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Abstract. We prove a version of the isoperimetric inequality for mappings with
remainder term Let $S$ $=(32\pi)^{1/3}$ and $Q(u)= \int_{\mathrm{R}^{2}}u\cdot u_{x_{1}}\Lambda uX2dx$ for a mapping
$u:\mathrm{R}^{2}arrow \mathrm{R}^{3}$ in afunction space $\overline{\mathcal{W}}$ defined below. Then the classical isoperimetric
inequality for mappings says that $S|Q(u)|^{2/3}\leq f_{\mathrm{R}^{2}}|\nabla u|^{2}dx$ holds for any $u\in\overline{\mathcal{W}}$ .
Let $\mathcal{M}$ be a manifold of functions in $\overline{\mathcal{W}}$ for which we have equality in the above
isoperimetric inequality.

Following an argument by Bianchi and Egnell [2] for the case of Sobolev ineq ual-
ity and using a crucial estimate proved by Isobe [8], we show that for some positive
constant $C>0$ ,

$J_{\mathrm{R}^{2}}^{[}|\nabla u|^{2}dx-S|Q(u)|^{2[3}\geq Cd(u, \mathrm{A}4)^{2}$

holds for any $u\in\overline{\mathcal{W}}$. Here $d(u, \mathcal{M})$ denotes the distance of $u$ from A4 in $\overline{\mathcal{W}}$ .

Keywords: Isoperimetric inequality for mappings; Non-degeneracy of critical
manifold; Concentration-Compactness Principle.

1. Introduction, The classical isoperimetric inequality on the Euclidean plane
says that among the simple closed plane curves of length L, circles (of arbitrary
center) have the largest enclosed area. Analytically, this fact is expressed as

$L^{2}\geq 4\pi A$

where L is the length of a simple closed curve C on the plane and A is the area
of the domain enclosed by C, and equality holds if and only if C is a circle. This
classical inequality is one of the most famous inequalities in the field of geom etric
analysis and now numerous proofs have been known.

On the other hand, the following version of isoperimetric inequality, called as
Bonnesen-style isoperimetric inequality ([11]) is probably less known than the usual
one. This has the form

$L^{2}-4\pi A\geq B$ ,

where the Bonnesen term B (sometimes called the “Bonus” term) is a nonnegative
quantity which reflects a geometry of the curve C and vanishes if and only if C is
a circle. Thus, Bonnesen-style isoperimetric inequality always implies the classical
isoperimetric inequality and, in some sense, the term B describes “the deviation of
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a given curve $C$ from a circl\"e. In an elegant expository paper [11], various forms
of the term $B$ are considered: for example, $B=(2\pi R-L)^{2}$ or $B=(\pi R^{2}-A)^{2}/R^{2}$

is known, where $R$ is a circumradius of a given curve $C$ .
Now classical isoperimetric inequality in $\mathrm{R}^{\mathrm{N}}$ states that

$N\omega_{N}^{1/N}Vol(B)^{(N-1)/N}\leq Area(\partial E)$

where $E\subseteq \mathrm{R}^{\mathrm{N}}$ is a Caccioppoli set, $\partial E$ denotes its boundary and $\omega_{N}$ is the volume
of the unit ball in $\mathrm{R}^{\mathrm{N}}$ .

Note that for an appropriate regular function $u$ : $\mathrm{R}^{2}arrow$ $\mathrm{R}^{3}$ ,

$V(u)= \frac{1}{3}\int_{\mathrm{R}^{2}}u$ .
$u_{x_{1}}$ A $u_{x_{2}}dx$

can be considered as “volume” of the set enclosed by the graph of $u$ and

$A(u)= \int_{\mathrm{R}^{2}}|u_{x_{1}}$ A $u_{x_{2}}|dx$

as “area” of the boundary of the set enclosed by the graph of $u$ . In these notations,
the isoperimetric inequality should be the following form:

$3\omega_{3}^{1/3}V(u)^{2/3}\leq A(u)$ , $3\omega_{3}^{1/3}=(36\pi)^{1/3}$ .

If $u$ is a conformal map, that is, $|u_{x_{1}}|^{2}-|u_{x_{2}}|^{2}=u_{x_{1}}\cdot u_{x_{2}}=0$ , then $A(u)$ is exactly
the usual Dirichlet integral

$D(u)= \frac{1}{2}\int_{\mathrm{R}^{2}}|\nabla u|^{2}dx$ .

