}\ovalbox{\tt\small REJECT}$ .
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Therefore the argument folows by taking limits with respect to $n$ and then with respect to $m$ . To
prove that the sequence is tight is not difficult as

$E \int_{u}^{t}|H_{s}\sqrt{n}(W(s)-W(\eta(s)))|ds\leq C(E[\int_{u}^{t}|H_{\mathit{8}}|^{2}ds])^{1/2}$

Therefore we have that

($W$, $\sqrt{n}\int_{0}(W(s)\sim W(\eta(s)))dW(s))\supset(W, W’)$

where $W$ and $W’$ are two independent Wiener processes. Putting together all the above calculations,

we have that
$\sqrt{n}(X(\mathrm{t})-X^{n}(t))\supset\epsilon(t)^{-1}\int_{0}^{t}\mathcal{E}(s)\sigma_{2}(s)dW(s)$ ,

where
$\mathcal{E}(f)=\exp(-\int_{0}^{t}\sigma_{1}(s)dW(s)-\frac{1}{2}\int_{0}^{t}(\sigma_{1}(s))^{2}ds)$

and $(W, W’)$ is a2 dimensional Wiener process.
This result in a variety of forms and generalizations have been extensively proved by Jacod,

Kurtz and Protter.
In particular from this result one obtains that for any continuous bounded functional $F$ in $C[0, T]$

one has that $E[F (\sqrt{n}(X-X^{n}))]$ . Nevertheless, this does not give full information about the rate

of convergence of various other functionals that may be interesting from an application point of

view. For example, $E(X(t)^{2})-E(X^{n}(t)^{2})$ . For this reason other efforts have been directed into

extending the type of convergence into stronger topologies than than one given by weak convergence

of processes. In [13], the authors prove that for any bounded continuous real valued function $f$ and

any bounded real variable $Y$ we have that

$E(Yf( \sqrt{n}(X-X^{n})))arrow E(Yf(\mathcal{E}(\cdot)^{-1}\int_{0}\mathcal{E}(s)\sigma_{2}(s)dW(s)U))$.

This type of convergence is called stable convergence in law. This type of results are promising but

still it does not allow for the analysis of the convergence of quantities like $E(X(t)^{2})$ .

In order to analyze this problem, there is another “parallel” theory called weak approximation

that deals particularly with the error

$E[f(X)-f(X^{n})]$ .

This theory started by D. Talay which is based on the Feyman-Kac formula and the partial differ-

ential equation satisfied by the fundamental solution (or density) of the solution of (1) is the central
point. The state of the art using this technique is more advanced than the one given previously by

the theory of Jacod-Kurtz-Protter. In fact one is able to deal with non bounded, non continuous and

even Schwartz distribution functions $f$ . On the other hand one is not able to give precise information

on the distribution of the limit error. Nevertheless in the above calculation there are a variety of

ideas that can be used in the previous proposed problem. In fact, just to explain in the light oi the

Jacod-Kurtz-Protter approach the ideas behind an approach for weak approximation, let’s explain

in simple terms a complex result due to V. Bally and $\mathrm{D}$

, Talay.

To clarify the methodology, we consider a real diffusion process (that is $Z=W$ a Wiener process)

$X_{t}=x+ \int_{0}^{t}\sigma(X_{s})dW_{s\}}t\in[0, T]$

and its Euler approximation

$X_{t}^{n}=x+ \int_{0}^{t}\sigma(X_{\eta(s)}^{n})dW_{S}$ , $t\in[0,T]$
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where $\eta(s)=kT/n$ for $kT/n\leq s<(k+1)T/n$ . The error process $Y=X$ - $X^{n}$ solves

$Y_{t}= \int_{0}^{1}(\sigma(X_{s})-\sigma(X_{\eta(s)}^{n}))dW_{s}=\int_{0}^{t}\int_{0}^{1}\sigma’(aX_{\mathrm{s}}+(1-a)X_{\eta(s)}^{n})da(X_{\mathit{8}}-X_{\eta(s)}^{n})dW_{\mathrm{S}}$ ,

this can be written
$Y_{t}= \int_{0}^{l}\sigma_{1}^{n}(s)Y_{s}dW_{s}+G_{t}$ , $0\leq t\leq T$,

with
$\sigma_{1}^{n}(s)=\int_{0}^{1}\sigma’(aX_{s}+(1-a)\overline{X}_{\eta(s)})da$

$\mathrm{G}_{t}=\int_{0}^{t}\sigma_{1}^{n}(s)(X_{s}^{n}-\overline{X}_{\eta(s)})dW_{\epsilon}=\int_{0}^{t}\sigma_{1}^{n}(s)\sigma(X_{\eta(s)}^{\iota}’)(W_{\epsilon}-W_{\eta(\mathrm{s})})dfW_{f}$.

