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APPLICATION OF STOCHASTIC NUMERICAL METHODS IN
MULTI-PERIOD OPTIMAL PORTFOLIO STRATEGIES:CASE STUDIES

HEE—S17 Ty hIRUAL N BR EF (RYUJI FUKAYA)
DLIBJ ASSET MANAGEMENT CO.,LTD.

ABSTRACT. The authors propose a new algorithm combining a stochastic flow technique and
the Ninomiya-Victoir method [14], to solve an optimal portfolic and consumption problem for a
single-agent facing a Markovian security market setting. In that class, optimal feedback portfolio
strategies are expressed by transition semigroups of the system of stochastic differential equa-~
tions, which are induced by‘applying the differential rule of a composite function to stochastic
flows. Some numerical examples are given.

1. INTRODUCTION

We consider a single-agent optimal portfolic and consumption problem in a continuous-time.
Optimal portfolio and consumption choice in multi-period or in continuous-time settings were
first investigated by Samuelson [15] and Merton [11] {12]. Many articles about optimal portfolio
strategies are published since then. We have the general formula for optimal solutions in the
case of complete market settings. See Cox-Huang [1] and Cvitanic-Karatzas [2].

However, for many financial problems which practitioners tackle in daily business, it is difficult
to obtain tractable analytical optimal solutions. The difficulty requires us to apply the numerical
methods especially when economy’s state variables are stochastic such as in stochastic interest
rate models, stochastic volatility models, bond portfolio strategies, bond-equity mix problems
and so on. Recently some advanced stochastic methods using Malliavin calculus are extensively
applied to obtain optimal portfolio strategies numerically. Detemple-Garcia-Rindisbacher [3]
applied Malliavin calculus and the generalized Clark formula and obtain numerical results.
Kunitomo-Takahashi [8] and Takahashi-Yoshida [16] used the combination of Malliavin Calculus
and the asymptotic expansion approach.

In this paper, to solve optimal portfolic problems numerically, the Ninomiya-Victoir method [14](
NV method for short ), a version of Kusuoka approximation [9], is combined with a stochastic
numerical algorithm using stochastic flows {5]. For a class of security market models specified
later, solutions are represented in feedback form on some stochastic processes, by using tran-
sition semigroups and forward stochastic flows. Therefore, our proposal is relatively easy to
implement compared to other numerical methods using Malliavin Calculus. Also we expand
Karatzas-Shreve’s setting of the single-agent optimal portfolio and consumption framework. In
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our setting some state-dependent utility functions are considered. Using Theorem 2.5, the opti-
mal portfolio strategy ¢(t) is given as a rational expression of expected values of Markovian-type
diffusion processes. These diffusion processes are solutions of stochastic differential equations
which are induced by applying the differential rule of a composite function to stochastic flows
and multiplicative functionals. Theorem 2.5 gives a fundamental framework for numerical cal-
culations of ¢(t). We can directly apply the NV method [14] to, which is reported to be more
time-effective in calculation of derivative prices.

The remainder of this paper is structured as follows. We review main results in {5] in Section
9. In Section 3, we apply the version of Kusuoka approximation to a Stock-Bond-Cash allocation
problem. Concluding remark is in Section 4.

2. APPLICATION OF STOCHASTIC FLOWS

Throughout this paper we assume the following setting: Let (Q,F, P) be a complete proba-
bility space. Let {B(t) = (B(t),---,B4(t));t € [0,T)} be a d-dimensional standard Brownian
motion. The time interval is [0, T}, where T > 0. Let (Fi)iepo,r) be the augmented Brownian
fltration with usual conditions. We have the investment horizon Ty, where 0 < Ty < T

DEFINITION 2.1. We say that a function f: [0,7] x R™ — R, where m € N, is a member of
a class C’S,fo(lRm), if the following conditions are satisfied:
1. f(t,z) is continuous in ¢,z, and smooth in z for all .
2. There exists a constant C > 0, such that

\f(t,z)| < C(1+|x]), forallte (0,7} and z€R™

3. For any multi-index o = (a1, -+, &m), there exists a constant depending on a, Cy > 0,
such that
|DEf(t,z)] € Ca, forallte0,T]and z€R™.
An economy’s state variables X (t) is given by R"-valued continuous stochastic process X (t) =
(X1(t),--- , X™(t)). We assume the following:
(S1): Coefficient functions p (t,z), offj(t,a:),i =1,--,n, j=1,,dof X(t) are in
Co (R,
We assume that X (t) is a unique solution to the following stochastic differential equation in the
sense of Itd and a stochastic process with spacial parameters (see, e.g., Kunita [7]).