Then by rewriting the constant, we obtain

$(32 \pi)^{1/3}|\int_{\mathrm{R}^{2}}u\cdot$
$u_{x_{1}}$ A $u_{x_{2}}dx|^{2/3} \leq\int_{\mathrm{R}^{2}}|\nabla u|^{2}dx$

for an appropriate mapping $u$ ffom $\mathrm{R}^{2}$ to $\mathrm{R}^{3}$ .
In this short note, we concern a sharp version of the classical isoperimetric in-

equality for mappings from $\mathrm{R}^{2}$ to $\mathrm{R}^{3}$ , which can be considered as a Bonnesen-style
isoperimetric inequality for mappings. Full details of the proofs omitted in this note
can be seen in [14].

2. Result. First, let us introduce the following function spaces:

$\mathcal{W}$ $:=$ $\{u\in L_{loc}^{1}(\mathrm{R}^{2};\mathrm{R}^{\mathrm{g}})$ : $I_{\mathrm{R}^{2}}| \nabla u|^{2}dx+\int_{\mathrm{R}^{2}}\frac{|u|^{2}}{(1+|x|^{2})^{2}}dx<\infty\}$ ,

$\overline{\mathcal{W}}$

$:=$ $\{u\in W$ . $\oint_{\mathrm{R}^{2}}\frac{u}{(1+|x|^{2})^{2}}dx=0\}$ .
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Let II : $\mathrm{S}^{2}arrow \mathrm{R}^{2}\mathrm{U}\{\infty\}$ denote the stereographic projection from the north pole
and let

$\Pi^{-1}(x_{1}, x_{2})=\frac{2}{1+|x|^{2}}$ $(\begin{array}{l}x_{1}x_{2}-1\end{array})$ $+$ $(\begin{array}{l}001\end{array})\in \mathrm{S}^{2}$

be its inverse, then the space $\mathcal{W}$ can be written as

$\mathcal{W}=\{u\in L_{lo\mathrm{c}}^{1}(\mathrm{R}^{2};\mathrm{R}^{3})$ : $u\circ$ fl $\in H^{1}(\mathrm{S}^{2}; \mathrm{R}^{3})\}$ .

Thus, identified $u$ as $u\circ\Pi$ , $\mathcal{W}$ is exactly the function space $H^{1}(\mathrm{S}^{2};\mathrm{R}^{3})$ and $\overline{\mathcal{W}}$

is a set of mappings in $H^{1}(\mathrm{S}^{2};\mathrm{R}^{3})$ with null average on the sphere. Note that by
Poincar6 inequality, $(u, v)_{\overline{\mathcal{W}}}:=$ JR2 $\nabla u\cdot$ $\nabla vdx$ defines a scalar product on $\overline{\mathcal{W}}$ . From
now on, we set $\overline{u}:=u-\frac{1}{\pi}f_{\mathrm{R}^{2}}\frac{u-}{(1+|x|^{\mathrm{Z}})^{2}}dx\in\overline{\mathcal{W}}$ for $u\in \mathcal{W}$ .

Let $Q$ denote the oriented volume functional

$Q(u):= \int_{\mathrm{R}^{2}}u$ .
$u_{x_{1}}$ A $u_{x_{2}}dx$

where $u_{x_{\mathrm{t}}}= \frac{\partial}{\partial x_{i}}u$ and A denotes the vector product in $\mathrm{R}^{3}$ .
The following inequality is referred to as the classical isoperimetric inequality for

mappings:
$S|Q(u)|^{2/3} \leq\int_{\mathrm{R}^{2}}|\nabla u|^{2}dx$ for $\forall u\in\overline{\mathcal{W}}$ . (1)

Here
$S$ $= \inf_{u\in\overline{\mathcal{W}},Q(u)\neq 0}\frac{\mathrm{I}_{\mathrm{R}^{2}}|\nabla u|^{2}dx}{|Q(u)|^{2/3}}=(32\pi)^{1/3}$

denotes the best (largest) possible value for which the classical isoperimetric inequal-
ity (1) holds true.

