Optimal non-projective ternary linear codes

Mito Takenaka^a(竹中みと), Kei Okamoto^b(岡本けい), Tatsuya Maruta^b (丸田辰哉)

*Department of Applied Mathematics
Osaka Women's University
(大阪女子大学大学院 理学研究科)

b Department of Mathematics and Information Sciences
Osaka Prefecture University
(大阪府立大学大学院 理学系研究科)

Abstract

We prove the existence of a $[406, 6, 270]_3$ code and the nonexistence of linear codes with parameters $[458, 6, 304]_3$, $[467, 6, 310]_3$, $[471, 6, 313]_3$, $[522, 6, 347]_3$. These yield that $n_3(6,d) = g_3(6,d)$ for $268 \le d \le 270$, $n_3(6,d) = g_3(6,d) + 1$ for $d \in \{280 - 282, 304 - 306, 313 - 315, 347, 348\}$, $n_3(6,d) = g_3(6,d)$ or $g_3(6,d) + 1$ for $298 \le d \le 301$ and $n_3(6,d) = g_3(6,d) + 1$ or $g_3(6,d) + 2$ for $310 \le d \le 312$, where $n_q(k,d)$ denotes the minimum length n for which an $[n,k,d]_q$ code exists and $g_q(k,d) = \sum_{i=0}^{k-1} \left[d/q^i\right]$.

1. Introduction

Let V(n,q) denote the vector space of n-tuples over $\mathrm{GF}(q)$, the Galois field of order q. A q-ary linear code \mathcal{C} of length n and dimension k is a k-dimensional subspace of V(n,q). The Hamming distance $d(\boldsymbol{x}, \boldsymbol{y})$ between two vectors $\boldsymbol{x}, \boldsymbol{y} \in V(n,q)$ is the number of nonzero coordinate positions in $\boldsymbol{x}-\boldsymbol{y}$. Now the minimum distance of a linear code \mathcal{C} is defined by $d(\mathcal{C}) = \min\{d(\boldsymbol{x},\boldsymbol{y}) \mid \boldsymbol{x},\boldsymbol{y} \in \mathcal{C}, \ \boldsymbol{x} \neq \boldsymbol{y}\}$ which is equal to the minimum weight of \mathcal{C} defined by $wt(\mathcal{C}) = \min\{wt(\boldsymbol{x}) \mid \boldsymbol{x} \in \mathcal{C}, \ \boldsymbol{x} \neq \boldsymbol{0}\}$, where $\boldsymbol{0}$ is the all-0-vector and $wt(\boldsymbol{x}) = d(\boldsymbol{x},\boldsymbol{0})$ is the weight of \boldsymbol{x} . A q-ary linear code of length n, dimension k and minimum distance d is referred to as an $[n,k,d]_q$ code. The weight distribution of \mathcal{C} is the

list of numbers A_i which is the number of codewords of \mathcal{C} with weight i. A $k \times n$ matrix having as rows the vectors of a basis of \mathcal{C} is called a generator matrix of \mathcal{C} .

A fundamental problem in coding theory is to find $n_q(k,d)$, the minimum length n for which an $[n,k,d]_q$ code exists ([13]). An $[n,k,d]_q$ code is called *optimal* if $n=n_q(k,d)$. There is a natural lower bound on $n_q(k,d)$, the so-called Griesmer bound ([8],[25]):

$$n_q(k,d) \ge g_q(k,d) = \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil,$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x. The values of $n_q(k,d)$ are determined for all d only for some small values of q and k. For ternary linear codes, $n_3(k,d)$ is known for $k \leq 5$ for all d. As for the case k = 6, the value of $n_3(6,d)$ is unknown for many integers d ([1],[4],[5],[9],[10], [17],[20],[22]). See [2] or [24] for the updated table of $n_q(k,d)$ for some small q. A linear code $\mathcal C$ with a generator matrix G is called *projective* if any two columns of G are independent, equivalently, if the dual code of $\mathcal C$ has the minimum distance > 2.