¢ t
(1) X(t;s,z) =:c+f ,uX(v,X(v;s,x))varf X (v, X (v; 8,2))dB(v),
3 8§
where z = (z!,--+ ,z") € R®. Let pX be an R™-valued function pX [0, T} x R® — R™, and X
be an R”* ® Ré-valued function o : [0,T] x R* - R" ® R? by the following:
ui(t, z) Gfl(t, xy - afd(t, z)
NX (t, ) = , and a* (t, (L’) =
p’f(t) CE) inl(t,x) e O'})::d(t: m)

We may assume that X (t;z) is a forward stochastic flow of C*°-diffeomorphisms (see Kunita. [7]
Theorem 4.6.5). We denote this stochastic flow by X (t;s,2) for 0 <s<t T and forz € R™.



102

At time t = 0, choose a starting point zo € R”, and fix it. Let X(¢) = X(£;0,z0). Then for
0<s<t<T, we have X(t) = X (¢; 5, X(s)).
Let 7 be a function 7 : [0, 7] x R™ — R satisfying the following:
(S2): r(t,z) is in COUP(R™).
We define 7¢ = (¢, X {t)) and consider r; as the risk free rate at time ¢. Let 59(t) be the money
account:

$0(t) = exp {/(: r(v,X(v))dv} .

Let u; be a function g : [0, T} x R™ — R and 0y ; be a function oy ; : [0, T} x R — R satisfying
the following:

(83): wilt, ), o {t, 2}t =1, ,darein CS%”(R").
Let us introduce d individual securities, S*(t), i = 1,---,d, where each S%(t) is an R-valued
stochastic process and a unique solution of the following stochastic differential equation:

. . t . d t . -
@ SO=5+ [ meX0)S0w+Y [ oy XOISEEE), i=1-.d

Let S(t) = (8%(), -+ ,8%¢)), and
pi(t, ) oni(t,z) - orelt T)
w(t,z) = : , and oft,z) = :
palt, ) ogit,z) - o4t z)
We assume the following condition.
(S4): The volatility matrix o(¢,z) is invertible for all ¢ € {0,7] and for all z € R™

Then we can define an R%valued function X : [0, T} x R® — R? as follows:
Mt @)= a(t,2) ™ (ult,2) — r(t0)T)

where T = (1,---,1) € R% We denote the j-th element of A(t,z) by A;(t,z). We assume the
following:

(85): M(t,z),j =1, - ,d, are in CSP°(R™).

We define a stochastic process with spacial parameters I1(t; s, z) as follows:

t d
{E; s, z) :exp{-/ r(v,X(v;s,m))dv—Z/ A (v, X (v; 8, 2))dB? (v)
s /s
(3) .y 7
- _2./5 Zl/\j(v,X(v;s,x))2dy}, 0<s<t<T, zeR™
7=

Let II(t) = II(¢; 0, z). Then we see that forany 0 < s <t < T
I(t) = N(s)II(%; s, X (s)).
We see that TI(¢; s, z) is {Fs; fogsgecr-measurable, where

Fs’t:G(X(S))VJ(Bj(T)_Bj(S) »7‘—: 11 1d55 S r S t).
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II(t) is the state price density process (see Duffie [4] and Karatzas-Shreve [6]). For each j =
1,---,n, we define the following stochastic processes:

k

X
5(t; s, 2) /SZBkTvasx))a —(v; 8, z)dv

(4) —Zfs ;&C)\ v, X (v; s, :z:)) 5 vi (v s,z)dBYv)

_/ ZZA (v, X (v3 8, )) O As(v, X (v; sx)an(usa;)dfu F=1,,m,

i=1 k=1

where 0, means 8/0zF. We define the following local martingale Z(2):

