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Abstract. We prove a version of the isoperimetric inequality for mappings with
remainder term. Let S = (32m)Y/3 and Q(u) = [g2 U - Us, A Ug,dz for a mapping
u: R?2 — R3 in a function space W defined below. Then the classical isoperimetric
inequality for mappings says that S|Q(u)|*? < [g2|Vu|?dz holds for any u € W.
Let M be a manifold of functions in W for which we have equality in the above
isoperimetric inequality. .

Following an argument by Bianchi and Egnell [2] for the case of Sobolev inequal-
ity and using a crucial estimate proved by Isobe [8], we show that for some positive
constant C > 0,

[ |Vutde — S|Q)*? > Cd(u, M)?

Jr2
holds for any u € W. Here d(u, M) denotes the distance of u from M in W.

Keywords: Isoperimetric inequality for mappings; Non-degeneracy of critical
manifold; Concentration-Compactness Principle.

1. Introduction. The classical isoperimetric inequality on the Euclidean plane
says that among the simple closed plane curves of length L, circles (of arbitrary
center) have the largest enclosed area. Analytically, this fact is expressed as

L? > 4nA

where L is the length of a simple closed curve C on the plane and A is the area
of the domain enclosed by C, and equality holds if and only if C is a circle. This
classical inequality is one of the most famous inequalities in the field of geometric
analysis and now numerous proofs have been known.

On the other hand, the following version of isoperimetric inequality, called as
Bonnesen-style isoperimetric inequality ([11]) is probably less known than the usual
one. This has the form

L* — 4mA > B,

where the Bonnesen term B (sometimes called the “Bonus” term) is a nonnegative
quantity which reflects a geometry of the curve C and vanishes if and only if C is
a circle. Thus, Bonnesen-style isoperimetric inequality always implies the classical
isoperimetric inequality and, in some sense, the term B describes “the deviation of
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a given curve C from a circle”. In an elegant expository paper [11], various forms
of the term B are considered: for example, B = (2rR— L)? or B = (rR* — A)*/R?
is known, where R is a circumradius of a given curve C.

Now, classical isoperimetric inequality in RN states that

NNV ol(BYN-DIN < Area(DE)

where E C RN is a Caccioppoli set, OF denotes its boundary and wy is the volume
of the unit ball in RN,
Note that for an appropriate regular function u : R* — RS,

1
Viu) = gfmwum A Uy, dx
can be considered as “volume” of the set enclosed by the graph of u and
Alu) = /R Jttas A g, |d

as “area” of the boundary of the set enclosed by the graph of u. In these notations,
the isoperimetric inequality should be the following form:

3wV () < Alw), 3wy’ = (36m)3.

If u is a conformal map, that is, |y, |2 — |z, |* = Uy, - s, = 0, then A(u) is exactly
the usual Dirichlet integral

D(u) = _21-/32 |Vu|*dz.

Then by rewriting the constant, we obtain

2/3
(323 < [ Vulde
R2

/Rzu-ux1 A Uy, dz

for an appropriate mapping u from R? to R3.
In this short note, we concern a sharp version of the classical isoperimetric in-
equality for mappings from R? to R2, which can be considered as a Bonnesen-style

isoperimetric inequality for mappings. Full details of the proofs omitted in this note
can be seen in [14].

2. Result. First, let us introduce the following function spaces:
W = {u € L, (R%R3) : / \Vu|dz +/ —-ﬁbi——dx < o0
R? r? (14 |z]?)? ’

W = : -—u—-m—»- =
{UEW - (1_+lxl2)2dx 0}.
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Let IT: S2 — R? U {oo} denote the stereographic projection from the north pole

and let
9 Ty 0
Oz, 0 s?
(:El :1"2) 1 +l l2 x2 + . €

be its inverse, then the space W can be written as
W= {u€ L, (R*R®) :ucll € H'(S%R%)}.

Thus, identified u as u o II, W is exactly the function space H*(S* R?) and W
is a set of mappings in H 1(82 R3) with null average on the sphere. Note that by
Poincaré inequality, (u, v)w = [p2 Vu - Vudz defines a scalar product on W. From
now on, we set U 1= u — fRz———g—dwEWforuGW

Let @) denote the onented volume functional

Qu) = fRzu - Ug, N Uy, dT

where u,, = '6'8‘“ and A denotes the vector product in R2.
The followmg inequality is referred to as the classical isoperimetric inequality for

mappings:
S|Q(w)*? < [R [VuPdz for Vu € W. (1)
Here 2 [Vald
rz |Vul*dz
5= s Q@I
denotes the best (largest) possible value for which the classical isoperimetric inequal-

ity (1) holds true.
By simple calculation, we see the function Uya € W where

2\ T, — 4aq 0
Urale) = oo mar | 5% S

attains the infimum value S for any A > 0 and a = (a1, 62) € R?2. Furthermore, if
we set the 7-dimensional manifold

= (32m)'/®

M = {CRU)\,Q cce R\ {0},Re SO(3),A>0,a € Rz} c W\ {0}
where SO(3) = {R : 3 x 3matrix, R = R~!,det(R) = 1}, then by a classification

theorem of Brezis and Coron ([3] Lemma A.1), we see that this manifold consists of
all mappings that achieve the best isoperimetric constant in (1):

M= {u e W\ {0} : /R [Vupds = s;Q(u)|2/3} :
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Geometrically this fact is clear: the extremal functions for (1) are the conformal
parameterizations of spheres of arbitrary radius and arbitrary center in R®.
Now, main theorem in this note is the following.

Theorem. There exists a positive constant C > 0 such that
|, IVultde = SIQ@I* 2 Cd(u, M)’
R

holds for any u € W. Here d(u, M) denotes the distance of u from M in W;
d(u, M) = inf{||u — v|[s5 : v € M}.