We concentrate ourselves to find optimal ternary linear codes of dimension 6 with the minimum distance d > 243, which are necessarily non-projective. For $d \ge 244$, it is only known ([20]) that $n_3(6,d) = g_3(6,d) + 1$ for $349 \le d \le 351$ and that $n_3(6,d) = g_3(6,d)$ for $d \ge 352$. The existence of an $[n_1, k, d_1]_q$ code and an $[n_2, k, d_2]_q$ code trivially implies the existence of an $[n_1 + n_2, k, d_1 + d_2]_3$ code. For example, one can get a $[372, 6, 246]_3$ code from a $[56, 6, 36]_3$ code and a $[316, 6, 210]_3$ code. Similarly one can get $[g_3(6,d), 6, d]_3$ codes for $d \in \{244 - 252, 271 - 279, 322 - 330, 334 - 336\}$, $[g_3(6,d) + 1, 6, d]_3$ codes for $d \in \{253 - 270, 331 - 333, 337 - 351\}$ and $[g_3(6,d) + 2, 6, d]_3$ codes for $280 \le d \le 315$ from the known $n_3(6,d)$ table. We also have $[g_3(6,d), 6, d]_3$ codes for $316 \le d \le 321$ by Theorem 2.1 in [13] and a $[474, 6, 315]_3$ code by Theorem 4.5 in [12] from a $[158, 5, 105]_3$ code. On the other hand, the nonexistence of $[n, 5, d]_3$ codes for $(n, d) \in \{(143, 94), (144, 95), (145, 96), (147, 97), (148, 98), (149, 99)\}$ implies $n_3(6,d) \ge g_3(6,d) + 1$ for $280 \le d \le 297$, for the residual code (see [13]) of each $[g_3(6,d), 6, d]_3$ code with respect to a codeword with weight d can not exist. Hence we obtain the following.

Theorem 1.1.

- (1) $n_3(6, d) = g_3(6, d)$ for $d \in \{244 252, 271 279, 316 330, 334 336\}$ and for $d \ge 352$.
- (2) $n_3(6,d) = g_3(6,d) + 1$ for $349 \le d \le 351$.
- (3) $n_3(6,d) = g_3(6,d)$ or $g_3(6,d) + 1$ for $d \in \{253 270, 313 315, 331 333, 337 348\}$.
- (4) $n_3(6,d) = g_3(6,d) + 1$ or $g_3(6,d) + 2$ for $280 \le d \le 297$.
- (5) $g_3(6,d) \le n_3(6,d) \le g_3(6,d) + 2$ for $298 \le d \le 312$.

We improve Theorem 1.1 for $d \in \{268 - 270, 280 - 282, 298 - 301, 304 - 306, 310 - 315, 347, 348\}$ as follows.

Theorem 1.2. (1) $n_3(6, d) = g_3(6, d)$ for $268 \le d \le 270$.

- (2) $n_3(6,d) = g_3(6,d) + 1$ for $d \in \{280 282, 304 306, 313 315, 347, 348\}$.
- (3) $n_3(6, d) = g_3(6, d)$ or $g_3(6, d) + 1$ for $298 \le d \le 301$.
- (4) $n_3(6, d) = g_3(6, d) + 1$ or $g_3(6, d) + 2$ for $310 \le d \le 312$.

To prove Theorem 1.2, we need to show the following theorems.

Theorem 1.3. There exist a $[406, 6, 270]_3$ code.

Theorem 1.4. There exists no $[g_3(6,d), 6, d]_3$ code for d = 304, 310, 313, 347.

We prove Theorem 1.4 in Section 4 and Theorems 1.3 and 1.2 in Section 5.