In this simple case we have an explicit expression for $Y_{t}$ ,

$Y_{t}= \mathcal{E}_{t}\int_{0}^{t}\mathcal{E}_{s}^{-1}(dG_{s}-\sigma_{1}^{n}(s)d<G, W>_{s})$

where $\mathcal{E}$ is the unique solution of

$\mathcal{E}_{t}=1+\int_{0}^{\mathrm{L}}\sigma_{1}^{n}(s)\mathcal{E}_{s}dW_{s}$ .

Finally we obtain

$Y_{t}= \mathcal{E}_{f}\int_{0}^{t}\mathcal{E}_{\epsilon}^{-1}\sigma_{1}(s)\sigma(X_{\eta(s)}^{n})(W_{\mathit{3}}-W_{\eta(s)})dW_{s}-\mathcal{E}_{t}\int_{0}^{l}\mathcal{E}_{s}^{-1}\sigma_{1}^{n}(s)^{2}\sigma(X_{\eta(s)}^{n})(W_{s}-W_{\eta\langle s]})ds$.

Now let $f$ be a smooth function with possibly polynomial growth at infinity. We are interested in
obtaining the rate of convergence $\mathrm{o}\mathrm{f}Ef(X_{T})$ to $Ef(Xf)$ . We frst write the difference

$Ef(X_{T})-Ef(X_{T}^{n})=E \int_{0}^{1}f(aXT +(1-a)X_{T}^{n})daY_{T}$.

Replacing $Y_{T}$ by its expression, we obtain with the additional notation $F^{n}= \int_{0}^{1}f’(aX_{T}+(1$ -

$a)X_{T}^{n})da$ ,

$Ef(X_{T})-Ef(X_{T}^{n})=E[F^{n} \mathcal{E}_{T}\int_{0}^{T}\mathcal{E}_{s}^{-1}\sigma_{1}^{n}(s)\sigma(X_{\eta \mathrm{i}s)}^{n})(W_{S}-W_{\eta(s)})dW_{s}\ovalbox{\tt\small REJECT}-$

$E \ovalbox{\tt\small REJECT} F^{n}\mathcal{E}_{T}\int_{0}^{T}\mathcal{E}_{s}^{-1}\sigma_{1}^{n}(s)^{2}\sigma(X_{\eta(s)}^{n})(W_{s}-\mathrm{W}\mathrm{v}(\mathrm{s})))ds\ovalbox{\tt\small REJECT}$ . (3)

Applying the duality formula for stochastic integrals $(E[<DF_{)}u>_{L^{2}[0,T]}]=E[F\delta(u)])$ where $D$

stands for the stochastic derivative and $\delta$ stands for the adjoint of the stochastic derivative. This
gives

$Ef(X_{T})-Ef$ (X$) $=E \ovalbox{\tt\small REJECT}\int_{0}^{T}D_{s}(F^{n}\mathcal{E}_{T})\mathcal{E}_{\ell}^{-1}\sigma_{1}^{n}(s)\sigma(X_{\eta(s)}^{n})(W_{s}-W_{\eta(s)})ds\ovalbox{\tt\small REJECT}$

-B $[F^{n} \mathcal{E}_{T}\int_{0}^{T\rceil}\mathcal{E}_{s}^{-1}\sigma_{1}^{n}(s)^{2}\sigma(X_{\eta(s)}^{n})(W_{s}-W_{\eta(s)})ds_{1}$ .

Consequently, the $\mathrm{d}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}Ef(X_{T})-Ef(X_{T}^{n})$ has the simple expression

$Ef(X_{T})-Ef(X_{T}^{n})=E \ovalbox{\tt\small REJECT}\int_{0}^{T}U_{s}^{n}(W_{s}-W_{\eta(\epsilon)})ds\ovalbox{\tt\small REJECT}$ ,
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with
$U_{s}^{n}=(D_{s}(F^{n}\mathcal{E}_{T})-F^{n}\mathcal{E}_{T}\sigma_{1}(s))(\mathcal{E}_{s}^{-1}\sigma_{1}^{n}(s)\sigma(X_{\eta(s)}^{n}))$ .

