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On the probabilities associated
with unitary matrices

Y. Takahashi
RIMS, Kyoto University

1 Background

The series of joint works with T. Shirai on fermion point processes, boson
point processes and others strongly suggested the following.

Theorem 1. For a given unitary matriz U = (uy)i<jp<n there ezisis a
probability p on the symmetric group Sy, such that

|detUspl?= > plo) (4Bc{L2...,n})

&€Sn,0(A)=B
where Usp = (Uik)jearcn and we set det Uap = 0 unless |A] # |B|.

This result sharpens the following well-known theorem which shows the
existence of an 7.i.d sequence of permutations that drives a given symmetric
Markov chain.

Theorem 2. A doubly stochastic matriz P = (pjr), 2 xPit = D_pPhj = 1
is a conwvex combination of representation matrices of permutations, E, =

(0(k = o(1)))1gihsn-

The proof of Theorem 1 will be published elsewhere. Here we discuss the
uniqueness problem for |det Uyg|* appearing in the L.H.S. of the assertion.

Theorem 3. Let X,Y be matrices of the same type and assume

det(I + X*SXT) = det(I + Y*SYT)
for any diagonal matrices S and T.
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Then there ezist unitary diagonal matrices Dy and Dy such that
Y=D;XD; or Y=D;XD,
where X stands for the component-wise complez conjugate of X.

It is obvious that the converse of Theorem 3 holds. The determinant
det(] + X*SXT) is a generating function in components of S and 7" with co-
efficients | det X 45/|°. Consequently, it solves the uniqueness problem stated
above.

By the way, such a kind of uniqueness problem is not so simple in general.
For instance, we have the following

Theorem 4. Let X and Y be hermitian matrices and assume

det(I + XT) =det(I + YT)
for any diagonal matriz T

Then, “generz'ca,llyj,_ there exists a unitary diagonal matriz D such that Y =
D*XD orY = D*XD but there ezist counter-ezamples if the size n > 4.

In deed, the “canonical form” of counter-examples for n = 4 is as follows.
Consider

C11 c12e®® ey Ci4
cne™™ ey a3 Co4

C31 C32 Csz  Cgae™P

€41 cip ey

where ¢j; > 0, @, 8 > 0. If we choose distinct pairs of §,¢ € {&1} for X and
Y, we can find a counter-example.

2 The proof of Theorem 3

We employ the following notations for matrices X = (Zj8)i<ij<mi<hen 8nd
Y = (Yjhigjgmichgn with z;; € C and yj, € C .

(@) X = (Tin)igjgmichen

(b) X =Y if forany p=1,2,...,min{m, n} and for any j, < - - - < jp and
ky <o <k,

| det(yj, k. igrs<pl = | d6b(T),k, )i<rs<pl-



(¢) X ~Y if thereexist 81,...,0m,¢1,...,¢m € R (precisely, R/27Z) such
that

Yir = ei(ej"‘ﬂk}a’-}.’k
forallj=1,...,mandallk=1,...,n.
Moreover we write

XAY if X~Y and XY if X~Y.

Under above notations the statement of Theorem can be restated as fol-
lows:

if X~Y, then XAY or X~V

2.1 Preliminary

Lemma 1. Let a,b,6, 9 € R and assume
le¥a — b| = |e"a — b].
Then one of the following holds:
(@)a=0 (B)b=0 (c)8=¢ (mod2r) (d)f=—¢p (mod27).
Conversely, if one of (a)-(d) holds then |¢®a — b| = |e¥a — b].

Proof. The cases (a) and (b) are trivial. Assume ¢ # 0 and b # 0. Then
|z — b| = r and |z| = |a| are two distinct circles on the complex plane which
are symmetric with respect to the real axis. Hence they interested at most
two points which are complex conjugate. !

Lemma 2. Let Uy, € C, j,k =1,2. Then the identity
Ui + Uyy = Upg + Uy
holds if and only if there exist v1, vy, wy, ws € C such that

Ui = Vj — Wk
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Proof. The “if” part is obvious. To prove the “only if” part set

U + Uy =Upp +Upy =35,
Uy — Uy =Up—Upp=a,
Uig — Uy =Up—-Uyn=>0

and

Then
Ujp = Uj — Wi for j,kz 1,2.

Lemma 3. Let X andY be matrices of type (m,n) and set

X' = (éEjk)zgjsm,zgksn-l, X" = (ﬁjk)lSjSmﬂskSm
Y= (yjk)zgg‘gm,zskgn—ls Y" = (yjk)zgjsm,zskgn-

Assume that
X' ~Y" and X"~Y".

In addition, assume that z;, # 0 for some j and k with 1 < j < m and
2<k<n—1. Then
X~Y.