2. Preliminaries

We denote by PG(r,q) the projective geometry of dimension r over GF(q). A j-flat is a projective subspace of dimension j in PG(r,q). 0-flats, 1-flats, 2-flats, 3-flats, (r-2)-flats and (r-1)-flats are called points, lines, planes, solids, secundums and hyperplanes respectively. We denote by \mathcal{F}_j the set of j-flats of PG(r,q) and denote by θ_j the number of points in a j-flat, i.e.

$$\theta_j = (q^{j+1} - 1)/(q - 1).$$

Let \mathcal{C} be an $[n,k,d]_q$ code which does not have any coordinate position in which all the codewords have a zero entry. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma = \mathrm{PG}(k-1,q)$ denoted also by \mathcal{C} . We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in \mathcal{C} . Denote by γ_0 the maximum multiplicity of a point from Σ in \mathcal{C} and let C_i be the set of i-points in Σ , $0 \le i \le \gamma_0$. For any subset S of Σ we define the multiplicity of S with respect to \mathcal{C} , denoted by $m_{\mathcal{C}}(S)$, as

$$m_{\mathcal{C}}(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|,$$

where |T| denotes the number of points in T for a subset T of Σ . When the code is projective, i.e. when $\gamma_0 = 1$, the multiset \mathcal{C} forms an n-set in Σ and the above $m_{\mathcal{C}}(S)$ is equal to $|\mathcal{C} \cap S|$. A line l with $t = m_{\mathcal{C}}(l)$ is called a t-line. A t-plane, a t-solid and so on are defined similarly. Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ such that

$$n = m_{\mathcal{C}}(\Sigma),$$

$$n - d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\}.$$

Conversely such a partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ as above gives an $[n,k,d]_q$ code in the natural manner. For an m-flat Π in Σ we define

$$\gamma_j(\Pi) = max\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \ \Delta \in \mathcal{F}_j\}, \ 0 \le j \le m.$$

We denote simply by γ_j instead of $\gamma_j(\Sigma)$. Clearly we have $\gamma_{k-2} = n - d$, $\gamma_{k-1} = n$.

Lemma 2.1 ([22]). (1) Let Π be an (s-1)-flat in Σ , $2 \le s \le k-1$, with $m_{\mathcal{C}}(\Pi) = w$. For any (s-2)-flat δ in Π , we have

$$m_{\mathcal{C}}(\delta) \le \gamma_{s-1} - \frac{n-w}{\theta_{k-s}-1}.$$

In particular for $0 \le j \le k-3$,

$$\gamma_j \le \gamma_{j+1} - \frac{n - \gamma_{j+1}}{\theta_{k-2-j} - 1}.$$

(2) Let δ_1 and δ_2 be distinct t-flats in a fixed (t+1)-flat Δ in Σ , $1 \le t \le k-2$. Then $m_{\mathcal{C}}(\delta_1) + m_{\mathcal{C}}(\delta_2) \ge m_{\mathcal{C}}(\Delta) - (q-1)\gamma_t + q \cdot m_{\mathcal{C}}(\delta_1 \cap \delta_2).$

When C attains the Griesmer bound, γ_j 's are uniquely determined as follows.

Lemma 2.2 ([19]). Let C be an $[n, k, d]_q$ code attaining the Griesmer bound. Then it holds that

$$\gamma_j = \sum_{u=0}^j \left\lceil \frac{d}{q^{k-1-u}} \right\rceil \text{ for } 0 \le j \le k-1.$$

By Lemma 2.2 every $[n, k, d]_q$ code attaining the Griesmer bound is projective if $d \leq q^{k-1}$. Denote by a_i the number of hyperplanes Π in Σ with $m_{\mathcal{C}}(\Pi) = i$ and by λ_s the number of s-points in Σ . Note that we have $\lambda_2 = \lambda_0 + n - \theta_{k-1}$ when $\gamma_0 = 2$. The list of a_i 's is called the spectrum of \mathcal{C} . Simple counting arguments yield the following.