5 d £ y 1 t d )
(5) S(t) = exp —;/O M (v, X(0))dB (v)——2—/0 ;,\j@,x(v)) dvb

We assume the following condition:
(S6): The local martingale Z(t) is a martingale.
Let go(t, ), 91(t,2), -, ga(t, ) and ho(t, z), ha (¢, ), - - hq(t, z) be functions from [0, T]xR"
to R satisfying the following:
(S7): gi(t,z),i=0,1,--- ,d, and hy(t,z), i=0,1,--- ,darein C’Sf"(R”)‘
We introduce the following stochastic processes with spacial parameters; for 0 < s € ¢t < Ty,
and for all z € R®,

t d ot .
(6) Aft;s,z) = exp {/ go(v, X (v;8,z))dv + Z/ g;(v, X (v; s,2))dB’ (v)} ,
s j=17s

k
5:(t; 5, ) —/ Z@kgo('u X(u;s :L))a); (v; 8, 7)dv

skl

(7)
+Z/ Z@kgle(vs:c)) (vsm)dBﬁ( v), forj=1,---,4,

t d  rt
(8) E(t;s,1) = exp {/ ho(v, X (v 8, z))dv + Z/ hi(v, X (v;s, z))dBj(v)} ,
s =17

n;(t; s, 1) :/ Z@kho(v X(v;s a:)) (U s, z)dv
8 k=1

©)

k

X
+Z/S Z@kh vascc))é:9 (v;s,z)dB*(v), forj=1,--,d.

The following equations hold as for II{t; s,z): Let us define A(t) and E(t) by
(10) At) = A(t; 0,z¢), E(t)=E(t 0, zo0).
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Then
A(t) = A(s)A(t; s, X (),  E(t) = E(s)E(t 5, X(s)),
for all 0 < s <t < Tp. We see that A(t; s,z) and E(3;s,2) are Fs;-measurable.
Let Up : (wp,00) — R and ug : (co,00) x [0,Ty] — R, where wp > 0 and ¢g 2> 0 are functions
satisfying the following conditions:
(U1): Up : (wp,00) — R is a C3-function such that
1. Ui(w) >0 for all w € (wg, 00), and
lim Uj(w) =0, lim Uj(w) = +oo,
W—+C0o w—wo
2. UY(w) < 0 for all w € (wg, o0),
3. U{'(w) > 0 for all w € (wp, 00).
(U2): ug : (cg,00) x [0, To] — R is a continuous function in w € (cg, 00) and ¢ € [0, Ty}, and
for all ¢ € [0, Tp], uo(w,t) is a C3-function in w such that for all ¢ € [0, Ty],
1. %—"%(w,t} > 0 for all w € {¢p, 00}, and

o du
lim —E'g-(w,t) =0, lim —O(w,t) = -+00,
w—o0 JW w—ey oW

2. g%uo(w,t) < 0 for all w € (¢, 00),
3. —g%guo(w,t) > 0 for all w € (cg, 0).
Let us define U : (wp,00) x Q — R and u : (¢5,00) x [0,Tp] x & — R by

_ Up(w) _up(w,t)
U( ’ ) - A(Tg)’ (wataw) — E(t) :
Let us define V : D — R by

V(C,Z) =E UOTO W(C(w),v,w)dv + U(Z, w)} ,

where D is given in Definition 2.3. Since U} and Oyug are continuous, convex, positive, and
strictly decreasing functions, there exist I : (0,00) x {0, Tp} — (¢, 00) and Iy : (0, 00) — (wp, o)
such that

(;inQ (Il(u,t), t) =u, uEc (0,00), U(IJ (Iz(u)) =Y, U (0, OO)

Then I (u,t) and Ih{u) are C'-functions in u.

DEFINITION 2.2. We say that (¢o(¢), ¢(2)) is a portfolio process if g (t) is an (F;)-progressively
measurable, R-valued process and @(t) = {@1(t), - ,wa(t)) is an (F;)-progressively measurable
R%valued process and the followings are satisfied:

L ooty +e1(t) + -+ +pa(t) =1,  forallt.
2. fg‘) Z?zllapj(vﬂgdv < 00, P-as.

