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1 The formulation of the problem

This is a report on a joint work with Grzegorz Karch (Wroclaw), Philippe

Laurengot (Toulouse) and Tadeusz Nadzieja (Zielona G\’ora), cf. a part of

published results in [5].

We investigate properties and large time asymptotics of radially sym-

metric solutions of a parabolic-elliptic model of chemotaxis (the simplified

Keller-Segel system) either in a disc of $\mathbb{R}^{2}$ or in the whole plane $\mathbb{R}^{2}$ , in the

subcritical and critical cases.
Denoting by $u=u(x, t)\geq 0$ the density of microorganisms (e.g. amoe-

bae), and by $\varphi=\varphi(x,t)$ the concentration of a chemoattractant secreted by

themselves, the simplified Keller-Segel system we study herein reads

$u_{t}$ $=$ $\nabla\cdot(\nabla u+u\nabla\varphi)$ , (1.1)

$\varphi$ $=$ $E_{2}*u$ , (1.2)

with the space variable $x$ ranging either in $B(0, R)\equiv\{x\in \mathbb{R}^{2}, |x|<R\}$ ,

$R>0$ , or $\mathbb{R}^{2}$ , and the time variable $t\in(0, \infty)$ . Here $E_{2}(z)= \frac{1}{2\pi}\log|z|$
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denotes the fundamental solution of the Laplacian in $\mathbb{R}^{2}$ , so that (1.2) leads

to the Poisson equation Ap $=u$ . The system is supplemented with either

the no flux boundary condition

$\frac{\partial u}{\partial\overline{\nu}}+u\frac{\partial\varphi}{\partial\overline{\nu}}=0$, (1.3)

where $\overline{\iota/}$ denotes the unit normal vector field to the boundary of $B(0R)\}$
’ or

a suitable decay condition $u(X_{\}}t)arrow \mathrm{O}$ as $|x|arrow\infty$ implying the integrability

condition $\int_{\mathbb{R}^{2}}u(x, t)dx<\infty$ . Moreover, an initial condition

$u(x, 0)=u_{0}(x)\geq 0$ (1.4)

is added. After a suitable reduction, see [5, (1.5)-(1.7)] (or [4]), the prob-

lem may be posed as a nonlinear nonuniformly parabolic equation for the
cumulated mass variable $M(s, t)= \int_{B(0,\sqrt{s})}u(x, t)dx$

$M_{\ell}=4s$ $M_{ss}+ \frac{1}{\pi}MM_{s}$ (1.5)

with a nondecreasing continuous initial condition

$M(s, 0)=M_{0}(s)$ (1.6)

on either the interval $(0, 1)$ or the half-line $(0, \infty)$ , together with the boundary
conditions:

$M(0, t)=0$ , $M(1, t)=\overline{M}$ , (1.7)

or
$M(0, t)=0$, $M(\infty, t)=\overline{M}$, (1.8)

respectively We study the problem (1.5)-(1.6) and either (1.7) or (1.8) when
the total mass parameter $\overline{M}$ belongs to the interval $[0, 8\pi]$ .

As it is well known, in the supercritical case $\overline{M}>8\pi$ there occurs a lost
of the boundary condition at $s=0: \lim_{sarrow 0}M(s, t)$ $>0$ for $t\geq T$ with some
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$T>0_{7}$ cf. e.g. [2], [11]. This is interpreted as a blow up of solutions of the

original chemotaxis system (at $x=0$ for radially symmetric solutions)

$\lim_{t\nearrow T}||u(t)||_{H^{1}}=\lim_{\star_{\vee}\nearrow T}|u(t)|L^{p}=\lim_{t\nearrow T}\int_{\Omega}u(x, t)\log u(x, t)dx=$ oc

for each $p>1$ , cf. [4, 3, 6]. A fine description of blowing up solutions is

fairly complicated, see [12], but for radially symmetric solutions the situation

is much simpler. The degeneracy of the elliptic operator 4 $sM_{ss}$ at $s$ $=0$ does

not allow the diffusion to compensate the growth induced by the convection

term $\frac{1}{\pi}MM_{s}$ and $M(0, t)\neq 0$ for $t>T$ holds. On the one hand, we will show

