On the probabilities associated with unitary matrices

Y. Takahashi RIMS, Kyoto University

1 Background

The series of joint works with T. Shirai on fermion point processes, boson point processes and others strongly suggested the following.

Theorem 1. For a given unitary matrix $U = (u_{ij})_{1 \leq j,k \leq n}$ there exists a probability p on the symmetric group S_n such that

$$|\det U_{AB}|^2 = \sum_{\sigma \in S_n, \sigma(A) = B} p(\sigma) \quad (A, B \subset \{1, 2, \dots, n\}).$$

where $U_{AB} = (u_{jk})_{j \in A, k \in B}$ and we set $\det U_{AB} = 0$ unless $|A| \neq |B|$.

This result sharpens the following well-known theorem which shows the existence of an i.i.d sequence of permutations that drives a given symmetric Markov chain.

Theorem 2. A doubly stochastic matrix $P = (p_{jk}), \sum_k p_{jk} = \sum_k p_{kj} = 1$ is a convex combination of representation matrices of permutations, $E_{\sigma} = (\delta(k = \sigma(j)))_{1 \leq j,k \leq n}$.

The proof of Theorem 1 will be published elsewhere. Here we discuss the uniqueness problem for $|\det U_{AB}|^2$ appearing in the L.H.S. of the assertion.

Theorem 3. Let X, Y be matrices of the same type and assume

$$det(I + X^*SXT) = det(I + Y^*SYT)$$
for any diagonal matrices S and T.

Then there exist unitary diagonal matrices D_1 and D_2 such that

$$Y = D_1^* X D_2$$
 or $Y = D_1^* \overline{X} D_2$

where \overline{X} stands for the component-wise complex conjugate of X.

It is obvious that the converse of Theorem 3 holds. The determinant $\det(I+X^*SXT)$ is a generating function in components of S and T with coefficients $|\det X_{AB}|^2$. Consequently, it solves the uniqueness problem stated above.

By the way, such a kind of uniqueness problem is not so simple in general. For instance, we have the following

Theorem 4. Let X and Y be hermitian matrices and assume

$$det(I + XT) = det(I + YT)$$
for any diagonal matrix T.

Then, "generically", there exists a unitary diagonal matrix D such that $Y = D^*XD$ or $Y = D^*\overline{X}D$ but there exist counter-examples if the size $n \ge 4$.

In deed, the "canonical form" of counter-examples for n = 4 is as follows. Consider

$$\begin{bmatrix} c_{11} & c_{12}e^{i\delta\alpha} & c_{13} & c_{14} \\ c_{21}e^{-i\delta\alpha} & c_{22} & c_{23} & c_{24} \\ c_{31} & c_{32} & c_{33} & c_{34}e^{i\epsilon\beta} \\ c_{41} & c_{42} & c_{43}e^{-i\epsilon\beta} & c_{44} \end{bmatrix}.$$

where $c_{jk} \geq 0$, $\alpha, \beta > 0$. If we choose distinct pairs of $\delta, \varepsilon \in \{\pm 1\}$ for X and Y, we can find a counter-example.

2 The proof of Theorem 3

We employ the following notations for matrices $X=(x_{jk})_{l\leq j\leq m, l\leq h\leq n}$ and $Y=(y_{jk})_{l\leq j\leq m, l\leq h\leq n}$ with $x_{jk}\in\mathbb{C}$ and $y_{jk}\in\mathbb{C}$:

- (a) $\overline{X} = (\overline{x}_{jk})_{1 \le j \le m, 1 \le k \le n}$.
- (b) $X \approx Y$ if for any $p = 1, 2, ..., \min\{m, n\}$ and for any $j_1 < \cdots < j_p$ and $k_1 < \cdots < k_p$

$$|\det(y_{j_rk_s})_{1 \le r, s < p}| = |\det(x_{j_rk_s})_{1 \le r, s \le p}|.$$

(c) $X \sim Y$ if there exist $\theta_1, \ldots, \theta_m, \varphi_1, \ldots, \varphi_m \in \mathbb{R}$ (precisely, $\mathbb{R}/2\pi\mathbb{Z}$) such that

$$y_{jk} = e^{i(\theta_j - \varphi_k)} x_{j,k}$$

for all j = 1, ..., m and all k = 1, ..., n.