From 1. of Definition 2.2, @o(t) is determined by ().

DEFINITION 2.3. We say a triplet (C, Z, ) is an admissible strategy at z > 0, if C(¢) is an
(F:)-progressively measurable, non-negative stochastic process and Z is an Fp,-measurable, non-

negative random variable, and (po(t), ¢(t)) is a portfolio process and the following conditions
are satisfied:
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1. f v)dv < co, P-as.
2. Let WI C"’( t) be a stochastic process of a solution of the following stochastic differential
equation:

Wl (¢ )—:wZ/ L)W= ) “)Www LWV 00) 45 ) /c

We assume that
w=0e(1) >0, forallte[0,Th], P-as.
3. Z = 5405 (To) W% (Ty).
4. lE[f Clv),v,w) " dv+ U(Z,w)~ ]<oo.
A(z) and D denote the set of admissible strategies at = and the space of pair (C, Z) respectively.

Let us define a function Y : (0, 00) — R by
To
Y{z) = E{ A (w)y (zH(v) E(v), v) dv + I(T) 12 (z11(T0) A(To)) | -

It is easy to show that Y(z) is a decreasing function of z. We assume the following condition.

ASSUMPTION 2.4. For given W > 0,

ili%y(o:) > W, and m_l_z)rilooy(x) < W.

Therefore, there exists A>0 satisfying the following equation:
(11) YA =
Let © = (0,00) x R™ x (0, 00) x (0,00) x [0,Tp]. We define functions H:© - R, G: 0 — R,
and X :© - R, i=1, - ,d as follows: For (£,z,(,v,1) € O,
To 2 0l /4
H(E z,(,vt)=E O(v;t, z) E(v;t,z)—(%- (Ava(v;t?x)E(v;t,x),v) dv| .
t

dly

G(,z, vty =E [H(Tg;t,:n) AlTo;t,2)=—= =

(Aecmi(Toit, =) AT, z))]
Fori=1,--,n,

Xi(g,x C v, t)

Ta -
ngE{ t 2 (v t,2) 4 ()@/H(v t,2)E(v;t, z),v) dv-{—g—g-.(To;t,x)Ig (AggH(Tg;t,x)A(To;t,z))}

+A2VE / II(u;t, a:)(aﬂ (vit,2)E(v;t,z) + (v; x) (v,t,x)) 811(,\51/11(@ , I)E(v;t,z),v)dv}

+AEXE o4

H(To,t :L‘) (BH (To,t :L‘)A(To;t,m) -I-H(To;t,l') (To,f )) dly (/\fCH(Tg,t QS)A(To;t, $))] .
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: %(s;t,x), —.gf;(s;t, z), and g—ﬁ(s;t,x), for ¢ = 1,--+ ,n, in the above equations are given by

applying the differential rule of a composite function to II(s; ¢, s), A(s;t,z) and E(s; ¢, x).
Also we define functions, F: © - R, F; : © =R, F,: @ — R, and F; : © — R as follows:

To R
F¢,z,¢ v t)=¢R /t vy t,2) (Aﬁvﬂ(v;t,m)E(v;t,x),v) dv

Ty t,2) ] (;\gcn(TO; £, 2)A(To; , z))} ,

&GMQMQI?%@KMQ+MMMm£Mﬂ+MW@aQ%W

Fy(62, 1) = M2H(E 2,6, t),
Fe(€,z,¢ v, t) = APG (6,2, (, 1, t).
We consider the following conditions:

(A1): For any compact set K C R",

To
sup E [ T1(v; 0, z)dv + TI{T5; 0, x)} < 0.
€K o]

(A2): For any compact set K C R", y € R, and t € [0, Ty}, the following equations hold:

sup E
z€K

Ty n
/0 (1+Z(|ﬂj(v;O,x)[—{—inj(v;O,w)i)>H(v;0,cc)Il(yH(v;O,x)E(v;O,cv),v)dv} < 00,

