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1 The formulation of the problem

This is a report on a joint work with Grzegorz Karch (Wroctaw), Philippe
Laurencot (Toulouse) and Tadeusz Nadzieja (Zielona Géra), cf. a part of
published results in [5].

We investigate properties and large time asymptotics of radially sym-
metric solutions of a‘parabolic—elliptic model of chemotaxis (the simplified
Keller-Segel system) either in a disc of R? or in the whole plane R?, in the
subcritical and critical cases.

Denoting by © = u(z,t) > 0 the density of microorganisms (e.g. amoe-
bae), and by ¢ = ¢(z,t) the concentration of a chemoattractant secreted by
themselves, the simplified Keller-Segel system we study herein reads

u, = V- (Vu+uVy), (1.1)
¢ = FEgxu, (1.2)

with the space variable  ranging either in B(0,R) = {z € R?, |z| < R},
R > 0, or R?, and the time variable ¢ € (0,00). Here Ea(2) = 3= loglz|
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denotes the fundamental solution of the Laplacian in R?, so that (1.2) leads
to the Poisson equation Agp = u. The system is supplemented with either
the no flux boundary condition

Ou O

where U denotes the unit normal vector field to the boundary of B(0, R), or
a suitable decay condition u{z,t) — 0 as || — oo implying the integrability

condition fp, u(z,t) dz < co. Moreover, an initial cendition
u(z,0) = ug(z) 2 0 (1.4)

is added. After a suitable reduction, see [5, (1.5)-(1.7)] (or [4]), the prob-
lem may be posed as a nonlinear nonuniformly parabolic equation for the

cumulated mass variable M(s,t) = [p, - u(,t) dz

Mt=4sMss+%MMs (15)

with a nondecreasing continuous initial condition
M(s,0) = Mo(s) (1.6)

on either the interval (0, 1) or the half-line (0, 00}, together with the boundary
conditions:
M(0,t) =0, M(1,t)= M, (1.7)

or
M(0,t) =0, Mf{co,t)= M, (1.8)

respectively. We study the problem (1.5)-(1.6) and either (1.7) or {1.8) when
the total mass parameter M belongs to the interval [0, &x].

As it is well known, in the supercritical case M > 87 there occurs a lost
of the boundary condition at s = 0: lim, o M(s,t) > 0 for t > T with some



T >0, cf. e.g. [2], [11]. This is interpreted as a blow up of solutions of the

original chemotaxis system (at z = 0 for radially symmetric solutions)

lim (9 = lisg (®)lzs = lisg | (o, logula, 1) d = oo

for each p > 1, cf. [4, 3, 6]. A fine description of blowing up solutions is
fairly complicated, see [12], but for radially symmetric solutions the situation
is much simpler. The degeneracy of the elliptic operator 4 s M, at s = 0 does
not allow the diffusion to compensate the growth induced by the convection
term % M M, and M(0,t) # 0 for ¢ > T holds. On the one hand, we will show
that, in the critical case M= 87, the blow up in the disc does not take place
in a finite time but occurs in infinite time, i.e. the whole mass concentrates
at s = 0 as t — oo. We also obtain some temporal decay estimates on
|M(t) — 8x|p: for large times. On the other hand, if M e [0,87), we show
the exponential convergence of M(t) towards the unique stationary solution
to (1.5)—(1.7) in the disc. The situation is completely different in the case of
the whole plane.

2 (Sub)critical case in the disc
The problem (1.5)-(1.7) on (0,1) is well posed whenever Me [0, 8n].

Theorem 2.1 Consider M € [0,87] and @ continuous nondecreasing func-
tion My satisfying

Mo(0)=0 and My(1) =M, (2.1)

There exists a unique function M € C([0,00); L*(0, 1)) ﬂC?;é((O, 1) % (0, 00))
such that

0< M(s,t) <M, My(s,t)>0 for (s,t)€(0,1)x (0,00), (2.2)
M*(t)= inf M(s,t)=0 ae. in (0,00), (2.3)

s€(0,1)
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and
M, = 43Mss+—7l;MMs, (s,t) € (0,1) x (0,00}, (2.4)
M(L,t) = M, te(0,0), (2.5)
M(s,0) = My(s), se€(0,1). (2.6)
Moreover, if there is 6 € (0,1) such that My(s) < (8ws)/é for s € (0,1),
then M*(t) = 0 for each t > 0. Observe that if the derivative of My is finite:

My s(0) < oo, then the above condition on My is satisfied with a suitable
5> 0.