that, in the critical case $\overline{M}=8\pi$ , the blow up in the disc does not take place

in a finite time but occurs in infinite time, i.e. the whole mass concentrates

at $s=0$ as $tarrow\infty$ . We also obtain some temporal decay estimates on
$|M(t)-8\pi|_{L^{1}}$ for large times. On the other hand, if $\overline{M}\in[0,8\pi)$ , we show

the exponential convergence of $M(t)$ towards the unique stationary solution

to (1.5)-(1.7) in the disc. The situation is completely different in the case of

the whole plane.

2 (Sub)critical case in the disc

The problem (1.5)-(1.7) on (0} 1) is well posed whenever $\overline{M}\in[0,8\pi]$ .

Theorem 2.1 Consider $\overline{M}\in[0,8\pi]$ and a continuous nondecreasing fune-
tion $M_{0}$ satisfying

$M_{0}(0)=0$ and $M_{0}(1)=\overline{M}$ . (2.1)

There exists a unique function $M\in \mathrm{C}([0, \infty);L^{2}(0,1))\cap \mathrm{C}_{s,t}^{2,1}((0,1)\cross(0, \infty))$

such that

$0\leq M(s, t)\leq\overline{M}$ , $M_{s}(s, t)\geq 0$ for $(s, t)\in(0,1)\mathrm{x}$ $(0, \infty)$ , (2.2)

$M^{*}(t) \equiv\inf_{s\in(0,1)}M(s, t)=0\mathrm{a}.\mathrm{e}$ . in $(0, \infty)$ , (2.1)
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and

$M_{t}$ $=$ $4sM_{ss}+ \frac{1}{\pi}MM_{s}$ , $(s, t)\in(0, 1)\mathrm{x}$ $(0, \infty)$ , (2.4)

$M(1, t)$ $=$
$\overline{M}_{\dot{J}}$ $t\in(0, \infty)\}$ (2.5)

$M(s, 0)$ $=$ $M_{0}(s)$ , 86 $(0, 1)$ . (2.6)

Moreover, if there is $\delta\in(\mathrm{O}, 1)$ such that $M_{0}(s)\leq(8\pi s)/\delta$ for $s\in(0,1)$ ,

then $M^{*}(t)=0$ for each $t\geq 0$ . Observe that if the derivative of $M_{0}$ is finite:
$M_{0,s}(0)<\infty$ , then the above condition on $M_{0}$ is satisfied with a suitable
$\delta>0$ .

The idea of the proof of Theorem 2.1 is to consider a uniformly parabolic
regularized problem

Mett $=$ 4 $(s+ \epsilon)M_{\epsilon:,ss}+\frac{1}{\pi}M_{\epsilon}M_{\epsilon,s}$ , $(s., t)\in(0,1)\rangle\langle(0, \infty)$ , (2.4)

$M_{\epsilon}(0, t)$ $=$ $\overline{M}-M_{\epsilon}(1, t)=0$ , $t\in(0, \infty)$ , (2.S)
$M_{\epsilon}(s, 0)$ $=$ $M_{0\epsilon}(s)$ , $s\in(0, 1)$ . (2.9)

This problem has a unique solution

$M_{\epsilon}\in \mathrm{C}([0, 1] \mathrm{x} [0, \infty))\cap C_{s,t}^{2,1}((0,1)\mathrm{x}$ $(0, \infty))$ ,

and we infer from (2.1), (2.7)-(2.8), and the comparison principle that

$0\leq M_{\epsilon}(s, t)\leq\overline{M}$ and $M_{\epsilon,s}(s, t)\geq 0$ for $(s, t)\in[0, 1]\mathrm{x}(0, \infty)$ . (2.10)

Moreover, classical parabolic regularity results imply that

$||M_{\epsilon}||_{C_{s,t}^{2+\alpha,1+\alpha/2}([\delta,1]\mathrm{x}[\tau,T])}\leq C(\alpha, \delta, \tau, T)$ (2.11)

for each $T>0$ , $\tau\in(0, T)$ and a $\in(0,1)$ , where $0<C(\alpha, \delta, \tau, T)<$ oo is
a constant depending on $\alpha$ , $\delta$ , $\tau$ and $T$ but independent of $\epsilon$ $\in$ $(0, 1)$ .

