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Abstract In this paper, we consider self-similar solutions for an anisotropic
curvature flow equation in the plane. For some (nonsymmetric) interfacial
energy, we show that there exists a self-similar curve which is not a local
minimizer of the entropy under the area constraint. As its result, we obtain
non-uniqueness of self-similar solutions for the anisotropic flow.

1 Introduction

This paper is concerned with strictly convex simple closed smooth curves
shrinking self-similarly by the anisotropic curvature flow equation

(1.1) v = —y(f)x,

where < is a positive continuous function on S* and 6, v and k are the
outward normal angle, velocity and curvature of a smooth closed curve in
the plane, respectively.

If h is a positive smooth function on S with hgg +h > 0 and ¢(z,y) :=
maXgegt 5%)@5—9- for (z,y) € R?, then the motion of smooth closed curves
in R? governed by (1.1) with v := h(hge+h) is driven from the gradient flow
for the anisotropic interfacial energy

L= f h(6)ds = fo ° h(8(s))ds

with respect to the metric 1/ § ¢(u)2h(6)ds, where Iy, s and u denote the arc
length of a curve, the arc length parameter and a velocity field, respectively.

See, e.g., Proposition 1.6 and Remark 1.8 of [6]. Further, the smooth convex
curve

(z,y)(8,t) = /=2t (h(B) cos B — he(8) sin 6, h(6) sinb + he(6) cos 6)



with the support function

max (z(r,t) cos b + y(7,t)sinb)
TE

= z(0,t) cos 8 + y(6,1)sinf = /-2t h(h)

from (0,0) € R? is a self-similar shrinking solution to (1.1) in ¢ € (—00,0).
We note that b is also the support function from (0,0) € R? of the convex
set {(z,y) € R?|¢(z,y) < 1}.

For rescaled solutions of (1.1), Gage and Li 7] have proved the following
sub-convergence theorem to self-similar solutions:

Theorem 1 Lety € C*(S?) be positive. If the initial curve is simple closed
and strictly convez, then the solution to (1.1) remains so and shrinks to
a single point (To,y0) € R? at a time T € R. Further, for any sequence
ty € (—o0,T) with limy o t, = T, there exist a subsequence ti and a positive
function & € C*(S') such that the rescaled family h(6,t) of the support
function h(8,t) of the solution from the extinction point (zo,yo) € R? with
the enclosed area } § h{hes + h)df = £ §vdf satisfies

Jim 12(8, tw) — 5(O)lcxsry = 0
and 6(Ggg + ) =y holds.

Dohmen, Giga and Mizoguchi [5] extended the existence result of a self-
similar solution to v € C(S'). That is: For any positive function vy € C(S%),
there exists a positive function o € C*(S') such that o(ogg+0) = 7. On the
other hand, the uniqueness was proved by Gage [6] for m-periodic v € C*(R)
and Dohmen and Giga [4] (see also Giga [8, §3.2]) m-periodic v € C(R).
Precisely, it was shown that: For any positive n-periodic function v € C(R),
there uniquely exists a positive function o € C*(S) such that o(oge+0) = 7.
See, e.g., {1], [3] and [8] for related results. The uniqueness problem for 27-
periodic v (not 7-periodic, i.e., not symmetric) had been left open ([8]). In
this paper, we give a negative answer to this problem. In fact, we prove
that the uniqueness of the self-similar solutions dose not necessarily hold for
the anisotropic curve shortening flow (1.1) with 27-periodic v unless it is
m-periodic.



heorem 2 There exist two different positive functions o and & € C®(S')
such that o(oge + o) = &(Gee + &) > 0.

In Introduction of [1], Andrews had pointed out that for the more general
flow v = —y&* with any a > 0, there exists a positive function v € C=($1)
such that self-similar solutions are not unique. However, its proof may not
have been published yet.

After this work was completed, the author was informed of the way of
the proof by Andrews [2], which has also proved Theorem 2. It has been
sketched in [8, p. 152]. Our proof might differ completely and seem more
direct and simple.

2 The proof of Theorem 2

The following is the main technical result in this paper and proved in
Section 3.

Theorem 3 There ezist functions o and w € C®(S') such that ¢ > 0,
oee+0>0, ¢ olwestw)? jg + § w(weg + w)dl < 0 and § o(wee + w)dd = 0.

ogg+o

Since § h(hgg+h)d8 = (1+a)? § o(ope+0)d0+2(1+0a)b § o(wee +w)do+
b? § w(wgg+w)d holds for the function h = (1+a)o+bw on S* with constants
a and b, we can easily see the following lemma by using the implicit function
theorem or the formula of the solutions to a quadratic equation.

Lemma 4 Let o and w € C*(SY). If § 0(os + 0)df # 0, then there exist
&1 and &2 > 0 such that the following holds:

There uniquely ezists a function ¢ from (—681,8:1) to (=da,d2) such that
the functions h® € C*(S*) defined by

(2.1) he(0) == (1 + c(s))o(8) + sw(6)
satisfy
(2.2) jl R (R + h*)dd = }4 o(0es + o)df

for all s € (—01,81). Further, c is a real-analytic function.

By Theorem 3 and Lemma 4, we show the following proposition.



Proposition 5 There ezist functions o and w € C*(S') such that o > 0,
ogg +0 >0 and

(2.3) j{ (069 + 0) log o

holds for all sufficiently small s > 0, where h® € C®°(S?) is defined by (2.1).

hd8>0
+

Proof. The proof is easy and omitted here.

Now, we prove Theorem 2 by using Theorem 1 and Proposition 5.
Proof of Theorem 2. First, let ¢ and w € C*°(S*) be the functions given in
Proposition 5. Then, ¢ > 0 and ogg+0 > 0 hold. Further, we can take small
s > 0 such that (2.2), (2.3), B* > 0 and Ag, + h° > 0 hold. Set a positive
function
v = o(oge + o) € C™(S").