The idea of the proof of Theorem 2.1 is to consider a uniformly parabolic

regularized problem

Mee = 4(5+) Mosst - M. My, (5,8) € (0,1) % (0,00), (27)
M.0,t) = M- M.(1,£)=0, te(0,00), (2.8)
M.(s,0) = My(s), s€(0,1). (2.9)

This problem has a unique solution
M. € C([0,1] x [0,00)) NC2((0,1) x (0, 00)),
and we infer from (2.1), (2.7)-(2.8), and the comparison principle that
0< Mcs,t) <M and M. (s5,t)>0 for (s,t)€[0,1]x (0,00). (2.10)
Moreover, classical parabolic regularity results imply that
“Ms“cfj"’”a/?([é,lix[r,T}) < C(e,8,7,T) (2.11)

foreach T'> 0, 7 € (0,7) and o € (0,1), where 0 < C(e,8,7,T) < 00 is
a constant depending on «, d, 7 and T but independent of € € (0,1).

The key estimate which allows us to control the behavior of solutions for
small ¢ > 0 is

e / / M,(s,1) <§:r_ = M) o< or)  (212)




for every € € (0,1) and a constant 0 < C1(T") < co independent of €. This
is obtained by multiplying (2.7) by —log(s + ¢€) and integrating over (0,1).
Here we use crucially the relation 0 < M, < 1\7 < 8.

The behaviour of M, for small times can be inferred from the estimate

/ ) f (5t e) |Mas(s, ) dsdt + / MO dE < Cx(T)  (2.13)
0 Q 0

for every £ € (0,1) and a constant 0 < Co(T') < oo independent of ¢.
The above estimates permit us to pass to the limit € — 0 with the ap-
proximate solutions M, and obtain a solution M. 0

In fact, for each continuous increasing initial data M*(¢) = 0 holds for
every t € (0,00), not merely for a.e. t. Moreover there is a regularizing
parabolic effect for (1.5) on the derivatives of solutions. Namely, the estimate
M,(s,t) < C/t holds for each s > 0 and t > 0. These properties are shown

by a local comparison with self-similar solutions discussed in Section 3.

Remark. Using the methods above, similar existence and regularity results
can be obtained for the “star problem” considered in [6, Theorem 1(i)] and
describing a cloud of self-attracting particles in the gravitational field of
a fixed point mass (“star”). Namely, the equation (1.5) with the boundary
conditions M(0,t) = m* € (0,4r), M(1,t) = M < 87 — m*, and suitable
initial conditions, has global solutions satisfying properties similar to those

in Theorem 2.1.

Since (1.5) is a convection-diffusion equation, we anticipate that it may
enjoy some contraction property with respect to some L-norm. We actually

show the following L!-stability property for solutions.

Theorem 2.2 If M, M are two solutions to (1.5)-(1.7) (as in Theorem 2.1)
with initial data My and My satisfying (2.1) with the same M , Me [0, 8x],
then t — |o(M(t) — M(t))|11 is a nonincreasing function of time for each
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nonnegative, nonincreasing and concave weight o € W**(0,1). Further-
more, if Me [0, 87),

(M (8) — M(£)|g: < 2 |Mp — M|y e~ 3M/200t, (2.14)

To prove Theorem 2.2 we consider the difference N = M — M which
satisfies the equation
0 1 _
Ny = — [ 4sN; + — - .
t= 5 ( sNs + 27TN(M%—M SW)) (2.15)
with N(0,t) = N(1,t) = O for a.e. ¢ € (0,00). We prove the L*((0, 1); o(s) ds)
contraction property of solutions. For § € (0,1) and 7 € R, we use a convex

approximation of r — |r|, e.g.,

%(m_gy if |r]€]0,d],

+

$s(r)
il — Za it r] € (5,00),

We multiply (2.15) by ¢ ®5(N) and integrate over (0,1) to obtain

% /0 o()B5(N) ds

= 4s0(s)N,®5(N) |} + %g(s)%(f\f YN(M + M —87) |3

1 1
- / 4so(s)BL(N)N? ds — / 450/ (s)B4(N)N, ds
0 g

I _
o o(s)®5(N)N,N(M + M — 8x) ds
0
1 [t _
5 o' (8)®5(N)N(M + M —8m) ds
0
I _
= o o(8)®5(N)NNy(M + M — 8r) ds
0
1 1