The key estimate which allows us to control the behavior of solutions for
small $s>0$ is

$0 \leq f_{0}^{T}\oint_{0}^{1}\frac{M_{\epsilon}(s,t)(8\pi-M_{\epsilon}(s,t))}{s+\epsilon}dsdt\leq C_{1}(T)$ (2.10)
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for every $\epsilon\in(0,1)$ and a constant $0<C_{1}(T)<$ oo independent of $\epsilon$ . This

is obtained by multiplying (2.7) by - $\log(s+\epsilon)$ and integrating over $(0, 1)$ .

Here we use crucially the relation $0\leq M_{\epsilon}\leq\overline{M}\leq 8\pi$ .
The behaviour of $M_{\epsilon}$ for small times can be inferred from the estimate

$\int_{0}^{T}\int_{0}^{1}(s+\epsilon)|M_{\epsilon,s}(s$ , il 1 $|^{2}dsdt$ $+ \oint_{0}^{T}||M_{\epsilon,t}(t)||_{H^{-1}}^{2}dt\leq C_{2}(T)$ (2.13)

for every $\epsilon$ $\in(0,1)$ and a constant $0<C_{2}(T)<$ oo independent of $\in$ .
The above estim ates permit us to pass to the limit $\mathit{6}arrow 0$ with the ap-

proximate solutions $M_{\epsilon}$ and obtain a solution M. $\square$

In fact, for each continuous increasing initial data $M^{*}(t)=0$ holds for

every $t\in(0, \infty)$ , not merely for $\mathrm{a}.\mathrm{e}$ . $t$ . Moreover there is a regularizing

parabolic effect for (1.5) on the derivatives of solutions. Namely, the estimate
$M_{s}(s, t)\leq C/t$ holds for each $s>0$ and $t>0$ . These properties are shown

by a local comparison with self-similar solutions discussed in Section 3.

Remark Using the methods above, similar existence and regularity results
can be obtained for the “star problem” considered in [6, Theorem 1(i)] and

describing a cloud of self-attracting particles in the gravitational field of

a fixed point mass $(” \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}")$ . Namely, the equation (1.5) with the boundary

conditions $M(0, ?$) $=m^{*}\in(0, 4\pi)$ , $M(1, t)=\overline{M}\leq 8\pi-m^{*}$ , and suitable

initial conditions, has global solutions satisfying properties similar to those

in Theorem 2.1.

Since (15) is a convection-diffusion equation, we anticipate that it may

enjoy some contraction property with respect to some $L^{1}$ -norm. We actually

show the following $L^{1}$-stability property for solutions.

Theorem 2.2 if $M,\overline{M}$ are two solutions to (1.5)-(1.7) (as in Theorem 2.1)

with initial data $M_{0}$ and $\overline{M}_{0}$ satisfying (2.1) with the same $\overline{M}$, $\overline{M}\in[0,8\pi]$ ,

then $t\mapsto|\rho(M(t)-\overline{M}(t))|_{L^{1}}$ is a nonincreasing function of time for each
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nonnegative, nonincreasing and concave weight $\rho\in W^{\infty},(0,1)$ . Further-
more, if $\overline{M}\in[0,8\pi)$ ,

$|M(t)-\overline{M}(t)|_{L^{1}}\leq 2|M_{0}-\overline{M}_{0}|_{L^{1}}e^{-(4-(\overline{M}/2\pi))t}$ (2.14)

To prove Theorem 2.2 we consider the difference $N=M-\overline{M}$ which
satisfies the equation

$N_{t}= \frac{\partial}{\partial s}(4sN_{s}+\frac{1}{2\pi}N(M+\overline{M}-8\pi))$ (2.15)

with $N(0, t)=N(1, t)=0$ for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$ . We prove the $L^{1}((0,1);\rho(s)ds)$

contraction property of solutions. For $\delta\in(0,1)$ and $r\in \mathbb{R}$ , we use a convex
approximation of $r\mapsto\rfloor r|$ , $\mathrm{e}.\mathrm{g}.$ ,