Lemma 2.3. (1)
$$\sum_{i=0}^{\gamma_{k-2}} a_i = \theta_{k-1}$$
. (2) $\sum_{i=1}^{\gamma_{k-2}} i a_i = n \theta_{k-2}$.
(3) $\sum_{i=2}^{\gamma_{k-2}} i(i-1)a_i = n(n-1)\theta_{k-3} + q^{k-2} \sum_{s=2}^{\gamma_0} s(s-1)\lambda_s$.

Lemma 2.4 ([22]). Let Π be an i-hyperplane through a t-secundum δ with $t = \gamma_{k-3}(\Pi)$. Then

(1)
$$t \le \gamma_{k-2} - \frac{n-i}{q} = \frac{i + q\gamma_{k-2} - n}{q}$$
.

(2) $a_i = 0$ if an $[i, k-1, d_0]_q$ code with $d_0 \ge i - \left\lfloor \frac{i + q\gamma_{k-2} - n}{q} \right\rfloor$ does not exist, where $\lfloor x \rfloor$ denotes the largest integer less than or equal to x.

(3)
$$t = \left[\frac{i + q\gamma_{k-2} - n}{q}\right]$$
 if an $[i, k-1, d_1]_q$ code with $d_1 \ge i - \left[\frac{i + q\gamma_{k-2} - n}{q}\right] + 1$ does not exist.

(4) Let c_j be the number of j-hyperplanes through δ other than Π . Then the following equality holds:

$$\sum_{j} (\gamma_{k-2} - j)c_j = i + q\gamma_{k-2} - n - qt.$$
 (2.1)

(5) For a γ_{k-2} -hyperplane Π_0 with spectrum $(\tau_0, \dots, \tau_{\gamma_3}), \tau_t > 0$ holds if $i+q\gamma_{k-2}-n-qt < q$.

The code obtained by deleting the same coordinate from each codeword of \mathcal{C} is called a punctured code of \mathcal{C} . If there exists an $[n+1,k,d+1]_q$ code \mathcal{C}' which gives \mathcal{C} as a punctured code, \mathcal{C} is called extendable (to \mathcal{C}') and \mathcal{C}' is an extension of \mathcal{C} .

Let C be an $[n, k, d]_q$ code with $k \geq 3$, gcd(q, d) = 1. Define

$$\Phi_0 = \frac{1}{q-1} \sum_{q \mid i, i \neq 0} A_i, \quad \Phi_1 = \frac{1}{q-1} \sum_{i \not\equiv 0, d \pmod{q}} A_i,$$

where the notation x|y means that x is a divisor of y. The pair (Φ_0, Φ_1) is called the diversity of \mathcal{C} ([21]).

Theorem 2.5 ([14]). Let C be an $[n, k, d]_q$ code with diversity (Φ_0, Φ_1) , gcd(q, d) = 1, $k \geq 3$. Then C is extendable if $\Phi_1 = 0$.

See [23] for the extendability of ternary linear codes in detail. Note that $a_i = A_{n-i}/(q-1)$ for $0 \le i \le \gamma_{k-2}$. Hence the above diversity is given as

$$\Phi_0 = \sum_{i \equiv n \pmod{3}} a_i, \quad \Phi_1 = \sum_{i \not\equiv n, n-d \pmod{3}} a_i.$$

The following is known as the Ward's divisibility theorem.

Theorem 2.6 ([26]). Let C be an $[n, k, d]_p$ code, p a prime, attaining the Griesmer bound. If $p^e|d$, then p^e is a divisor of all nonzero weights of C.

3. The spectra of some ternary linear codes of dimension $k \leq 5$

We supply the results about the possibilities of spectra for some ternary linear codes of dimension $k \leq 5$ which we need to prove Theorem 1.4 in the next section.