¢ (8)®5(N)N(M + M — 16x) ds

27 Jo
1

1
14 fo 50" (5)Bs(NV) ds + 4 fo & (8)(®5(N) = N®,(N)) ds



Observe that N, belongs to L=({0, 00); L'(0,1)), M, M and N are bounded,
and r — r ®(r) is bounded and converges a.e. towards zero as § — 0.
Thus, the Lebesgue dominated convergence theorem ensures that the first
term of the right-hand side of the above inequality converges to zero as
5§ — 0. On the other hand, both r — ®;(r) and r +— r ®5(r) converge
uniformly towards r +— |r| on R. Thanks to the boundedness of M, M
and N, we can pass to the limit as § — 0 in the other terms of the above
inequality, and end up with

1 1
gz/O- o(s)|Nlds < - —2%—[0 d(8)|N|(M + M — 167) ds
+ 4]1 30" (s)|N|ds. (2.16)

Since M+M < oM < 16 and g’ and ¢” are both nonpositive, the right-hand
side of (2.16) is nonpositive, from which the first assertion of Theorem 2.2

follows.

We now turn to the decay rate {2.14) and assume that Me [0,87). We
take p(s) = 2 — s in (2.16). Since M + M < 9M < 16, we infer from (2.16)
that
d [t Lot M—8r [
el — < = - < — ds
- fo (2 - 8)|N|ds < %/0 IN|(23 — 16m)ds < /0 (2— 5)|N|ds,

whence

1
0

1 —
[ e-sweids< [ @-ave)ds e,
0
from which (2.14) readily follows.
An immediate consequence of (2.14) with M = M, — the (unique) steady

state such that M,(1) = M, ie.

Mis) =81, s€(0,1), with b=%—1>0, (2.17)
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is the exponential decay
IM(1) — Mylzr < 2 | Mo — Myjpr e~ 31725,

The exponential decay rate does not hold true for the critical case M = 87
but the following weaker assertion is available

\M(t) — 8l < 877’ | (2.18)

For the proof, we put N(s,t) = M — 8, o(s) = 2 —s. We notice that NV

solves 5 )
-2 — 2.1
N; 95 (43NS + 27rNM') (2.19)
with N(0,t) = —8m and N(1,7) = 0 for a.e. t € (0,00). Keeping the
notations from the proof of Theorem 2.2, we multiply (2.19) by ¢ @5(N) and

integrate over (0,1) to obtain

d 1

g / o(s)B5(N) ds
1 1

]

IN

o(s)BU(NYNN,M ds — % /0 C (S)BL(N)N M ds
+4 /01 30"(s)®5(N) ds + 4-/01 0'(s)®s(N)ds,
since @) vanishes on a neighbourhood of 0 and M*(t) = 0, so the boundary
terms vanish. We then proceed as in the proof of (2.16) to pass to the limit
as 6 — 0 and end up with
d [! 1!
G| o < o [ dsen—mwias,
ie.
d [ 1t
EE/O (2—8)|Nlds < —5 /0 IN|*ds.

We infer from the Cauchy—Schwarz inequality that

%/Ol(z—s)uvmss—-;; (/OllNlds)zé—%T- U;@—s)t!\’lds)z,



whence

8
f+47Ti87‘{' - Mg!zll '

IM(t) — 8 < /01(2 —8)|[N(t)|ds <

3 The problem in the whole plane

The equation (1.5) for s € (0, 00) is invariant under the space-time scaling
s— Rs, t+— Rt, R>0. (3.1)

This property has important consequences for the analysis of the problem
(1.5)—(1.6) on (0, 00) x (0, 00).