In the proof, we follow the argument of Bianchi-Egnell [2] and Bartsch-Weth-
Willem [1], in which the Sobolev inequality with remainder term was studied.

3. Key lemmas. Key ingredients in the proof of the theorem are the followings.
(1) Non-degeneracy of critical manifold (Isobe [8]).

(2) Relative compactness of the minimizing sequence for S up to translation and
dilation.

On (1), we set a 6-dimensional submanifold in M
Z:={+RU,,: R€ SO(3),A > 0,a € R*}.

This is a manifold which consists of the conformal parameterizations of unit spheres
with null average.

_Next lemma is equivalent to the fact that Z is a non-degenerate critical manifold
in W of the energy functional

B) = 5 | IVuPdz + —g—Q(u), wew,

that is,
Tmz = ker DzE(RUA,a)

holds for any RU, , € Z. Here Tmz is a tangent space of Z at RU,, identified
as the subspace of W and is given explicitly as

aUA,a
ox '’

where ({1, &2, &3) is a basis of the Lie algebra of SO(3):

0 10 0 01 0 0 O
=] -100|,&=] 0 00},&=10 0 1].
0 00 -1 00 0 -1 0

Uy, ,. .
T .2 = span {R-—;ﬁ—@ =1,2), =52 REDRL(6 = 1,2,3), } ,



Lemma 1.(Isobe) There exists a constant Cy; > 0 such that
2 BT 2
[, \VoPdo+4 [ RS- 6o Abundo 2 C1 [ [V6Pde

holds for any RUx, € W and any ¢ € W with ¢ L span{RU».} & T2,

The non-degeneracy of the critical manifold is a key step in performing a vari-
ational perturbative method first introduced by A. Ambrosetti in the study of H-
system; see [5] and the reference therein. Also see [7} for an alternative proof.

On (2), Concentration-Compactness argument of P.- L.Lions ([9] [10]) applies to
I = inf{-|Q()] : v e W, /R [Vo'de =1} <0,
thus we get the next lemma.

Lemma 2. Let (u™) C W be any minimizing sequence for I. Then there exist
a, € R? and M\, € R such that the new minimizing sequence defined by

.—»«an

)

@) =

is relatively compact in W. In particular, there exists a minimizer for I in W.

From this lemma, we obtain the relative compactness of the minimizing sequence
for S up to translation and dilation.

Note that one would apply the general Concentration-Compactness argument to
the minimization problem

S= inf{fR2 |Vul|?dz : v e W, |Q(u)| = 1}.

However, since @ - g, A g, 18 not absolutely integrable on R? for u € W, we cannot
define 4(E) = | [g - Ug, A ug,dz| for E C R? as a probability measure on R

In the proof of Lemma 2, the 2nd Concentration-Compactness Lemma (CCL II)
for the best constant of the isoperimetric inequality ([13]) plays an important role.

Concentration-Compactness Lemma II for the isoperimetric inequality.

Let (v™) C W satisfy the followings:

0
)

o v" — ® weakly in W for some v

o |Vu"|2dz > p weakly in M(R?), where p is a nonnegative finite Radon mea-
sure on R?,

o T" = T in D'(R?) for some distribution T', where T™ € D'(R?) is defined as

117
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() = [ (ov") v, Ailda, Vo € D(R?).

Then we have T is a finite signed measure on R? and there exist at most countable
set (possibly empty) J, distinct points {z;};e; C R?, nonnegative numbers {i;};e,
real numbers {v;};e; such that

(1) 5> (Voo + Y,
jed
(2) T=T°+> v;6,, in D'(R?), where T is defined as T through °,
ieJ

(3) Sl < i (5 € J),
(4) SIT(R*)*® < u(R2),
(5) If v° = 0 and u(R?) = S|T(R?)[¥3, then card(J) = 1 and there ezists some

zg in R? such that T = C8,y, i = SC¥35,, for some C € R\ {0}.

Another proof of the relative compactness of the minimizing sequence for the
best isoperimetric constant (without using the general Concentration-Compactness
Principle) can be seen in [6] Lemma 1.1.

4. Outline of the proof of theorem. We set

_ Jrs [Vul’de — S|Q(u)f

T(u) : oW , ue (W\{0H \ M.

It is enough to show that ¥ is bounded from below by some positive constant
" independent of u € W.
First, we consider the local behavior of ¥ near M. By the non-degeneracy
inequality Lemma 1, we can prove

Lemma 3. There exists a positive constant Cy > 0 such that

lim jnf ¥(u,) > C,

holds true for any sequence (u,) C (W\ {0}) \ M, bounded away from 0 with
d(tn, M) = 0.

Now, we prove the theorem by contradiction.

Proof of the main theorem. Suppose the contrary. Then there exists a sequence
(un) C WA\M, u,, # 0 satisfying lim, o ¥(u,) = 0. We may assume lunlly = 1 by



homogeneity of ¥, and by subtracting a subsequence if necessary, we may further
assume that d(u,, M) — L for some L € [0,1 + 8x].

If L = 0, we have a contradiction from Lemma 3. Hence L > 0. In particular,
we know

[, [Vunfdz - S1Q(a) P = 0

as n — oo. That is, (u,) is a minimizing sequence of S.

Then by the relative compactness of the minimizing sequence up to dilation and
translation, which is assured by Lemma 2, we can find a sequence (A, a,) € Ry xR?
such that v,(-) == un(—Jh) is a relatively compact minimizing sequence in W.

Thus, by choosing a suitable subsequence again, we have v, — v in W and v
satisfies [ra |Vv|?dz = S|Q(v)|*3. Thus we have v € M, therefore

d(ty, M) = d(v,, M) = 0,

which is a desired contradiction to the fact L > 0. O
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