$\Phi_{\delta}(r)\equiv\{$

$\frac{1}{\delta}(|r|-\frac{\delta}{2})_{+}^{2}$ if $|r|\in[0, \delta]$ ,

$|r|- \frac{3}{4}\delta$ if $|r|\in(\delta, \infty)$ ,

We multiply (2.15) by $\rho\Phi_{\delta}’(N)$ and integrate over $(0, 1)$ to obtain

$\frac{d}{dt}\int_{0}^{1}\rho(s)\Phi_{\delta}(N)ds$

$=$ $4s \rho(s)N_{s}\Phi_{\delta}’(N)|_{0}^{1}+\frac{1}{2\pi}\rho(s)\Phi_{\delta}’(N)N(M+\overline{M}-8\pi)$ $|_{0}^{1}$

$- \int_{0}^{1}4s\rho(s)\Phi_{\delta}’(N)N_{s}^{2}ds-\oint_{0}^{1}4s\rho’(s)\Phi_{\delta}’(N)N_{s}ds$

$- \frac{1}{2\pi}\int_{0}^{1}\rho(s)\Phi_{\delta}’(N)N_{s}N(M+\overline{M}-8\pi)ds$

$- \frac{1}{2\pi}\int_{0}^{1}\rho’(s)\Phi_{\mathit{5}}^{t}(N)N(M+\overline{M}-8\pi)ds$

$\leq$ $- \frac{1}{2\pi}\oint_{0}^{1}\rho(s)\Phi_{\delta}’(N)NN_{\mathrm{s}}(M+\overline{M}-8\pi)ds$

$- \frac{1}{2\pi}\int_{0}^{1}\rho’(s)\Phi_{\mathit{5}}’(N)N(M+\overline{M}-16\pi)ds$

$+4 \int_{0}^{1}s\rho’(s)\Phi_{\delta}(N)ds+4\int_{0}^{1}\rho’(s)(\Phi_{\delta}(N)-N\Phi_{\delta}’(N))ds$ .
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Observe that $N_{s}$ belongs to $L^{\infty}((0, \infty);L^{1}(0,1))$ , $M,\overline{M}$ and $N$ are bounded,

and $r\mapsto r\Phi_{\delta}’(r)$ is bounded and converges $\mathrm{a}.\mathrm{e}$ , towards zero as a $arrow 0$ .
Thus, the Lebesgue dominated convergence theorem ensures that the first

term of the right-hand side of the above inequality converges to zero as
$\deltaarrow 0$ . On the other hand, both $r\mapsto\Phi_{\delta}(r)$ and $r\mapsto r\Phi_{\delta}’(r)$ converge
uniformly towards $r$ $\mapsto|r|$ on R. Thanks to the boundedness of $M,\overline{M}$

and $N$ , we can pass to the limit as $6arrow 0$ in the other terms of the above

inequality, and end up with

$\frac{d}{dt}\int_{0}^{1}\rho(s)|N|ds$ $\leq$ $- \frac{1}{2\pi}\int_{0}^{1}\rho’(s)|N|(M+\overline{M}-16\pi)ds$

+4 $\int_{0}^{1}s\rho’(s)|N|ds$ . (2.16)

Since $M+\overline{M}\leq 2\overline{M}\leq 16\pi$ and $\rho’$ and $\rho’’$ are both nonpositive, the right-hand
side of (2.16) is nonpositive, from which the first assertion of Theorem 2.2
follows.

We now turn to the decay rate (2.14) and assume that $\overline{M}\in[0,8\pi)$ . We

take $\rho(s)=2-s$ in (2.16). Since $M+\overline{M}\leq 2\overline{M}<16\mathrm{t}\mathrm{t}$ , we infer from (2.16)

that

$\frac{d}{dt}\int_{0}^{1}(2-s)|N|ds\leq\frac{1}{2\pi}\int_{0}^{1}|N|(2\overline{M}-16\pi)ds\leq\frac{\overline{M}-8\pi}{2\pi}\oint_{0}^{1}\acute{(}2-s)|N|ds$ ,

whence

$\oint_{0}^{1}(2-s)|N(t)|ds\leq\int_{0}^{1}(2-s)|N(0)|dse^{-(4-(\overline{M}/2\pi))t}$ ,

from which (2.14) readily follows.