The global in time existence of solutions of that problem can be proved
using the ideas of regularizations of the nonlinear term in [11]. An alternative
way is to use our previous construction in Theorem 2.1 and the scaling prop-
erty (3.1) of (1.5). More precisely, if 0 < M, / M < 8 is a subcritical initial
data, then we consider its restriction to the interval (0, R). Rescaling My to
Mor defined on (0,1), Myr(s/R) = My(s) < M for s € (0, R), we construct
the solution Mg of (1.5)—(1.7) with the initial condition Mz(s,0) = Mor(s).
For each s € (0,1) the functions Mog(s) < M increase with R /* o so that,
by the comparison principle, Mg(s,t) < M are also increasing with respect to
R. The functions Mz(s, t) = Mg(s/R,t/R) defined for (s,t) € (0, R)x(0,00)
solve the equation (1.5) with Mg(s,0) = My(s), s € (0,R). To obtain
a global in time solution with analogous regularity properties as in Theorem

2.1, we perform the passage with m to the limit R — oo.

Since (1.5) is invariant under the scaling (3.1) it is natural to consider self-
similar solutions of (1.5), i.e. those satisfying M(Rs, Rt) = M(s,1) for each
R > 0. They have the form M (s, t) = m(s/t) for a function m. The existence
of self-similar solutions in the range Me [0,87) has been established in,
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e.g., 2] and [10] (not necessarily radially symmetric case of the chemotaxis
system).
Let us briefly recall the reasoning from [2, Prop. 3, i)]. For M(s,t) =
2n¢(s/t) (1.5} reads
1 1 s
Wy e it = =, 3.2
g g ¢ =0 with y=2 (3-2)
The change of variables 7 = 1 logy, v(r) = Zy%(y), w(T) = ((y) transforms
(3.2) into the nonautonomous problem for (u,v) in the plane
27
e Qe S, W=y, =L
v = 2—-wh 5V W=, e
v(—00) = 0, w(—o0)=0. (3.3)

Evidently, lim, o w{T) < 4 because the function (w — 2)? + 2v is strictly
decreasing along the phase trajectories of the above system.

We consider also an autonomous system

vV=02-wv—cey, w=uy,

where € > 0, v = v,, w = w,, with the same condition at 7 = —co. A com-
parison of these vector fields gives the relation w(r) < w(r) for all 7 < 7,
with e’ = 2. Since w(r) = 2(2 — £)Ae@97 (1 —{—Ae(?‘s)")_l with an
arbitrary A > 0 is a solution of the auxiliary system, so w(r.) = 2(2 —
£)A(2e)t~¢/? (1+A(2€)1“5/2)_1 and supZ = limy o ((y) = supw(r) >

hm SuP5—+0, T, A>C Q(T) = 4‘ D

We prove that the asymptotics of general solutions of (1.5)-(1.6), (1.8)
for 0 < M < 87 is described by that of self-similar solutions, i.e.

m(s/t) — M(s,t)
A0

Here m denotes the self-similar solution with m(oo) = M. The proof in-
volves analysis of the family of suitable scalings of the solution M, and the

— {0 as t — oo.



uniqueness property of self-similar solutions with a given mass Me [0, 87).
A related result for the original chemotaxis system has been recently an-
nounced in [8].

Looking at the problem on a finite interval (0, 1), one might suspect that
M(s,t) — 87 as t — oo but for s € (0, 00) the picture is much more compli-
cated. First of all, nontrivial solutions of the steady state problem (1.5)-(1.6),
(1.8) on (0, 00) exist for M = 8r (only!) and are parametrized by b > O:

s
T
Second, if M, satisfies the condition [ (8w — M(s,t)) ds < oo, the solu-

tion M(.,t) converge pointwise to 8w as ¢t — oo, but does not converge to 8w

Mp(s) = 8 b> 0. (3.4)

in the L! sense. Indeed, for those solutions (they correspond to solutions u
of the original chemotaxis system (1.1)—(1.2) possessing the second moment,
Le. [po lz?u(z,t) dz < oo) we have

d [ 3 (8m)* _
E/o (87 — M(s,t))ds = 32m — o =

since 4sM,(s,t) — 0 as s — 0 and as s — oo. To prove the above, we
begin with M, such that (87 — M) has compact support in [0, 00). From
the construction of M as the limit of m’s, it is easy to conclude using
comparison principle that M(s,t) — 8 for each s > 0 when ¢ — oco. The
remaining part follows from the L* contraction property |M(t) — M(t)|1 <
|My — Mp|r: proved as in Theorem 2.2 with o(s) = 1. Indeed, My such that
(87 — Mg) € L}(0,00) can be approximated by initial data with (87 — Mo)
of compact support. Combining monotonicity properties of M’s and the L

contraction property, the desired pointwise convergence follows.