=1

sup sup E
CEEKtE[U,To}

(1+Z(|7TJ'(T(); t,2)|+|8;(Tos t, x)})) Ty t, ) o (yII{Tos t, 2 ) A(T0; ¢, m})} < 00,
j=1

n

Ty
ig}gE [/0 (1 + z(lrj(v;(},x)f + | (v; 0, z}j)) H(U;O,w)zE(U;O,m)

J=1

%%(yﬂ(v; 0,z)E(v;0,2),v)

X

dv} < 0o,
sup sup IEKl + 3 (m(Tost, )| + wj(TO;t,z)g)>H(To;t,m)2
€K te[O,TO] le

dI.
X ATy t,)| 2 (uTL(Tos , 2)A (Tos 1, )

[ <o

To n
sup E UO (1 + > (Imi(v;0,2)] + In5(v; 0, r)l)) I(v;0,2)° E(v; 0, )

z€K =1

x I1 (yIl(v; 0, z) E(v; 0, m),v)dv} < o0,
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sup sup E
€K 1€[0,T)

(1 -+ Z(twj(TO; t, Z)! + iaj(Tﬂa £, ﬂ'))l)) H<T0a tvx)z

j=1

x A(Tp; ¢, 2) 2 (yII(To; ¢, ) A(Tos 8, z)) | < co.

Then we have the following theorem.

THEOREM 2.5. We assume Conditions (U1), (U2), (81), (S2), (S3), (S4), (S5), (S6),
(87), (A1), (A2), and Assumption 2.4. Then there exists an optimal portfolio strategy @(t) of
the following equation:

(12) J(W$ 0, 70, 50) = sup V(C, VV’VV’C’VJ (TO))
(C.ZpyeAW)

@(t) 1s given by the following feedback form:

a(t) = (1 . -f}@) (o(t, X (£)") A6 X (0)

- 3B (a1, X0, A0, B, 9(o 6 X)) 06 X0) — b6 X6)

(13) - AT o), X (0, A0, B, 0(o( X)) 06 X0) ~ o6 X ()
X (TL(E), X (1), A(t), E(t),t)

. —W}m—l@w(t,X(t))*rl(a’f(t,X(t))*) z ,
X, (TI(8), X (£), A®), B(2), )

where W (t) = WW’C’@(t) and C(t) is an optimal consumption strategy.

The proof is given in Theorem 2.5. of [5].

REMARK 2.6. Confirming (S8) may not be feasible when bonds or other derivative securities
are included in tradable securities. In that case, using p” (t,z) and oX (t,z), we calculate the

following:
pi(t, z) oalt,z) o opalt )
A !Ld-—n-(t» CC) N Od—n l(t: $) 0 Oden d(t7 33)
At z) = ,G(t @) = ’ ’ ,
#{(tv ZE) O-fl (t: (C) T U_lx:d(tv $)
p’f(th) Ur{l(tv 93) T Ufz(,d(t!x)
r(t, z) \
r(t, )

and At,z) =627 | plt,2) - | )

fis (1, )
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where ﬁf(zﬁ,m), j=1,---,n are drift terms of X (¢) with respect to the equivalent martingale
measure ([4] and [6]). Then (83) and (85) will be satisfied with these processes, and Theorem 2.5
also holds.

REMARK 2.7. In the case of some HARA utility functions, Condition (A1) and (A2) are
replaced by more straightforward conditions. We can also show that optimal portfolio strategies
are continuous processes. See Corollary 5.2. and Corollary 5.3. of [5]. ‘

3. NUMERICAL EXAMPLES

This section gives examples of optimal portfolio strategies, Stock-Bond-Cash allocation prob-
lems, using a combination of stochastic flow technique and a new version of Kusuoka approxima-
tion. We re-examine the same example in {5], where the Euler-Maruyama scheme is applied. An
investor has an initial endowment W at time 0. Her utility function is of power type (v, 5,0,0).
Also her utilities of consumptions are discounted by a proportion of interest rate. Utilities of
terminal wealths are discounted by a linear combination of interest rates and stock returns. In
this setting, her terminal wealth may be hedged partially against stock returns.