By simple calculation, we see the function $\overline{U_{\lambda.a}}\in\overline{\mathcal{W}}$ where

$U_{\lambda,a}(x)= \frac{2\lambda}{\lambda^{2}+|x-a|^{2}}$ $(\begin{array}{l}x_{1}-a_{1}x_{2}-a_{2}-\lambda\end{array})$ $+$ $(\begin{array}{l}00\mathrm{l}\end{array})$

attains the infimum value $S$ for any $\lambda>0$ and $a=(a_{1}, a_{2})\in \mathrm{R}^{2}$ . Furthermore, if
we set the 7-dimensional manifold

$\mathcal{M}:=\{c\overline{RU_{\lambda,a}}$ : $c\in \mathrm{R}\backslash \{0\}$ , $R\in SO$ (3), A $>0$ , $a\in \mathrm{R}^{2}\}\subset\overline{\mathcal{W}}\backslash \{\mathrm{O}\}$

where 50(3)= $\{R:3\mathrm{x}3\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}, R^{t}=R^{-}’,\det(R)=1\}$ , then by a classification
theorem of Brezis and Coron ([3] Lemma A. $\mathrm{I}$), we see that this manifold consists of
all mappings that achieve the best isoperimetric constant in (1):

$\mathcal{M}=\{u\in\overline{\mathcal{W}}\backslash \{0\}$ : $\int_{\mathrm{R}^{2}}|\nabla u|^{2}dx=S|Q(u)|^{2/3}\}$ .
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Geometrically this fact is clear: the extremal functions for (1) are the conformal
parameterizations of spheres of arbitrary radius and arbitrary center in $\mathrm{R}^{3}$ .

Now, main theorem in this note is the following.

Theorem. There exists a positive constant C $>0$ such that

$I_{\mathrm{R}^{2}}|\nabla u|^{2}dx-S|Q(u)|^{2/3}\geq Cd(u, \mathcal{M})^{2}$

holds for any $u\in\overline{\mathcal{W}}$. Here $d(u_{7}\mathcal{M})$ denotes the distance of zt from $\mathcal{M}$ in $\overline{w}_{\mathrm{i}}$

$d(u, \mathcal{M})=\inf\{||u-v||_{\overline{\mathcal{W}}} : v\in \mathcal{M}\}$ .

In the proof, we follow the argument of Bianchi-Egnell [2] and Bartsch-Weth-
Willem [1], in which the Sobolev inequality with remainder term was studied.

3. Key lemmas. Key ingredients in the proof of the theorem are the followings.

(1) Non-degeneracy of critical manifold (Isobe [8]).

(2) Relative compactness of the minimizing sequence for $S$ up to translation and
dilation.

On (1), we set a 6-dimensional submanifold in $\mathcal{M}$

$\mathcal{Z}:=\{\pm\overline{RU_{\lambda,a}}$ : $R\in SO$ (3), $\lambda>0$ , $a\in \mathrm{R}^{2}\}$ .

This is a manifold which consists of the conformal parameterizations of unit spheres
with null average.

Next lemma is equivalent to the fact that $\mathcal{Z}$ is a non-degenerate critical manifold
in $\overline{\mathcal{W}}$ of the energy functional

$E(u)= \frac{1}{2}\oint_{\mathrm{R}^{2}}|\nabla u|^{2}dx+\frac{2}{3}Q(u)$ , $u\in\overline{\mathcal{W}}$,

that is,
$T_{\overline{RU_{\lambda,a}}}\mathcal{Z}=\mathrm{k}\mathrm{e}\mathrm{r}D^{2}E(\overline{RU_{\lambda,a}})$

holds for any $\overline{RU_{\lambda,a}}\in$ Z. Here $T_{\overline{RU_{\lambda,a}}}\mathcal{Z}$ is a tangent space of $\mathcal{Z}$ at $\overline{RU_{\lambda,a}}$ identified
as the subspace of $\overline{\mathcal{W}}$ and is given explicitly as

$T_{\overline{RU_{\lambda,a}}} \mathcal{Z}=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{R\frac{\overline\partial U_{\lambda,a}}{\partial a_{i}}(i=1,2),R\frac{\overline\partial U_{\lambda,a}}{\partial\lambda},\overline{R\xi_{i}U_{\lambda,a}}(\mathrm{i}=1,2,3)_{2}\}$ ,

where $\langle\xi_{1},\xi_{2}, \xi_{3}\rangle$ is a basis of the Lie algebra of 50(3):