To prove the stability of steady states (3.4), we will interprete (1.5) as
a nonlinear Fokker—Planck type equation considered in {1}, and we will em-
ploy a family of Lyapunov functionals for the dynamical system associated
with (1.5)-(1.6), (1.8) in the L*(0, co)-metric.

"7
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Theorem 3.1 The function Wy(M) = [ wy(M(s,t)) ds, where the entropy

density wy is defined as

M 8r— M
(M) Mlog-ﬁ—l-—(Sfr—M)logm,

(3.5)
is finite for each M such that (M — M) € L'(0,00), My, < M < My, for
some by > b > by > 0. Moreover, this is nonincreasing along the trajectories
M(t) = M(.,t) of the dynamical system (1.5)-(1.6), (1.8)

dW;, 1 [

0
o _ 1
S5 A s M (8w M)ia (og

2
M 8 - M”) ds < 0. (3.6)

8r—M M,

This implies that if My is such that Wy(My) < oo and (Mo — M) € L1(0, 00)
for some b > 0, then lim, .o Wy(t) = 0, and therefore (by a Csiszdr-Kullback
type lemma)

Jim IM(t) — My|zr = 0.

Local attracting property of the stationary solutions M, is a rather weak
property. In particular, this does not give any information on the a,symptotic
behavior of solutions starting from data like, e.g., My(s) = 87 52— 5o Which
satisfy the relation Mz < My < M, but My — M, ¢ L*(0, 00) for any b > 0.
All this shows that the long time behavior of solutions in the critical case

may be extremely complicated and even chaotic. : O

Remark. The problem of the chemotaxis (1.1)—(1.4) in the whole plane in
the subcritical case M < 8m, without radial symmetry assumptions, has been
recently studied in [9]. In particular, the authors proved the global in time
existence of solutions using logarithmic Sobolev inequalities.

Using the approach via radially symmetric decreasing rearrangements in
(7] we might use the results here to give an alternative construction of global
in time solutions for M < 8w, and to give a flavor of the diversity of locally
attracting solutions for the problem without radial symmetry. Indeed, results
from [7} imply that, roughly speaking, the existence of solutions of (1.1)-(1.4)



is controlled by the existence of solutions to the radially symmetric problem
given by (1.5)-(1.6), (1.8) with the initial condition My obtained from the
radially symmetric decreasing rearrangement of ug.

4 Supercritical case in R

Let us recall some results from the preprint [11] (Theorems 2.7, 3.5, 4.4)
related to the supercritical case of equation (1.5) on (0,00), i.e. for M > 8r.

First, the classical solution of {1.5) (that possesses the second moment
— which was not explicitly stated in [11], ¢f. [3], [4]) blows up in a finite
time: there is 0 < T < oo such that lim; ~r M (s,t) > 8 for each s > C.
This means that the boundary condition at s = 0 is lost, M*(t) jumps to &
instantaneously at ¢t =T

Moreover, there exists a continuation of M, M € C®(0,00) x {0,00)),
past the blow up time T, satisfying (1.5), (1.6) for all £ > 0, and the quan-
tity M*(t) strictly increases for t > T. Such a global in time smooth so-
lution — a continuation of the classical solution for ¢ < T — is unique in
C*((0, 00) x (0, 00)), and satisfies lim; oo M(s,t) = M for each s > 0. More-
over, lim;_,oo M*(t) = M: the whole mass concentrates at the origin in the
infinite time, unlike the critical M=38rt (nontrivial steady states exist) and

subcritical cases M* < 87 (mass spreads to infinity).
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