Let us consider the solution to (1.1) with the initial curve
(z,y){8,0) = (h°(8) cos§ — h5(6) sin b, h*(6) sinf + h(6) cosh),

whose support function from (0,0) € R? is ~°(6). Then, by Theorem 1, there
exist a sequence t; > 0 and a positive function & € C?(S*') with

(2.4) v = 5(Go0 + 7)

such that the rescaled family 2(6,t) of its support function h(f,t) from its
extinction point (g, y0) € R? with § h(hge + h) df = §vdf satisfies

(2.5) Jlim [[A(6, t) = 5(6)[lo2sn) = 0.

Because h > 0 holds by (1.1), so is h. Hence, from (2.5), we see & > 0. So,
from (2.4) and v > 0, we obtain & > 0. Moreover, by v € C*(S'), we can
also see & € C*(S"). Therefore, in order to complete this proof, it suffices
to prove that ¢ and & are different.

We have (zgcosf + yosin) + h(6,0) = h*(f). Hence, by (2.2), we see
$ h(0,0)(heo(8,0) + h(8,0))df = §(9) d and h(6,0) = h(8,0). Therefore,
h(8,0) = h*(8) — (zocosf + yosind) also holds. From this, we have

. v(8) v(6)
%7(9)1 & hes(8,0) + h(8, G 7(7 (O)1og 5 he(0) + hs(a)dg




On the other hand, as it is known that the entropy ¢ v(6)log Wb—éﬂ"_—de

YA (0,8)
is nonincreasing in Corollary 5.7 of [7], we also have
v(6) ~(6)
~7(6)log = df < f 1(0)10g = 5oy
f ) hoo(8, te) + P (6, k) @ hge(6) + he(6)

Hence, by (2.4) and (2.5), §yloggdf < §vlog zise R df holds. From this
and (2.3), we see §yloggdf < §ylogodf and & gé 0. q.e.d.

3 The proof of Theorem 3

In the following lemma, it might be essential that o € C*(S") was not
n-periodic. Our proof deduces it from eigenvalue problems.

Lemma 6 For any K > 2, there exists o € C®(S*) such that o(f) > 0
and coo(8) + o(0) > 0 hold for all 6 € S* and

(3.1) 0998} + o(8) = Ko{6)
holds for all 0 € -5, 3].

Proof. We first take 6y € (¥,7) such that tan(r — ) > VK — 1. Then,
we also take € € (0,1) such that

(3.2) V1-— Eta;l(\/l —e(m—6y)) >vK -1

and a positive function f € C°(S) such that f() = K for 6 € [-5, 5],
F(B) =€ for § € S*\ (—f,00) and € < f(§) < K for 6 € S*. Set a constant
e\/_—Gg +e—\/_—90 O
ag =
O cos(y/1 —e(m — 6g))

and define a positive function g € C{S*) by

o(8) = eVE—10 4 g-vE-18 for 6 € [—6q, 6o),
1 agcos(vI—ée(x—0)), for € (6, —0 + 2m).

Then, we see ggy+ ¢ = Ka > fa in (—8,6p) and gg + 0 =¢0 = foin
S\ [—6o, 6o). Further, from (3.2), we also see (D¥g)(6s) = —(D~g)(—bh) =




aov/T = esin(vI—e(r — b)) > VK — 1(eVE 10 + e VE-T0) > VK -1
(VK100 — ~VEK=100) = (D=g)(6p) = —(D*g)(—bh). Therefore, because
o € C(8?) is a positive sub-solution to ggg + (1 — flo = 0 in S, the first
eigenvalue of ogg + (1 — f)o = Ao in §* is nonnegative. On the other hand,
because the first eigenvalue of ggg+(1— K)o = Ao in S is 1=K € (—o0,0},
there exists po € [0,1] such that 0 is the first eigenvalue of gge+(1—g)o = Ao
in S with ¢ := (1 — po)K + pof € C*(S*). So, we have a positive function
o € C®(S") such that ogg + 0 = go. Because of g > 0 in S' and g= K in

[~%, %], this completes the proof. g.e.d.
Next, we show the following.

Lemma 7 There ezists a constant K > 2 such that the following holds:
For any linear function J[-] from C®(S?) to R, there ezists w € C°(S*)

such that Jiw] =0, K~ §{wee+w)?d0+ § w(wee+w)df < 0 and the support

of w s contained in [—%, %]

Proof. We take a cut-off function x € C*°(S") such that x(0) = 1 for

2020
oel-Z,2), x0) =0for 6 € S*\ (~7,5) and 0 < x(6) < 1for § € S*. For

(a,b) € R? with a® + b* = 1, we define g** € C*(§") by
g**(8) := x(6)(asin48 — bcos 49).
Then, we define a constant
— 1 ab a,b\2
(3.3) K:=2+ gﬁf&ilf@% + ¢g*°)"dé.

For any linear functional J on C®(S"), there exists (ao,bp) € R with
aZ + b2 = 1 such that J[g®%] = 0. So, we set w = g*@» & C>(S8') and
see that J{w] = 0 and the support of w is contained in [—3, §]. Moreover,
Fw(weg + w)dd = $(w? — wi)df = ff%(wz —wi)dd < 7 — ff% widd <
T — f-%-Z- widf = 7 — 16 fﬁ%(ao cos 46 + bysin46)2df = —3w holds. Hence,
from (3.3), we obtain §{wgs + w)2df + K § w(wes + w)df < —6m. q.e.d.

Now, we prove Theorem 3 from Lemmas 6 and 7.
Proof of Theorem 8. The proof is easy and omitted here.
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