An f-set F in PG(r,q) satisfying

$$m = \min\{|F \cap \pi| \mid \pi \in \mathcal{F}_{r-1}\}\$$

is called an $\{f, m; r, q\}$ -minihyper. When an $[n, k, d]_q$ code is projective (i.e. $\gamma_0 = 1$), the set of 0-points C_0 forms a $\{\theta_{k-1}-n,\theta_{k-2}-(n-d);k-1,q\}$ -minihyper, where $\theta_j=0$ $(q^{j+1}-1)/(q-1)$. The following lemma can be obtained from the classification of some minihypers by Hamada [11].

Lemma 3.1. (1) The spectrum of a $[80, 5, 53]_3$ code is $(a_0, a_{26}, a_{27}) = (1, 40, 80)$.

- (2) The spectrum of a $[81, 5, 54]_3$ code is $(a_0, a_{27}) = (1, 120)$.
- (3) The spectrum of a $[104, 5, 69]_3$ code is $(a_{26}, a_{32}, a_{35}) = (4, 13, 104)$.
- (4) The spectrum of a $[107, 5, 71]_3$ code is $(a_{26}, a_{27}, a_{35}, a_{36}) = (1, 3, 39, 78)$.
- (5) The spectrum of a $[108, 5, 72]_3$ code is $(a_{27}, a_{36}) = (4, 117)$.
- (6) The spectrum of a $[113, 5, 75]_3$ code is $(a_{32}, a_{35}, a_{38}) = (1, 24, 96)$.
- (7) The spectrum of a $[116, 5, 77]_3$ code is $(a_{35}, a_{36}, a_{38}, a_{39}) = (4, 9, 36, 72)$.
- (8) The spectrum of a $[117, 5, 78]_3$ code is $(a_{36}, a_{39}) = (13, 108)$.

Since a $[\theta_{k-1} - e, k, q^{k-1} - e]_3$ code $(0 \le e \le 2)$ is projective, the set of 0-points C_0 consists of e points. Hence the following lemma follows.

Lemma 3.2. Assume $k \geq 3$ and put $u = \theta_{k-2}$.

(1) The spectrum of a $[\theta_{k-1} - 2, k, q^{k-1} - 2]_3$ code is

$$(a_{u-2}, a_{u-1}, a_u) = (\theta_{k-3}, (\theta_{k-1} - \theta_{k-3})/2, (\theta_{k-1} - \theta_{k-3})/2).$$

- (2) The spectrum of a $[\theta_{k-1} 1, k, q^{k-1} 1]_3$ code is $(a_{u-1}, a_u) = (\theta_{k-2}, q^{k-1})$. (3) The spectrum of a $[\theta_{k-1}, k, q^{k-1}]_3$ code is $a_u = \theta_{k-1}$.

The following lemma relies upon the classification of some optimal ternary linear codes of small length by van Eupen and Lisonek [7].

Lemma 3.3 ([7]). (1) The spectrum of a $[8,3,5]_3$ code is $(a_0,a_2,a_3)=(1,4,8)$.

- (2) The spectrum of a $[9,3,6]_3$ code is $(a_0,a_3)=(1,12)$.
- (3) The spectrum of a $[14, 3, 9]_3$ code is either $(a_4, a_5) = (9, 4)$, $(a_2, a_5) = (3, 10)$ or $(a_3, a_4, a_5) = (3, 3, 7).$
- (4) The spectrum of a [18, 3, 12]₃ code is $(a_0, a_6) = (1, 12)$ or $(a_3, a_6) = (2, 11)$.

- (5) The spectrum of a $[20, 3, 13]_3$ code satisfies $a_i = 0$ for all $i \notin \{2, 3, 4, 5, 6, 7\}$.
- (6) The spectrum of a $[10, 4, 6]_3$ code is $(a_1, a_4) = (10, 30)$.
- (7) The spectrum of a $[19, 4, 12]_3$ code is $(a_1, a_4, a_7) = (1, 9, 30)$.
- (8) The spectrum of a $[27, 4, 35]_3$ code is $(a_0, a_9) = (1, 39)$.
- (9) The spectrum of a $[32, 4, 21]_3$ code is $(a_8, a_{13}) = (8, 32)$.
- (10) The spectrum of a $[35, 4, 23]_3$ code is $(a_8, a_9, a_{11}, a_{12}) = (1, 3, 12, 24)$.
- (11) The spectrum of a $[36, 4, 24]_3$ code is $(a_9, a_{12}) = (4, 36)$.