We finally obtain the rate of convergence by aPPlying once more the duality for stochastic integrals

$Ef(X_{T})-Ef(X \%)=E||\int_{0}^{T}\int_{\eta(s)}^{s}D_{u}.U_{\mathit{8}}^{n}duds||$ .

this last formula makes clear that $|Ef(X_{T})-Ef(X_{T}^{n})|\leq T/n$ and leads to an expansion $o\mathrm{f}Ef(X\tau)$ -

$Ef(\overline{X}_{T})$ with some additional work. Furthermore the above argument extends easily 1n the case
that $f$ is an irregular function through the use of the integration by parts formula of Malliavin
$\mathrm{C}$ alculus.

The idea explained about appeared for the first time at this workshop proceedings (in a joint
paper with R. Pettersson) and later was used by various authors between them Gobet and Munos
and $\mathrm{G}\mathrm{o}\mathrm{b}\mathrm{e}\mathrm{t}_{7}$ Pages, Pham and Printems to prove weak approximations errors in other contexts. In
some stochastic equations, one cannot explicitly solve the stochastic linear equation satisfied by
$Y$ , but in a recent joint article with E. Clement and D. Lamberton, we have developed a general

framework that allows treating a great variety of equations. As example we have developed the case
of delay equations.

In fact, considering these articles, what was considered before just another way of proving the
classical results of weak approximation of Talay through the PDE method has taken a completely

new methodology that can go beyond the classical method using the Feyman-Kac formula. To
explain this with a concrete example, I will briefly describe the problem with delay equations which
is solved in my joint paper with E. Clement and D. Lamberton, In few words the problem with

the Euler approximation for delay equations is that if one tries to use the Talay method one gets
into infinite dimensional problems quite rapidly and therefore the degree of generalization 1s quite

limited. In fact, consider (see the article of Buckw ar and Shardlow) the following one dimensional
delay equation

$dX(t)=( \int_{-\tau}^{0}X(t+s)dm(s)+b(X(t)))dt+\sigma(X(t))dW(t)$

with initial conditions $X(s)=x(s)$ for $s\in$ $[-\tau, 0]$ and $m$ is a deterministic finite measure on the

interval $[-\tau, 0]$ . The natural definition of the Euler scheme is obviously obtained by discretization

of the integral in the drift term. That is,

$X^{n}(t_{i+1})=X^{n}(t_{l})+ \sum_{j=0}^{m}X(t_{i}+s_{j}1,m(s_{j}, s_{j+1}]b(X^{n}(t_{i}))(t_{i+1}-t_{i})+$
$\sigma(X^{n}(t_{i}))(W(t_{i+1})-W(t_{i}))$

where $s_{j}$ is a partition of the interval $[-\tau, 0]$ in such a way that $t_{i}+sj$ $=t\iota$ for some $l\leq \mathrm{i}$ . In this
situation, the natural way to extend the classical argument of Talay is to consider this system as an
infinite dimensional stochastic differential equation so as to retain the Markov property. If one does
so, one obtains that the solution can be written as

$X(t)=S(t)x+ \int_{0}^{t}S(t-s)b(X(s))ds+\int_{0}^{t}S(t-s)\sigma(X(s))dW(s)$

where $S$ is the semigroup associated with the linear term in the equation tor $X$ , Similarly, one finds

that $X^{n}$ is generated using instead of $S$ the Yoshida approximations to this operator. Then the

partial differential equation associated with this problem is

$u_{t}(t, x)= \frac{1}{2}u_{xx}(t, x)\sigma(x_{0})^{2}+u_{x}(t, x)$ (Ax $+b(x_{0})$ )

where $x(0)=$ rg and $Ax(t)=f_{-\tau}^{\mathit{0}}x(t+s)dm(s)$ for $x\in L^{2}[-\tau, 0]$ . The (non-trivial) argument is

then similar to the classical Talay argument. Nevertheless, it is also clear from the above set-up that
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this approach has its limitations. For example, one can not suppose that there is also a continuous
delay in the diffusion coefficient or that the delay term is non-linear.