Proof. By the assumption there exist 8],...,68 ¢}, ..., ¢n_; and
B, ..., 00,05, ..., ¢k such that

yip =% ¥, for 1<j<m and 1<k<n-—1,
Yin = eﬂ(ﬁg’—sﬂ;’)wjk for [<j<m and 2<k<n.

Moreover, by the additional assumption z;; % 0 and y;; # 0 for some j§ and
Ewithl<j<mand 2<k<n-—1. Hence

6.;_90;:0;/—(,0;; or 9;-—-9;’:@;;—(,0;;:&
for such (4, k). Consequently,
Yo =@z for 1<j<m and I<k<n

with 0 =0, I <j<m), px = (<k<n-1)and p, =0 +c.



2.2 Proof of Theorem 3

Step : m=n=2,
Let X = (zjr)1<ih<e and Y = (yji)15k<2- Since X = Y,

2k = lyixl (7,5 =1,2) and
!$11$22 - 53125021[ = kynyzz - ?Jl_z'yml'
Set ;5 = cjme™i* and Y = c;re"* where ¢jr = |z;x|. Then

t(€11+E22 412~
Ie (Er1+622—812 521)611022 —"012021l

___lee(nn-i-'f]zz—mz—ml)CllCz? — 012021|.

By Lemma 1, it follows either cyieppcigce; = 0 or
1 + Moo — Tha — 21 = £(&u + Eor — &12 — &a1).-
In the latter case, by Lemma 2 there exist 6;, 6, ¢, and g such that
ik F & = 0; — ey, J,k=1,2.

Hence .
Y~X or Y~X

according to the sign .
If ¢11¢92¢19¢21 = 0, X is one of the following form

Tz1 Taz

0
(@) ( 9:12> ,T1aZnT # 0 (a) (2:11 12 , L11Z12T91 F 0

Io1 T2

0@y e
@ (o o) @) (g o)

In case (a) , setting @1 = 0,8, = nu ~ 11,02 = N — én and @y =
N — &9 — O one finds 9, = &ix + 0; — ¥&

(b) (mu 0 ) , T11ZnTo 7 0 (b’ (:1:11 :1:12) T11Z12222 7 O
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In case (b} , setting 6, = 0,¢1 = &1 — 7a1, 03 = &2 — M2 80d 6; =
Tha — €12 + o one finds 7, = & + 0; — k.
In these cases, it is easy to find 61, 62, ¢1 and ¢, such that

Yjk = et'(ej*“”‘)mjk for j,k=1,2.
For instance,

case(a) i1 =0,00 =11 — 1,0 =no1 — &1 and o =10y — &an — Os.
case(b) : 0y = 0,01 =& — 1,02 = &9 — Mo and b; = My — £13 + .

Consequently, in these degenerated cases we obtain

Y ~X.

Step 2: m=2,n =3,
Let X = (wjk)tgjgz,tgkga and Y = (yjk)zgjgz,zgkgs and define

X' = (T hi<i<aicics, X' = (‘Tjk)ls,;’_<_2,25k_<_3:
X" = (zi)igi<one(1,3)

and Y',Y",Y" in a similar manner. Since X ~ Y implies X’ = Y, X" ~
Y7 X" ~Y"™ it follows from Step 1 that

X! rf: v X" ,{: ! VI f\'j ! y
3 b

for some ¢’,¢",¢" € {£1}. Then at least two of &’,¢” and & coincide. For
simplicity, assume &’ = ¢” = +. Then

X'~Y and X"=xY"

By Lemma 3 one can conclude X ~ Y if 15 # 0 or Z9p # 0. If 215 = 295 = 0
then relation X" A~ Y is equivalent to the relation X ~ Y.

3

Step 3: m=2,n> 4.

We appeal to the induction on n. In Step 2 we proved the assertion for
n = 3. Let us assume we have proved for n — 1 and show the case for n.

If X and Y are matrices of type (2,n) and X = Y, then we have n
submatrices X1,...,X, of X and Y},..., Y, of Y of type (2,n — 1).



By induction assumption, we have X; % Y; for each i with ¢; = %. Since
n > 4, we can find at least two #’s for which ¢;’s coincide with each other.
Thus, a similar argument to Step 2 shows that X AYorX~Y.

Step4: m>3,n2>3.

We appeal to the induction on m fixing n.

Let X and Y be matrices of type {(m,n) and X =Y. Then we can find
at least two par submatrices X', X", Y",Y" of type (m — 1,n) and € € {£}
such that ‘

X' <Y’ and X"SY"
By Lemma 3 if X’ and X" have a common nonzero entry, we have X ~ Y. If
they have no common nonzero entries, then X and Y are essentially of type

(2,n). Hence by Step 3 we obtain X AYoX~Y. O
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