Lemma 3.4. The spectrum of a [41, 4, 27]₃ code satisfies $a_i = 0$ for all $i \notin \{11, 12, 13, 14\}$.

Lemma 3.5. (1) The spectrum of a [52, 4, 34]₃ code satisfies

$$a_i = 0 \text{ for all } i \notin \{0, 7, 8, 9, 16, 17, 18\}.$$

- (2) The spectrum of a $[53, 4, 35]_3$ code is one of the following:
- (a) $(a_0, a_{17}, a_{18}) = (1, 13, 26)$, (b) $(a_8, a_9, a_{17}, a_{18}) = (1, 1, 12, 26)$, (c) $(a_9, a_{17}, a_{18}) = (2, 13, 25)$.

Lemma 3.6. The spectrum of a $[59, 4, 39]_3$ code satisfies $a_i = 0$ for all $i \notin \{8, 11, 14, 17, 20\}$.

Lemma 3.7. The spectrum of a [122, 5, 81]₃ code satisfies $a_i = 0$ for all $i \notin \{38, 39, 40, 41\}$.

The following lemma is due to Landjev [18].

Lemma 3.8 ([18]). (1) The spectrum of a $[50, 4, 33]_3$ code is one of the following:

- (a) $(a_8, a_{14}, a_{17}) = (2, 4, 34)$, (b) $(a_{11}, a_{14}, a_{17}) = (2, 6, 32)$, (c) $(a_{14}, a_{17}) = (11, 30)$.
- (2) Every $[49, 4, 32]_3$ code is extendable, so $a_i = 0$ for all $i \notin \{7, 8, 10, 11, 13, 14, 16, 17\}$.

Lemma 3.9. The spectrum of a [154, 5, 102]₃ code satisfies $a_i = 0$ for all $i \notin \{25, 46, 49, 52\}$.

Lemma 3.10. (1) The spectrum of a $[158, 5, 105]_3$ code is $(a_{26}, a_{50}, a_{53}) = (2, 13, 106)$.

(2) Every [157, 5, 104]₃ code is extendable.

We omit the proof of Lemmas 3.1-3.10 here.

Lemma 3.11. (1) The spectrum of a [176, 5, 117]₃ code is either

- (a) $(a_{32}, a_{50}, a_{59}) = (1, 8, 112)$ or
- (b) $(a_{41}, a_{50}, a_{59}) = (a, 11 2a, 110 + a)$ for some a with $0 \le a \le 5$.
- (2) Every [175, 5, 116]₃ code is extendable.

Proof. (1) See [20].

(2) Let C be a $[175, 5, 116]_3$ code. Then γ_3 -solid has no j-solid for j < 8 by Lemma 3.6, so $a_i = 0$ for all i < 22 by Lemma 2.1. Hence, by Lemma 2.4, we have

$$a_i = 0$$
 for all $i \notin \{31, 32, 40, 41, 49, 50, 58, 59\},$

which implies that C is extendable by Theorem 2.5.

4. Proof of Theorem 1.4

Theorem 4.1. There exists no [458, 6, 304]₃ code.