Moreover we write

$$X \stackrel{+}{\sim} Y$$
 if $X \sim Y$ and $X \stackrel{-}{\sim} Y$ if $\overline{X} \sim Y$.

Under above notations the statement of Theorem can be restated as follows:

if
$$X \approx Y$$
, then $X \stackrel{+}{\sim} Y$ or $X \stackrel{-}{\sim} Y$.

2.1 Preliminary

Lemma 1. Let $a, b, \theta, \varphi \in \mathbb{R}$ and assume

$$|e^{i\theta}a - b| = |e^{i\varphi}a - b|.$$

Then one of the following holds:

(a)
$$a = 0$$
 (b) $b = 0$ (c) $\theta = \varphi \pmod{2\pi}$ (d) $\theta = -\varphi \pmod{2\pi}$.

Conversely, if one of (a)-(d) holds then $|e^{i\theta}a - b| = |e^{i\varphi}a - b|$.

Proof. The cases (a) and (b) are trivial. Assume $a \neq 0$ and $b \neq 0$. Then |z-b|=r and |z|=|a| are two distinct circles on the complex plane which are symmetric with respect to the real axis. Hence they interested at most two points which are complex conjugate.

Lemma 2. Let $U_{jk} \in \mathbb{C}$, j, k = 1, 2. Then the identity

$$U_{11} + U_{22} = U_{12} + U_{21}$$

holds if and only if there exist $v_1, v_2, w_1, w_2 \in \mathbb{C}$ such that

$$u_{ik} = v_i - w_k.$$

Proof. The "if" part is obvious. To prove the "only if" part set

$$U_{11} + U_{22} = U_{12} + U_{21} = s,$$

 $U_{21} - U_{11} = U_{22} - U_{12} = a,$
 $U_{12} - U_{11} = U_{22} - U_{21} = b$

and

$$v_1 = \frac{s-a}{2}, v_2 = \frac{s+a}{2}, w_1 = \frac{b}{2}, w_2 = -\frac{b}{2}.$$

Then

$$u_{jk} = v_j - w_k \quad \text{for} \quad j, k = 1, 2.$$

Lemma 3. Let X and Y be matrices of type (m, n) and set

$$X' = (x_{jk})_{1 \le j \le m, 1 \le k \le n-1}, \quad X'' = (x_{jk})_{1 \le j \le m, 2 \le k \le n},$$

$$Y' = (y_{jk})_{1 \le j \le m, 1 \le k \le n-1}, \quad Y'' = (y_{jk})_{1 \le j \le m, 2 \le k \le n}.$$

Assume that

$$X' \sim Y'$$
 and $X'' \sim Y''$

In addition, assume that $x_{jk} \neq 0$ for some j and k with $1 \leq j \leq m$ and $2 \leq k \leq n-1$. Then

$$X \sim Y$$
.

Proof. By the assumption there exist $\theta_1', \ldots, \theta_m', \varphi_1', \ldots, \varphi_{n-1}$ and $\theta_1'', \ldots, \theta_m'', \varphi_2'', \ldots, \varphi_n''$ such that

$$\begin{aligned} y_{jk} &= e^{i(\theta'_j - \varphi'_k)} x_{jk} & \text{for} \quad l \leq j \leq m \quad \text{and} \quad 1 \leq k \leq n-1, \\ y_{jk} &= e^{i(\theta''_j - \varphi''_k)} x_{jk} & \text{for} \quad l \leq j \leq m \quad \text{and} \quad 2 \leq k \leq n. \end{aligned}$$

Moreover, by the additional assumption $x_{jk} \neq 0$ and $y_{jk} \neq 0$ for some j and k with $l \leq j \leq m$ and $2 \leq k \leq n-1$. Hence

$$\theta'_j - \varphi'_k = \theta''_j - \varphi''_k$$
 or $\theta'_j - \theta''_j = \varphi''_k - \varphi''_k = \alpha$

for such (j, k). Consequently,

$$y_{jk} = e^{i(\theta_j - \varphi_k)} x_{jk}$$
 for $l \le j \le m$ and $l \le k \le n$

with $\theta_j = \theta'_j$ $(l \le j \le m)$, $\varphi_k = \varphi_k$ $(l \le k \le n-1)$ and $\varphi_n = \theta''_n + \alpha$.