An immediate consequence of (2.14) with $\overline{M}=M_{b}-$ the (unique) steady

state such that $M_{b}(1)=\overline{M}$, i.e.

$M_{b}(s)= \mathrm{S}\pi\frac{s}{s+b}$ , $s\in(0, 1)$ , with $b= \frac{8\pi}{\frac{}{M}}-1>0$ , (2.17)
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is the exponential decay

$|M(t)-M_{b}|_{L^{1}}\leq 2|M_{0}-M_{b}|_{L^{1}}e^{-(4-(\overline{M}/2\pi))t}$

The exponential decay rate does not hold true for the critical case $\overline{M}=8\pi$

but the following weaker assertion is available

$|M(t)-8 \pi|_{L^{1}}\leq\frac{8\pi}{t}$ . (2.18)

For the proof, we put $N(s, t)=M-8\pi,$ $\rho(s)=2-s$ . We notice that $N$

solves
$N_{t}= \frac{\partial}{\partial s}(4sN_{s}+\frac{1}{2\pi}NM)$ (2.19)

with $N(0, t)=-8\pi$ and $N(1, t)=0$ for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$ . Keeping the
notations from the proof of Theorem 2.2, we multiply (2.19) by $\rho\Phi_{\delta}’(N)$ and
integrate over $(0, 1)$ to obtain

$\frac{d}{dt}\int_{0}^{1}\rho(s)\Phi_{\delta}(N)ds$

$\leq$ $- \frac{1}{2\pi}\int_{0}^{1}\rho(s)\Phi_{\delta}’(N)NN_{s}Mds-\frac{1}{2\pi}\int_{0}^{1}\rho’(s)\Phi_{\delta}’(N)NMds$

$+4$ $\int_{0}^{1}s\rho^{\prime \mathit{1}}(s)\Phi_{\delta}(N)ds+4\oint_{0}^{1}\rho’(s)\Phi_{\delta}(N)ds$ ,

since $\Phi_{\delta}’$ vanishes on a neighbourhood of 0 and $M^{*}(t)=0$ , so the boundary

terms vanish. We then proceed as in the proof of (2.16) to pass to the limit
as $3arrow 0$ and end up with

$\frac{d}{dt}\int_{0}^{1}\rho(s)|N|ds$ $\leq$ $\frac{1}{2\pi}\int_{0}^{1}\rho’(s)(8\pi-M)|N|ds$ ,

$\mathrm{i}.\mathrm{e}$ .

$\frac{d}{dt}\int_{0}^{1}(2-s)|N|ds$ $\leq$ $- \frac{1}{2\pi}l^{1}|N|^{2}ds$ .

We infer from the Cauchy-Schwarz inequality that

$\frac{d}{dt}\oint_{0}^{1}(2-s)|N|ds\leq-\frac{1}{2\pi}(\int_{0}^{1}|N|ds)^{2}\leq-\frac{1}{8\pi}(\int_{0}^{1}(2-s)|N|ds)^{2}$ ,
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whence

$|M(t)-8 \pi|_{L^{1}}\leq\int_{0}^{1}(2-s)|N(t)|ds\leq\frac{8\pi}{t+4\pi|8\pi-M_{0}|_{L^{1}}^{-1}}$ .

Cl

3 The problem in the whole plane

The equation (1.5) for $s\in(0, \infty)$ is invariant under the space-time scaling

$s\mapsto Rs$ , $t\mapsto Rt$ , $R>0$ . (3.1)

This property has important consequences for the analysis of the problem

(1.5)-(1.6) on $(0, \infty)$ $\cross$ $(0, \infty)$ .