3.1. Settings and optimal portfolio strategies. The market is modeled as follows. Let
d=2and n=1. Let X(t) be

t t :
X(t) =2y — a:/ X('U)d'l) + b/ dBl(@) — xoe“at + be—GZ/ ea'udBl(U)’
g 0 0 .
where a > 0,b # 0. The short rate is modeled by
r=r(X{t)=c (Iog (1 + eX(t)>>

for some & € (0,1) and ¢ > 0. Money account S°(t) is given by S(¢) = exp{f(}t r(X{v))dv}. A
stock, S*(¢), is traded in the market.

o
3

§1(t) = Sexp{(u — (7 + 62}t 4 pB' () + 0B (1)},

where ¢ > 0 and p # 0.
Let us introduce a zero bond S?(¢) whose maturity is 7.

$2(t) = E9 {exp{— /ﬁ X )0} | Ft} ,

where () is the equivalent martingale measure, which is supposed to be defined by the following
market price of risk process (A1(t), A2{t)):

Mt X(t)) = A=constant, Ao(t, X(})) = c1 — e2r(X(2)),
where ¢; = (1 — pA)/o and ¢ = 1/o. Then, the state price deflater II(¢; z) = [1(¢; 0, z) is given

by
¢ t
H(t;m):exp{—/o T(X(v;z))dv—/o AdB(v)

—fo (e1 — cor(X (v;2)))dB(v) — é-/ A2+ (¢ - CQT(X(U;m)))2)dv}.

¢
0



Using 8X (¢t;2)/0z = e, we have

t t
n{t;z) = —/O {ciea — 1 — e’ r(X(v; )} (X (v; 2))e™¥dv + 62/0 (X (v;z))e"d B (v).

The volatility matrix of St(¢) and S%(t) at time 0 is given by

o b 088%,
c(0,z) = (C;oz 0) , where op = mg(ﬂ; ),
()

5%(0;2) =E :

(T, z) IUT; z)

2
H(T;m)j{, and %S';(O;m) =L
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In this example, we assume that an investor has a utility function of power type (v, 3,0,0),

7€ (0,1),8>0:
w7 w1

=BG (M T T Emy

wlw,t,w) = S

where for some 0 < 81, B2, 3,

¢
E(tz) = exp{,@lf T(X(v;m))dv},
0

Aty z) = exp{ﬁg /Ot r(X(U;:r))dv} exp{[)% ((p - %(p2 + o))t + pBY(1) + oBg(t)> }

Let h{t,z) = (0,0), g(t,z) = (B3p, B30). In this case, we have

t
n(t;z) = ﬁ1/.5 (X {(v;z))e "dv, and §(t;z) = 62/ (X (v;z))e”*dv.

t
0

¥From Theorem 2.5, we have the following formula.

i(cl — oor(o)) - B3A2(0)
o {ws) 1 o BY7A1(0) + A (0
(14) ¢(0) = (%) T3l A pler—car(zme) b 0 D(og)( :
o2 lefop) 09 ﬁl/"/Al(O) "I’AZ(O)

where

D(0) = (1 - 7)E {ﬂ”* /O Y o)1) B) o + w(Tmeo)“%A(To)‘ﬂ

+E {6”* /O Y ) B T+ 5(To)H(To)l'%A(To)‘%} ,

Ty 1 1 i
/D H(v)l‘w(v)‘?dv}, Az(o):E{H(TO)IO;A(TO)_;},
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3.2. The NV method. To calculate Equation (14), we apply the NV method. First of all we
set up a system of stochastic differential equations. Let Y(t;y) be a solution of the system.
Then we calculate E[®(Y (r;y))], where ®(-) is a function and 7 < T'. Lastly rational functions
of E[®,(Y (T;y))] are calculated based on Equation (14).