Proof. Let C be a $[458, 6, 304]_3$ code. Then a γ_4 -hyperplane has no j-solid for j < 25 by Lemma 3.9, so $a_i = 0$ for all i < 71 by Lemma 2.1. Hence

 $a_i = 0$ for all $i \notin \{80, 81, 104, 107, 108, 113, 116, 117, 119 - 122, 134, 135, 136, 152, 153, 154\}.$

by Lemma 2.4. Now, let Π be a 104-hyperplane. Then the spectrum of Π is $(\tau_{26}, \tau_{32}, \tau_{35}) = (4, 13, 104)$ by Lemma 3.1(3), which contradicts Lemma 3.9 (a γ_4 -hyperplane has no j-solid for j = 26, 32, 35). Hence $a_{104} = 0$. Similarly, we get $a_{107} = a_{108} = a_{113} = a_{122} = 0$ by Lemmas 3.1(4)(5)(6), 3.7, 3.9. Hence

$$a_i = 0$$
 for all $i \notin \{80, 81, 116, 117, 119 - 121, 134 - 136, 152 - 154\}.$

Next, let Π_0 be a 154-hyperplane. Since (2.1) with i=154 has no solution for t=25 and for t=49, the spectrum of Π_0 satisfies $a_i=0$ for all $i \notin \{46,52\}$ by Lemma 3.9. Let Δ be a 52-solid in Π_0 . Applying Lemma 2.4 to Π_0 , (2.1) with i=52 has no solution for t=0,7,8,9,17. Hence the spectrum of Δ satisfies $a_i=0$ for all $i \notin \{16,18\}$ by Lemma 3.5(1). Let δ be a 16-plane in Δ . Applying Lemma 2.4 to Δ , (2.1) with i=16 has no solution for t=0,1,2,3,5. Hence the spectrum of δ satisfies $a_i=0$ for all $i \notin \{4,6\}$. But there exists no $[16,3,10]_3$ code with such spectrum (see [7]), a contradiction. This completes the proof.

Theorem 4.2. There exists no $[467, 6, 310]_3$ code.

Proof. Let C be a $[467, 6, 310]_3$ code. Then a γ_4 -hyperplane has no j-solid for j < 25 by Lemma 3.10, so $a_i = 0$ for all i < 71 by Lemma 2.1. Hence

$$a_i = 0$$
 for all $i \notin \{74, 80, 81, 104, 107, 108, 113, 116, 117, 119 - 122, 146, 152 - 157\}$

by Lemma 2.4. Let Π be a 108-hyperplane. Then the spectrum of Π is $(\tau_{27}, \tau_{36}) = (4, 117)$ by Lemma 3.1(5), which contradicts Lemma 3.10 (a γ_4 -hyperplane has no 27- nor 36-solid).

Hence $a_{108} = 0$. Similarly, we get $a_{81} = a_{113} = a_{116} = a_{117} = a_{119} = a_{120} = a_{121} = a_{122} = 0$ by Lemmas 3.1(2)(6)(7)(8), 3.2, 3.7, 3.10. Hence

$$a_i = 0$$
 for all $i \notin \{74, 80, 104, 107, 146, 152 - 157\}.$

Suppose $a_{80} > 0$ and let Π be a 80-hyperplane. Setting (i,t) = (80,27), (2.1) has no solution since $c_{157} = 0$ (a 157-hyperplane has no 27-solid), which contradicts the spectrum of Π (Lemma 3.1(1)). Hence $a_{80} = 0$. Similarly we get $a_{104} = a_{107} = 0$ by Lemmas 2.1, 2.4, 3.1(3)(4). Hence

$$a_i = 0$$
 for all $i \notin \{74, 146, 152 - 157\}.$

Now, let Π_0 be a 157-hyperplane with the spectrum $(\tau_{25}, \tau_{26}, \dots, \tau_{53})$. Then $\tau_{25} + \tau_{26} = 2$ by Lemma 3.10. Since all the solutions of (2.1) for i = 157 are $(c_{74}, c_{154}, c_{157}) = (1,1,1)$ or $(c_{74}, c_{155}, c_{156}) = (1,1,1)$ for t = 25; $(c_{74}, c_{157}) = (1,2)$ for t = 26, and so on, we obtain

$$a_{74} \ge \tau_{25} + \tau_{26} = 2.$$

On the other hand, it holds that $a_{74} \leq 1$ by Lemma 2.1, a contradiction. This completes the proof.