The global in time existence of solutions of that problem can be proved

using the ideas of regularizations of the nonlinear term in [11]. An alternative

way is to use our previous construction in Theorem 2.1 and the scaling ProP-

erty (3.1) of (1.5). More precisely, if $0\leq M_{0}\nearrow\overline{M}\leq 8\pi$ is a subcritical initial

data, then we consider its restriction to the interval $(0, R)$ . Rescaling Mg to

$M_{0R}$ defined on $(0, 1)$ , $M_{0R}(s/R)=M_{0}(s)\leq\overline{M}$ for $s\in(0, R)$ , we construct

the solution $M_{R}$ of (1.5)-(1.7) with the initial condition $M_{R}(s, 0)=M_{0R}(s)$ .

For each $s\in$ $(0, 1)$ the functions $M_{0R}(s)\leq\overline{M}$ increase with $R\nearrow$ oo so that,

by the comparison principle, $M_{R}(s, t)$
$\leq\overline{M}$ are also increasing with respect to

$R$ . The functions $\overline{M_{R}}(s, t)=M_{R}(s/R, t/R)$ defined for $(s, t)\in(0, R)\cross$ $(0, \infty)$

solve the equation (1.5) with $\overline{M_{R}}(s, 0)=M_{0}(s)$ , $s\in(0, R)$ . To obtain

a global in time solution with analogous regularity properties as in Theorem

2.1, we perform the passage with $M_{R}$ to the limit $Rarrow\infty$ .

Since (1.5) is invariant under the scaling (3.1) it is natural to consider self-

similar solutions of (1.5), i.e. those satisfying $M(Rs, Rt)\equiv M(s, t)$ for each

$R>0$ . They have the form $\mathrm{M}(\mathrm{s}, =m(s/t)$ for a function $m$ . The existence

of self-similar solutions in the range $\overline{M}\in[0, 8\pi)$ has been established in
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e.g., [2] and [10] (not necessarily radially symmetric case of the chemotaxis
system).

Let us briefly recall the reasoning from [2, Prop. 3, $\mathrm{i})$ ]. For $M(s, t)=$

$2\pi\zeta(s/t)(1.5)$ reads

$\langle$$”+ \frac{1}{4}\zeta’+\frac{1}{2y}\zeta\zeta’=0$ with $y= \frac{s}{t}$ . (3.2)

The change of variables $\tau=\frac{1}{2}\log y$ , $v( \tau)=2y\frac{d\zeta}{dy}(y)$ , $w(\tau)=\zeta(y)$ transforms
(3.2) into the nonautonomous problem for $(u, v)$ in the plane

$v’$ $=$ $(2-w)v- \frac{e^{2\tau}}{2}v$ , $w’=v$ , $’= \frac{d}{d\tau}$ ,

$v(-\infty)$ $=$ 0, $w(-\infty)=0$ . (3.3)

Evidently, $\lim_{\tauarrow\infty}w(\tau)<4$ because the function $(w-2)^{2}+2v$ is strictly
decreasing along the phase trajectories of the above system.

We consider also an autonomous system

$\underline{v}’=(2-\underline{w})\underline{v}-\epsilon\underline{v}$, $\underline{w}’=\underline{v}$ ,

where $\epsilon>0$ , $\underline{v}=\underline{v}_{\epsilon}$ , $\underline{w}=warrow$ ’ with the same condition at $\tau=-\infty$ . A com-
parison of these vector fields gives the relation $\underline{w}(\tau)\leq w(\tau)$ for all $\tau\leq\tau_{\epsilon}$

with $e^{2\tau_{\epsilon}}=2\in$ . Since $\mathrm{w}(\mathrm{r})=2(2-\epsilon)Ae^{(2-\epsilon)\tau}(1+Ae^{\langle 2-\epsilon)\tau})^{-1}$ with an
arbitrary $A>0$ is a solution of the auxiliary system, so $\underline{w}(\tau_{\epsilon})=2(2-$

$\epsilon)A(2\epsilon)^{1-\epsilon/2}(1+A(2\epsilon)^{1-\epsilon/2})^{-1}$ and $\sup Z=\lim_{yarrow\infty}((\mathrm{y})=\sup w(\tau)\geq$

$\lim\sup_{\epsilonarrow 0,\tau\leq\tau_{\Xi},A>0}\underline{w}(\tau)=4$ . $\square$

We prove that the asymptotics of general solutions of (1.5)-(1.6), (1.8)
for $0<\overline{M}<8\pi$ is described by that of self-similar solutions, $\mathrm{i}.\mathrm{e}$ .