The corresponding system of stochastic differential equations in the sense of Stratonovich:

2
AV (ty) =Y Vi(Y(ty)) 0 dBI (),

=0

where vector fields Vg, V1, and V4 are given as

11 11 11
0 0 d
Voly) = S Vof(y)=—, Vily) = Fly) = Fy) =—
o) =3 W il = LW g e V) = ) Vg

and given as follows. Let B(t) =t,t € [0, T]. Regarding Vo(y), we have

Volly) = —ay, Wo’(y) = (*T(yl) - %AQ - %(01 —co 'f‘(w))2> 2,

Volly) = —(crco = 1 — e2?r(y))r' (y)y,  Va'ly) = <@2T‘(91) + Bap — %ﬁfﬁz - %ﬁ3202> Y4,
Vol (y) = Bor' (v )yan, Vol(y) = Burlyn)ye, Vo' (¥) = Bur’(y1)wt,
Vedy) = () T we) T, Volly) = B Mual)' T (ve) T,

_L, _i
%' 0y) = Yy (ya) " (ws) Y, Vo' y) = —awi-
Regarding Vi(y), we have

Villy) =b, Vi%(y) = =Mz, W%(y) =0,
Vit(y) = Bapys, Vi°(y) = =Wil(y) =0.
Regarding Va(y), we have

Val(y) =0, Va(y) = —(c1 —car(y))ys,  VR2(y) = cor'(y1)yus,

Vo' (y) = Bsoys, Vo°(y)=--- =15 (y) =0.
Then S%(0; zg), 0S%(0;z0)/0z, A1(0), A2(0), and D(0) are given by
2
82(0;:30) =E {Yz(T)] s %S:;_'(Ox 20) =E [Y3(T) Y2(T)] )

1

Al(o) =E [YS(TO)} , AQ(O) = F [YZ(TO) 7Y4(T0)—%} ’

1—1

D(0) = (1 - ) { B ElY*(T0)] + EY *(T) Y 2(T) (1) ]
+ BB T + BIY ()Y (To) 7T Y4(T) ).
Therefore we define a function ®(y) = (®1(y),--- , ®5(y)) as follows:
DY) =12, DoY) =vav2, Bs(w) =uws, Duly) = (w2) "V (y)7,

P5(y) =(1—~7) {ﬁ”*yg +u3- (yz)l_% : (3;4)_%} + 8y 4 ys - (yz)l_% {ya) 7.
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exp(tV) denotes a deterministic flow generated by a smooth vector field V. By direct calcu-
lation, it is easy to show that

1 0
Y
1 bt
' 0
(15) eXp(tVI)(y) = eﬁSpi y + . ’
1 :
0
0 1
1 0
g~ (ei—ear(y))t 0
1 0
cor’ t
(18) exp(tVa)(y) = ePaot yt 2 (y(l)) i ’
l .
0 1 0
and
(17 exp(tV1) o exp(tVs) = exp(tVa) o exp(tV1).

Therefore, from Theorem 2.1. of [14], an approximation equation using the NV method is
given as follows.

PROPOSITION 3.1. Let (&)icq1,.. m} be n independent standard 2-dimensional normal random
variables. Let {Yj;’n}k:_-l,zy... 1 be a family of random variables defined as follows: Let s = 7/n,
and

K,
YD ﬂ:y,

v =exp (1) o exp (Va6 WA) o exp (V3G?Va) o exp (576) (V™)

Then, we have an order 2 approzimation.
E[2(Y (r;9))] ~ E [2(¥.F™)] -

REMARK 3.2. Regarding exp(tVp), we use the improved Euler method, a version of 2-stage
2-order Runge-Kutta method, which produces enough precision for our case. See Remark 3.1.2
of [14]. exp(tVp) is approximated as follows:

exp(tVo)(y) ~ y + -;—(Vb(y) + Vo(y +tVo(y))), for small ¢.
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TABLE 1. Base case parameters

Ty @ b @ ¢ 1 o o
10 16 20 09 001 0.08 -0.14 0.20

T Ty A v g pL B2 B3
2 1 -0.165 090 20 01 005 005

FIqUre 1. Error coming from the discretization error: Stock
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3.3. Results of simulations. In this subsection, we implement stochastic numerical simula-
tions. First of all, we compare numerically the NV method to the Euler-Maruyama scheme
with and without Romberg extrapolation.! The quasi-Monte Carlo method is applied for nu-
merical integrations. Also, the Monte Carlo method is applied for comparison.? A base case of
parameters is presented in Table 1.

Second, sensitivity analyses are carried out by changing the initial value of X, zg, and the
risk aversion factor v using the NV method.