$\xi_{1}=(\begin{array}{lll}0 1 0-\mathrm{l} 0 00 0 0\end{array})$ , $\xi_{2}=($

0
0
-1

$000001)$ , $\xi_{3}=(\begin{array}{ll}00 000 10-1 0\end{array})$ .
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Lemma l.(Isobe) There exists a constant $C_{1}>0$ such that

$I_{\mathrm{R}^{2}}| \nabla\phi|^{2}dx+4\oint_{\mathrm{R}^{2}}\overline{RU_{\lambda,a}}\cdot$ $\phi_{x_{1}}$ A $\phi_{x_{2}}dx\geq C_{1}\int_{\mathrm{R}^{2}}|\nabla\phi|^{2}dx$

holds for any $\overline{RU_{\lambda,a}}\in\overline{\mathcal{W}}$ and any $\phi\in\overline{\mathcal{W}}$ with $\phi[perp] span\{\overline{RU_{\lambda,a}}\}\oplus T_{\overline{RU_{\lambda_{\rangle}a}}}\mathcal{Z}$ .

The non-degeneracy of the critical manifold is a key step in performing a vari-
ational perturbative method first introduced by A. Ambrosetti in the study of H-
system; see [5] and the reference therein. Also see [7] for an alternative proof.

On (2), Concentration-Compactness argument of P.- L.Lions ([9] [10]) applies to

$I= \inf\{-|Q(v)| : v\in\overline{\mathcal{W}}, \oint_{\mathrm{R}^{2}}|\nabla v|^{2}dx=1\}<0$,

thus we get the next lemma.

Lemma 2. Let $(u^{n})\subseteq\overline{\mathcal{W}}$ be any minimizing sequence for I. Then there exist
$a_{n}\in \mathrm{R}^{2}$ and $\lambda_{n}\in \mathrm{R}_{+}$ such that the new minimizing sequence defined by

$\tilde{u}^{n}(\cdot)=u^{n}(.\frac{-a_{n}}{\lambda_{n}})$

is relatively compact in W. In particular, there exists a minimizer for I in W.

Prom this lemma, we obtain the relative compactness of the minimizing sequence
for $S$ up to translation and dilation.

Note that one would apply the general Concentration-Compactness argument to
the minimization problem

$S= \inf\{I_{\mathrm{R}^{2}}|\nabla u|^{2}dx : u\in\overline{\mathcal{W}}, |Q(u)|=1\}$ .

However, since $u\cdot u_{x_{1}}$ A $u_{x_{2}}$ is not absolutely integrable on $\mathrm{R}^{2}$ for $u\in\overline{\mathcal{W}}$, we cannot
define $\mu(E)=|\int_{E}u\cdot$ $u_{x_{1}}$ A $u_{x_{2}}dx|$ for $E\subseteq \mathrm{R}^{2}$ as a probability measure on $\mathrm{R}^{2}$ .

In the proof of Lemma 2, the 2nd Concentration-Compactness Lemma (CCL $\mathrm{I}\mathrm{I}$)
for the best constant of the isoperimetric inequality ([13]) plays an important role.

Concentration-Compactness Lemma II for the isoperimetric inequality.

Let $(v^{n})\subseteq\overline{\mathcal{W}}$ satisfy the followings:

$\bullet$
$v^{n}arrow v^{0}$ weakly in $\overline{\mathcal{W}}$ for some $v_{f}^{0}$

$\bullet$ $|\nabla v^{n}|^{2}dxarrow\mu*$ weakly in $\mathcal{M}(\mathrm{R}^{2})$ , where $\mu$ is a nonnegative finite Radon rnea-
sure on $\mathrm{R}^{2}$ ,

$\bullet$ $T^{n}arrow T$ in $\prime D’(\mathrm{R}^{2})$ for some distribution $T$ , where $T^{n}\in D’(\mathrm{R}^{2})$ is defined as
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$T^{n}( \varphi)=\int_{\mathrm{R}^{2}}(\varphi v^{n})\cdot v_{x_{1}}^{n}\Lambda v_{x_{2}}^{n}dx$ , $\forall\varphi\in D(\mathrm{R}^{2})$ .