$0 \leq\frac{m(s/t)-M(s,t)}{m(s/t)}arrow 0$ as $t$ $arrow\infty$ .

Here $m$ denotes the self-similar solution with $m(\infty)=\overline{M}$ . The proof in-
volves analysis of the family of suitable scalings of the solution $M$ , and the
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uniqueness property of self-similar solutions with a given mass $\overline{M}\in[0,8\pi)$ .
A related result for the original chemotaxis system has been recently an-
nounced in [8].

Looking at the problem on a finite interval $(0, 1)$ , one might suspect that

$M(s, t)$ $arrow 8\pi$ as $tarrow$ oo but for $s\in(0, \infty)$ the picture is much more compli-

cated. First of all, nontrivial solutions of the steady state problem (1.5)-(1.6),

(1.8) on $(0, \infty)$ exist for $\overline{M}=8\pi$ (only!) and are parametrized by $b>0$ :

$M_{b}(s)=8 \pi\frac{s}{s+b}$ , $b>0$ . (3.4)

Second, if $M_{0}$ satisfies the condition $\int_{0}^{\infty}(8\pi-M(s, t))ds<\infty$ , the solu-

tion $M(., t)$ converge pointwise to $8\pi$ as $tarrow\infty$ , but does not converge to $8\pi$

in the $L^{1}$ sense. Indeed, for those solutions (they correspond to solutions $u$

of the original chemotaxis system (1.1)-(1.2) possessing the second moment,

i.e. $I_{\mathbb{R}^{2}}|x|^{2}u(x, t)dx<\infty)$ we have

$\frac{d}{dt}\oint_{0}^{\infty}(8\pi-M(s, t))ds=32\pi-\frac{(8\pi)^{2}}{2\pi}=0$.

since $4sM_{s}(s, t)arrow \mathrm{O}$ as $sarrow \mathrm{O}$ and as $sarrow\infty$ . To prove the above, we

begin with $M_{0}$ such that $(8\pi-M_{0})$ has compact support in $[0, \infty)$ . From

the construction of $M$ as the limit of $\overline{M_{R}}’ \mathrm{s}$ , it is easy to conclude using

comparison principle that $M(s, t)$ $arrow 8\pi$ for each $s>0$ when $tarrow\infty$ . The

remaining part follows from the $L^{1}$ contraction property $|M(t)-\overline{M}(t)|_{L^{1}}\leq$

$|M_{0}-\overline{M}_{0}|_{L^{1}}$ proved as in Theorem 2.2 with $\mathrm{g}(\mathrm{s})\equiv 1$ . Indeed, $M_{0}$ such that
$(8\pi-M_{0})\in L^{1}(0, \infty)$ can be approximated by initial data with $(8\pi-M\mathrm{o})$

of compact support. Combining monotonicity properties of $M$ ’s and the $L^{1}$

contraction property, the desired pointwise convergence follows.

To prove the stability of steady states (3.4), we will interprete (1.5) as

a nonlinear Fokker-Planck type equation considered in [1], and we will em-
ploy a family of Lyapunov functionals for the dynamical system associated

with (1.5)-(1.6), (1.8) in the $L^{1}(0, \infty)$-metric.
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Theorem 3.1 The function $\mathcal{W}_{b}(M)$ $=f_{0}^{\infty}w_{b}(M(s, t))ds$ , where the entropy

density $w_{b}$ is definea as

$w_{b}(M)=M \log\frac{M}{M_{b}}+(8\pi-M)\log\frac{8\pi-M}{8\pi-M_{b}}$ , (3.5)

is finite for each $M$ such that $(M-M_{b})\in L^{1}(0, \infty)$ , $M_{b_{1}}\leq M\leq M_{b_{2}}$ for
some $b_{1}>b>b_{2}>0$ . Moreover, this is nonincreasing along the trajectories
$M(t)=M(., t)$ of the dynamical system $(\mathit{1}.\mathit{5})-(\mathit{1}.\mathit{6})_{f}$ (L8)