All the limitations cited so far appeared because of the need of using infinite dimensional partial

differential equations. Nevertheless using the method explained previously, we have obtained the
following result: (for details, see Clement-Kohatsu-Lamberton)

Let $(X_{t})$ be the solution stochastic delay equation .

$\{$

$dX_{t}$ $=$ $\sigma(\int_{-r}^{0}X_{t+s}d\nu(s))$ $dW_{t}+b( \int_{-r}^{\mathit{0}}X_{t+s}d\nu(s))$ $dt$

$X_{s}$ $=$ $\xi_{s}$ , $s\in[-r, 0]$ ,

where $r>0$ , $\xi\in C([-r_{7}0], R)$ and $\nu$ is a finite measure.
We consider the Euler approximation of (Xt) with step $h=r/n$

$\{$

$dX_{t}^{n}$ $=$ c7 $( \int_{-r}^{0}X_{\eta(\mathrm{t})+\eta(s)}^{n}d_{\mathit{1}J}(s))dW_{t}+b(\int_{-\tau}^{0}X_{\eta(t)+\eta(s)}^{n}d\nu(s))$ $dt$

$X_{s}^{n}$ $=$ $\xi_{s}$ , $s\in[-r_{7}0]$ ,

with $\eta(s)=\mathrm{m}nsrn/r$
’ where $[t]$ stands for the entire part of $t$ . We assume that the functions $f$ , $\sigma$ and

$b$ are $c_{b}^{3}$ . Then we obtain that

$Ef(X_{T})-Ef(X_{T}^{n})=hC_{f}+I^{h}(f)+o(h)$

where $C_{f}=C(U^{0})$ and $I^{h}(f)=I^{h}(U^{0})$ are defined in Clement-Kohatsu-Lamberton. In particular
$|I^{h}(J)|\leq Ch$ and

$U_{s}^{0}$ $=$ $\sigma’(\int_{-r}^{0}X_{s+u}d\nu(u))$ $D_{s}f^{i}(X_{T})+b’( \int_{-r}^{0}X_{s+u}d\nu(u))f’(X_{T})+$

$\sigma’(\int_{-r}^{0}X_{s+u}d\nu(u))$ $D_{S}( \int_{0}^{T}\theta_{l}dt)+b’(\int_{-}^{0}\sim,$ $X_{s+u}d \nu(u))\int_{s}^{T}\theta_{t}dt$

and $\theta$ is the unique solution of

$\theta_{t}=\alpha^{*}(J(f’(X_{T})+\int_{0}^{T}\theta_{\mathrm{s}}ds))(t)$ $+\beta^{*}($$E(f’(X_{T})+ \int^{T}\theta_{s}ds|F)$ $)(t)$

with
$\alpha^{*}(X)(t)$ $=$ $E$ $\{$

$\beta^{*}(X)(t)$ $=$ $E$

$\int_{\max(t-T,-r)}^{0}\sigma’(\int_{-r}^{0}X_{t-u+v}d\nu(v))$ $X_{t-u}d\iota/(u)|\mathcal{F}t)$

$(J_{\varpi \mathrm{a}\mathrm{x}(t-T,-r)}^{0}.b’( \int_{-r}^{0}X_{t\sim u+v}d\nu(v))$ $X_{\mathrm{t}-u}d\iota/(u)|F_{t})$

As a brief comment about the fact that we based our explanation on the one dimensional case
we present in the next section an interesting recent result on exact simulation of one dimensional
diffusions.

3 An exact simulation method for one dimensional uniformly
elliptic diffusions

Recently in an article by Beskos et.al. an interesting exact method of simulation has been intro-
duced. Therefore this result excludes the widespread use of the Euler-Maruyama scheme in one
dimension.We describe it shortly here. Consider the one dimensional diffusion

$X(t_{J}^{\backslash }=x+ \int_{0}^{t}b(X(s))ds+\int_{0}^{t}\sigma(X(s))dW(s)$
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First, suppose that $\sigma(x)\geq \mathrm{c}$ $>0$ for any $x\in \mathbb{R}$ with $\sigma\in C^{1}(\mathbb{R})$ . Then perform the change of
variables $Y_{t}=\mathrm{v}(\mathrm{X}\mathrm{t})$ where $\eta(x)=f_{0}^{x}\frac{1}{\sigma(u)}$du. Then using Ito’s formula, $Y$ satisfies the following