3.3.1. Discretization Error. Figure 1 and 2 show relations between the number of partitions of
the investment horizon and errors of the methods for optimal holding ratios of the stock and
bond. Here, we consider that true values of those ratios are obtained by the NV method with
extrapolation, quasi-Monte Carlo. The number of partitions are 1024 + 512, and the number of
samples is 107.

Note that some Vj(-) and @(-) are not members of C°. Also, our optimal solutions are
expressed as rational functions of the approximated expected values. Therefore our problem
does not satisfies conditions of [9] nor [14]. However, similar to the Euler-Maruyama scheme
with Romberg extrapolation, we observe that the NV method gives nice approximations of better
order than the Euler-Maruyama scheme.

3.3.2. Convergence Error. Figure 3 and 4 show that the performance of the convergence of the
Monte Carlo and quasi-Monte Carlo methods depends on the number of partitions and on the
algorithms. 2 times standard deviations for the Monte Carlo method and absolute differences

See Talay (17).

2Mersenne Twister(Matsumoto-Nishimura {10]) and a generalized Niederreiter sequence(Ninomiya-Tezuka [13p
are used in our numerical simulations.
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FIGURE 2. Error coming from the discretization error: Bond
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FIGURE 4. Convergence error from quasi-Monte Carlo and Monte Carlo: Bond

for the quasi-Monte Carlo are used as measures of convergence errors. Absolute differences
are calculated with respect to values of maximal samples. Number of partitions are set to 32
and 64 for the Euler-Maruyama method with/without the extrapolation. For the NV method
with/without the extrapolation, number of partitions are set to 4 and 8. The guasi-Mounte Carlo
method outperforms the Monte Carlo method when used with the Euler-Maruyama method and
the NV method. The used methods does not result significant differences in convergence errors.
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TABLE 2. Optimal portfolios for various «y

Yy B B B J s b
050 050 0.25 0.25 4.55506 2.10740 4.37665
0.60 0.40 0.20 0.20 5.96274 1.75914 2.61065
0.70 0.30 0.15 0.15 837760 151795 1.80583
0.80 0.20 0.10 0.10 13.20601 1.34186 1.37021
0.90 0,10 0.05 0.05 28.21577 1.20801 1.10451

TABLE 3. Optimal portfolio for various zg

Zo (o) Y J Ps ¥b
0.70 0.01092 0.01112 28.21789 1.25955 0.46512
0.80 0.01153 0.01136 28.21719 1.24279 0.67310
0.90 0.01215 0.01160 28.21648 1.22560 0.88633
1.00 001278 0.01184 28.21577 1.20801 1.10451
1.10 0.01343 0.01208 2821505 1.19004 1.32734
1.20 0.01409 0.01233 28.21433 1.17171 1.55453
1.30 0.01476 0.01258 28.21360 1.15305 1.78577

3.3.3. Sensitivity analyses. The quasi-Monte Carlo NV method with Romberg extrapolation is
used for sensitivity analyses. The number of saraples is set to 108, The number of partitions is
set to 128 + 258.

Table 2 shows values. of objective functions and the optimal portfolio for various v, 81, 82, 53.
Regarding these constants, we set the following relations,

Br=1—7v=20 =20,

which means that the investor’s consumptions are discounted by short rates. The terminal
wealth is discounted by the average of short rates and returns of stocks to measure her utilities.
As v increases, holding ratios of stock and bond decrease. This is quite reasonable because
v represents a risk aversion tendency of this investor. Also, it is quite interesting that as «
increases, J, the value of objective function increases.

Table 3 shows values of objective functions and the optimal portfolio for various zg. As zg
increases, an initial short rate rp increases, and in our setting this means that an expected
return of bond increases. Therefore, the holding ratio of bond increases. It is meaningful that
the holding ratio of stock decreases as zg increases.

4. CONCLUDING REMARKS

This paper gives the validity of the combination of the stochastic flow technique and the NV
method for the calculation of optimal strategies when the market is modeled by a Markovian
setting. Using a nice quasi-Monte Carlo method with the above combination, we can expect
better convergence speeds of approximations. By using the proposed method, time-consuming
sensitivity analyses are performed effectively from the points of view of practitioners.
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