$\frac{d\mathcal{W}_{b}}{dt}\leq-\frac{1}{2\pi}.[_{0}^{\infty}sM(8\pi-M)|\frac{\partial}{\partial s}(\log\frac{M}{8\pi-\mathrm{A}_{\mathrm{i}}\mathrm{f}}\frac{8\pi-M_{b}}{M_{b}})|^{2}ds\leq 0.$ $(3.6)$

This implies that if $M_{0}$ is such that $W_{b}(M_{0})<\infty$ and $(M_{0}-M_{b})\in L^{1}(0, \infty)$

for some $b>0$ , then $\lim_{tarrow\infty}\mathcal{W}_{b}(t)=0$ , and therefore (by a Csiszar-Kullback
type lemma)

$\lim_{tarrow\infty}|M(t)-M_{b}|_{L^{1}}=0$ .

Local attracting property of the stationary solutions $M_{b}$ is a rather weak
property. In particular, this does not give any information on the asymptotic
behavior of solutions starting from data like, e.g., $M_{0}(s)=8 \pi\frac{s}{s+2+\cos s}$ which
satisfy the relation $M_{3}\leq M_{0}\leq M_{1}$ , but $M_{0}-M_{b}\not\in L^{1}(0, \infty)$ for any $b>0$ .
All this shows that the long time behavior of solutions in the critical case
may be extremely complicated and even chaotic. $\square$

Remark. The problem of the chemotaxis (1.1)-(1.4) in the whole plane in
the subcritical case $\overline{M}<8\pi$ , without radial symmetry assum ptions, has been
recently studied in [9]. In particular, the authors proved the global in time
existence of solutions using logarithmic Sobolev inequalities.

Using the approach via radially symmetric decreasing rearrangements in
[7] we might use the results here to give an alternative construction of global
in time solutions for $\overline{M}\leq 8\pi$ , and to give a flavor of the diversity of locally
attracting solutions for the problem without radial symmetry. Indeed, results
from [7] imply that, roughly speaking, the existence of solutions of (1.1)-(1.4)
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is controlled by the existence of solutions to the radially symmetric problem

given by (1.5)-(1.6), (1.8) with the initial condition $M_{0}$ obtained from the

radially symmetric decreasing rearrangement of $u_{0}$ .

4 Supercritical case in $\mathbb{R}^{2}$

Let us recall some results from the preprint [11] (Theorems 2.7, 3.5, 4,4)

related to the supercritical case of equation (1.5) on $(0, \infty)$ , i.e. for $\overline{M}>8\pi$ .

First, the classical solution of (1.5) (that possesses the second moment
- which was not explicitly stated in [11], cf. [3], [4] $)$ blows up in a finite

time: there is $0<T<\infty$ such that $\lim_{t\nearrow T}M(s, t)\geq 8\pi$ for each $s>0$ .
This means that the boundary condition at $s=0$ is lost, $M^{*}(t)$ jumps to $8\pi$

instantaneously at $t=T$ .
Moreover, there exists a continuation of $M$ , $M\in C$“ $(0, \infty)$ $\cross$ $(0, \infty))$ ,

past the blow up time $T$ , satisfying (1.5), (1.8) for all $t>0$ , and the quan-

tity $M^{*}(t)$ strictly increases for $t>T$ . Such a global in time smooth so-

lution – a continuation of the classical solution for $t$ $<T-$ is unique in

$\mathrm{C}^{\infty}((0, \infty))\langle(0, \infty))$ , and satisfies $\lim_{tarrow\infty}M(s, t)=\overline{M}$ for each $s$ $\geq 0$ . More-

over, $\lim_{tarrow\infty}M^{*}(t)=\overline{M}.\cdot$ the whole mass concentrates at the origin in the

infinite time, unlike the critical $\overline{M}=8\pi$ (nontrivial steady states exist) and

subcritical cases $M^{*}<8\pi$ (mass spreads to infinity).
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