$\mathrm{s}\mathrm{d}\mathrm{e}$:
$Y(\mathrm{f})$ $= \eta(x)+\int$ $\alpha(Y(s))ds$ $+W(t)$

where $\alpha\langle x$) $=b\sigma^{-1}(x)+2^{-1}\sigma’(x)$ . Suppose that we want to compute $E(f(X\tau))$ . Then using

Girsanov’s Theorem we have that

$Ef(X_{T})=E \ovalbox{\tt\small REJECT}_{f(B_{T})\exp}(\int_{0}^{T}\alpha(B_{\mathrm{g}})dB_{\mathit{5}}-\frac{1}{2}\int_{0}^{T}\alpha(B_{t})^{2}df)\ovalbox{\tt\small REJECT}$

where $B$ is another Wiener process starting at $\eta(x)$ and here we assume that $\alpha$ is bounded. This idea

is usually found when one proves existence of weak solutions for stochastic differential equations.

Next one defines the function $A(u)=f_{0}^{u}\alpha(y)dy$ With this definition we have apPlying Ito’s
formula that

$A(B_{T})-A(x)= \int_{0}^{T}\alpha(B_{s})dB_{s}+\frac{1}{2}\int_{0}^{T}\alpha’(B_{s})ds$ .

Therefore

$Ef(X_{T})=B||f(B_{T})\exp($ $A(B_{T})-A( \eta(x))-\frac{1}{2}\int_{0}^{T}(\alpha(B_{C})^{2}+\alpha’(B_{t}))dt)]$ .

If one where to simulate the above quantity one will need the whole path of the Wiener process
$B$ . In fact this is done in a series of papers by Detemple et. al. where the Doss-Sussman formula

is used to improve the approximation scheme to obtain an scheme which is of strong order one.
Instead, Beskos et.al. proposes to use a Poisson process to simulate the exponential in the above

expression. In fact, define $\phi(x)=\frac{1}{2}\alpha(x)^{2}+\alpha’(x)$ and let $N$ be a point Poisson process in the interval
$[0, T]$ $\mathrm{x}[0, M]$ , independent of $B$ , where we suppose without loss of generality that $0\leq\alpha(x)\leq M$ .
Then the we have the following result

$P$ ( the Poisson point process $N$ does not hit any point below the graph of $\phi(B_{s})$ in the interval $s\in[0,$ $T|/B$ )

$= \exp(-\int_{0}^{T}\phi(B_{s})ds)$

In other words, if we let $N_{1}(t)$ be the Poisson process that counts the number of times until time $t$

that the Poisson point process has hit point under the curve of $\phi(B)$ , then the above statement can
be simply written as

$P(N_{1}(T)=0/B)= \exp(-\int_{0}^{T}\phi(B_{s})ds)$

and the simulation schem $\mathrm{e}$ follows ffom the following equality

$Ef(X_{T})=E[f(B_{T})\exp(A(B_{T})-A(\eta(x)))1\langle_{[perp]}\mathrm{V}_{1}(T)=0)]$ .

How is the simulation done7 First one simulates independent exponential random variables with

parameter $\lambda$ $=1$ Say $X_{1}$ , $\ldots$ , $X_{n}$ until $\sum_{i=1}^{n}X_{i}>T$ . For each of these $n$ occurrences one simulates

the independent increments of the Wiener process $B$ . That is, $B(X_{1})$ , $\ldots,$

$B( \sum_{i=1}^{n}X_{i})-B(\sum_{i=1}^{n-1}X_{i})$.

Then for each $\mathrm{i}=1$ , ..., $n-1$ one simulates a uniform random variable on the interval $[0, M]$ . If its

value is smaller that $\phi(B(\sum_{j=\mathit{1}}^{i}X_{j}))$ then we count it as one occurrence of $N_{1}$ or that the Poisson

point process has hit the region below the graph of $\phi(B)$ . Obviously there are various issues that

have not been considered in this short introduction which rest as open problems or that had already

been treated by the authors
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Also as it was also well known before the one dimensional case always permit various reductions
that do not happen in higher dimensions. Nevertheless, the one dimensional case always remains as
a testing ground for new methodology as it was proven by our recent development in Clement et al.

In the multidimensional case one can use this idea similarly with the Doss-Sussman formula to
produce a simulation scheme of order 2 under the Frobenius condition on $\sigma$ .
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