2.2 Proof of Theorem 3

Step 1: m = n = 2.

Let
$$X = (x_{jk})_{1 \le j,k \le 2}$$
 and $Y = (y_{jk})_{1 \le j,k \le 2}$. Since $X \approx Y$,

$$|x_{jk}| = |y_{jk}| \ (j, k = 1, 2)$$
 and $|x_{11}x_{22} - x_{12}x_{21}| = |y_{11}y_{22} - y_{12}y_{21}|.$

Set $x_{jk} = c_{jm}e^{i\xi_{jk}}$ and $y_{jk} = c_{jk}e^{i\eta_{jk}}$ where $c_{jk} = |x_{jk}|$. Then

$$\begin{aligned} &|e^{i(\xi_{11}+\xi_{22}-\xi_{12}-\xi_{21})}c_{11}c_{22}-c_{12}c_{21}|\\ =&|e^{i(\eta_{11}+\eta_{22}-\eta_{12}-\eta_{21})}c_{11}c_{22}-c_{12}c_{21}|.\end{aligned}$$

By Lemma 1, it follows either $c_{11}c_{22}c_{12}c_{21}=0$ or

$$\eta_{11} + \eta_{22} - \eta_{12} - \eta_{21} = \pm (\xi_{11} + \xi_{22} - \xi_{12} - \xi_{21}).$$

In the latter case, by Lemma 2 there exist $\theta_1, \theta_2, \varphi_1$ and φ_2 such that

$$\eta_{jk} \mp \xi_{jk} = \theta_j - \varphi_k, \quad j, k = 1, 2.$$

Hence

$$Y \sim X$$
 or $Y \sim \overline{X}$

according to the sign \mp .

If $c_{11}c_{22}c_{12}c_{21}=0$, X is one of the following form

(a)
$$\begin{pmatrix} 0 & x_{12} \\ x_{21} & x_{22} \end{pmatrix}$$
, $x_{12}x_{21}x_{22} \neq 0$ (a') $\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & 0 \end{pmatrix}$, $x_{11}x_{12}x_{21} \neq 0$

(b)
$$\begin{pmatrix} x_{11} & 0 \\ x_{21} & x_{22} \end{pmatrix}$$
, $x_{11}x_{21}x_{22} \neq 0$ (b') $\begin{pmatrix} x_{11} & x_{12} \\ 0 & x_{22} \end{pmatrix}$, $x_{11}x_{12}x_{22} \neq 0$

(c)
$$\begin{pmatrix} x_{11} & 0 \\ x_{21} & 0 \end{pmatrix}$$
 (c') $\begin{pmatrix} x_{11} & x_{12} \\ 0 & 0 \end{pmatrix}$

$$(c'')$$
 $\begin{pmatrix} 0 & x_{11} \\ 0 & x_{21} \end{pmatrix}$ (c''') $\begin{pmatrix} 0 & 0 \\ x_{21} & x_{22} \end{pmatrix}$.

In case (a), setting $\varphi_1 = 0$, $\theta_l = \eta_{11} - \xi_{11}$, $\theta_2 = \eta_{21} - \xi_{21}$ and $\varphi_2 = \eta_{22} - \xi_{22} - \theta_2$ one finds $\eta_{jk} = \xi_{jk} + \theta_j - \varphi_k$.

In case (b), setting $\theta_2 = 0$, $\varphi_l = \xi_{21} - \eta_{21}$, $\varphi_2 = \xi_{22} - \eta_{22}$ and $\theta_1 = \eta_{12} - \xi_{12} + \varphi_2$ one finds $\eta_{jk} = \xi_{jk} + \theta_j - \varphi_k$.

In these cases, it is easy to find $\theta_1, \theta_2, \varphi_1$ and φ_2 such that

$$y_{jk} = e^{i(\theta_j - \varphi_k)} x_{jk}$$
 for $j, k = 1, 2$.