Then we have $T$ is a finite signed measure on $\mathrm{R}^{2}$ and there exist at most countable
set (possibly empty) $J$ , distinct points $\{x_{j}\}_{j\in J}\subset \mathrm{R}^{2}$ , nonnegative numbers $\{\mu_{j}\}_{j\in J}$ ,
real numbers $\{\nu_{j}\}_{j\in J}$ such that

(1)
$\mu\geq|\nabla v^{0}|^{2}dx+\sum_{\mathrm{j}\in J}\mu_{j}\delta_{x_{j}}$

,

(2)
$T=T^{0}+ \sum_{j\in J}\iota/_{j}\delta_{x_{j}}$

in $\prime D’(\mathrm{R}^{2})$ , there $T^{0}$ is defined as $T$ through $v^{0}$ ,

(3) $S|\nu_{j}|^{2/3}\leq\mu_{j}(j\in J)$ ,

(4) $S|T(\mathrm{R}^{2})|^{2/3}\leq\mu(\mathrm{R}^{2})$ ,

(5) If $v^{0}\equiv 0$ and $\mu(\mathrm{R}^{2})=S|T(\mathrm{R}^{2})|^{2/3}$ , then card{J) $=1$ and there exists some
$x_{0}$ in $\mathrm{R}^{2}$ such that $T=C\delta_{x_{0}}$ , $\mu^{=SC^{2/3}}\delta_{x_{0}}$ for some $C\in \mathrm{R}\backslash \{0\}$ .

Another proof of the relative compactness of the minimizing sequence for the
best isoperimetric constant (without using the general Concentration-Compactness
Principle) can be seen in [6] Lemma 1.1.

4. Outline of the proof of theorem. We set

$\Psi(u):=\frac{\int_{\mathrm{R}^{2}}|\nabla u|^{2}dx-S|Q(u)|^{2/3}}{d(u,\mathcal{M})^{2}}$ , $u\in(\overline{\mathcal{W}}\backslash \{0\})\backslash \mathcal{M}$ .

It is enough to show that $\Psi$ is bounded from below by some positive constant
independent of $u\in\overline{\mathcal{W}}$.

First, we consider the local behavior of $\Psi$ near $\mathrm{A}’${. By the non-degeneracy
inequality Lemma 1, we can prove

Lemma 3. There exists a positive constant $C_{2}>0$ such that

Jim $\inf_{\infty}\Psi(u_{n})\geq C_{2}$

holds true for any sequence $(u_{n})\subset(\overline{\mathcal{W}}\backslash \{0\})\backslash \mathcal{M}$, bounded away from 0 with
$d(u_{n}, \mathcal{M})arrow 0$ .

Now, we prove the theorem by contradiction.

Proof of the main theorem. Suppose the contrary. Then there exists a sequence
$(u_{n})\subset\overline{\mathcal{W}}\backslash \mathcal{M}$ , $u_{n}\neq 0$ satisfying $\lim_{narrow\infty}\Psi(u_{n})=0$ . We may assume $||u_{n}||_{\overline{\mathcal{W}}}=1$ by
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homogeneity of $\Psi$ , and by subtracting a subsequence if necessary, we may further
assume that $d(u_{n}, \mathcal{M})arrow L$ for some $L\in[0, 1+8\pi]$ .

If $L=0$ , we have a contradiction from Lemma 3. Hence $L>0$ . In particular,
we know

$I_{\mathrm{R}^{2}}|\nabla u_{n}|^{2}dx-S|Q(u_{n})|^{2/3}arrow 0$

as $narrow\infty$ . That is, $(u_{n})$ is a minimizing sequence of $S$ .
Then by the relative compactness of the minimizing sequence up to dilation and

translation, which is assured by Lemma 2, we can find a sequence $(\lambda_{n}, a_{n})\in \mathrm{R}_{+}\cross \mathrm{R}^{2}$

such that $v_{n}( \cdot):=u_{n}(.\frac{\overline-a}{\lambda_{n}})$ is a relatively compact minimizing sequence in $\overline{\mathcal{W}}$ .
Thus, by choosing a suitable subsequence again, we have $v_{n}arrow v$ in $\overline{\mathcal{W}}$ and $v$

satisfies $I_{\mathrm{R}^{2}}|\nabla v|^{2}dx=S|Q(v)|^{2/3}$ . Thus we have $v\in \mathcal{M}$ , therefore

$d(u_{n}, \mathcal{M})=d(v_{n},\mathcal{M})arrow 0_{?}$

which is a desired contradiction to the fact $L>0$ . $\square$
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