For instance,

case(a):
$$\varphi_1 = 0$$
, $\theta_1 = \eta_{11} - \xi_{11}$, $\theta_2 = \eta_{21} - \xi_{21}$ and $\varphi_2 = \eta_{22} - \xi_{22} - \theta_2$.
case(b): $\theta_2 = 0$, $\varphi_1 = \xi_{21} - \eta_{21}$, $\varphi_2 = \xi_{22} - \eta_{22}$ and $\theta_1 = \eta_{12} - \xi_{12} + \varphi_2$.

Consequently, in these degenerated cases we obtain

$$Y \sim X$$
.

Step 2: m = 2, n = 3.

Let $X = (x_{jk})_{1 \le j \le 2, l \le k \le 3}$ and $Y = (y_{jk})_{1 \le j \le 2, l \le k \le 3}$ and define

$$X' = (x_{jk})_{1 \le j \le 2, l \le k \le 2}, \quad X'' = (x_{jk})_{1 \le j \le 2, 2 \le k \le 3},$$

 $X''' = (x_{jk})_{1 \le j \le 2, k \in \{1,3\}}$

and Y',Y'',Y''' in a similar manner. Since $X\approx Y$ implies $X'\approx Y',X'''\approx Y'',X'''\approx Y'''$ it follows from Step 1 that

$$X' \stackrel{\varepsilon'}{\sim} Y', X'' \stackrel{\varepsilon''}{\sim} Y'', X''' \stackrel{\varepsilon'''}{\sim} Y'''$$

for some $\varepsilon', \varepsilon'', \varepsilon''' \in \{\pm 1\}$. Then at least two of $\varepsilon', \varepsilon''$ and ε''' coincide. For simplicity, assume $\varepsilon' = \varepsilon'' = +$. Then

$$X' \approx Y'$$
 and $X'' \approx Y''$.

By Lemma 3 one can conclude $X \sim Y$ if $x_{12} \neq 0$ or $x_{22} \neq 0$. If $x_{12} = x_{22} = 0$, then relation $X''' \stackrel{\varepsilon'''}{\sim} Y'''$ is equivalent to the relation $X \stackrel{\varepsilon'''}{\sim} Y$.

Step 3: $m = 2, n \ge 4$.

We appeal to the induction on n. In Step 2 we proved the assertion for n=3. Let us assume we have proved for n-1 and show the case for n.

If X and Y are matrices of type (2, n) and $X \approx Y$, then we have n submatrices X_1, \ldots, X_n of X and Y_1, \ldots, Y_n of Y of type (2, n-1).

By induction assumption, we have $X_i \stackrel{\varepsilon_i}{\sim} Y_i$ for each i with $\varepsilon_i = \pm$. Since $n \geq 4$, we can find at least two i's for which ε_i 's coincide with each other. Thus, a similar argument to Step 2 shows that $X \stackrel{+}{\sim} Y$ or $X \stackrel{-}{\sim} Y$.

Step 4: $m \ge 3, n \ge 3$.

We appeal to the induction on m fixing n.

Let X and Y be matrices of type (m,n) and $X \approx Y$. Then we can find at least two par submatrices X', X'', Y', Y'' of type (m-1,n) and $\varepsilon \in \{\pm\}$ such that

$$X' \stackrel{\varepsilon}{\sim} Y'$$
 and $X'' \stackrel{\varepsilon}{\sim} Y''$.

By Lemma 3 if X' and X'' have a common nonzero entry, we have $X \stackrel{\varepsilon}{\sim} Y$. If they have no common nonzero entries, then X and Y are essentially of type (2,n). Hence by Step 3 we obtain $X \stackrel{+}{\sim} Y$ or $X \stackrel{-}{\sim} Y$.

References

- [1] Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes, J. Funct. Anal., 205 (2003), 414-463. (with T. Shirai)
- [2] Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic properties, *Ann. Prob.*, **31** (2003), 1533-1564. (with T. Shirai)
- [3] Random point fields associated with fermion, boson and other statistics, in *Stochastic analysis on large scale interacting systems*, 345-354, Adv. Stud. Pure Math., **39**, Math. Soc. Japan, Tokyo, 2004. (with T. Shirai)