Theorem 4.3. There exists no [471, 6, 313]₃ code.

Proof. Let C be a $[471, 6, 313]_3$ code. Then a γ_4 -hyperplane has no j-solid for j < 26 by Lemma 3.10(1), so $a_i = 0$ for all i < 75 by Lemma 2.1. Hence

$$a_i = 0$$
 for all $i \notin \{81, 108, 117, 120, 121, 156 - 158\}$

by Lemma 2.4. Now, let Π be a 158-hyperplane. Then the spectrum of Π is $(\tau_{26}, \tau_{50}, \tau_{53}) = (2, 13, 106)$ by Lemma 3.10(1), but (2.1) has no solution for (i, t) = (158, 50), a contradiction. This completes the proof.

Theorem 4.4. There exists no $[522, 6, 347]_3$ code.

Proof. Let C be a $[522, 6, 347]_3$ code. Then a γ_4 -hyperplane has no j-solid for j < 31 by Lemma 3.11, so $a_i = 0$ for all i < 90 by Lemma 2.1. Hence

$$a_i = 0$$
 for all $i \notin \{90, 91, 108, 117 - 122, 162, 171, 172, 174, 175\},$

by Lemma 2.4. Let Π be a γ_4 -hyperplane. Then (2.1) for i=175 has no solution for t=49, 50, which contradicts that the spectrum of Π satisfies $\tau_{49} + \tau_{50} > 0$ by Lemma 3.11. This completes the proof.

5. Proof of Theorem 1.2

A linear code \mathcal{C} is w-weight if \mathcal{C} has exactly w non-zero weights i with $A_i > 0$. The method finding another code (called projective dual in [16]) from a given 2-weight code was first found by van Eupen and Hill [6], see also [3]. We consider the projective dual of a 3-weight code with $\gamma_0 = 2$. Recall that λ_i stands for the number of i-points in $\Sigma = PG(k-1,q)$ defined from \mathcal{C} . Considering (n-d-2m)-hyperplanes, (n-d-m)-hyperplanes and (n-d)-hyperplanes of Σ as 2-points, 1-points and 0-points respectively in the dual space Σ^* of Σ , we obtain the following lemma.

Lemma 5.1. Let \mathcal{C} be a 3-weight $[n,k,d]_q$ code with $q=p^h$, p prime, $\gamma_0=2$, whose spectrum is $(a_{n-d-2m},a_{n-d-m},a_{n-d})=(\alpha,\beta,\theta_{k-1}-\alpha-\beta)$, where $m=p^r$ for some $1\leq r< h(k-2)$ satisfying m|d and $\lambda_i>0$ $(0\leq i\leq 2)$. Then there exists a 3-weight $[n^*,k,d^*]_q$ code \mathcal{C}^* with $n^*=2\alpha+\beta$, $d^*=2\alpha+\beta-nt+\frac{d}{m}\theta_{k-2}$ whose spectrum is $(a_{n^*-d^*-2t},a_{n^*-d^*-t},a_{n^*-d^*})=(\lambda_2,\lambda_1,\lambda_0)$, where $t=p^{h(k-2)-r}$.

Proof of Theorem 1.3. Let C be a $[14, 6, 6]_3$ code with a generator matrix

Then the spectrum of \mathcal{C} is $(a_2, a_5, a_8) = (93, 220, 51)$ and we have $(\lambda_2, \lambda_1, \lambda_0) = (1, 12, 351)$. Applying Lemma 5.1 we get a $[406, 6, 270]_3$ code \mathcal{C}^* with the spectrum $(a_{82}, a_{109}, a_{136}) = (1, 12, 351)$.

Lemma 5.2 ([15]). Let C_1 and C_2 be $[n_1, k, d_1]_q$ and $[n_2, k-1, d_2]_q$ codes respectively and assume that C_1 contains a codeword of weight at least $d_1 + d_2$. Then there exists an $[n_1 + n_2, k, d_1 + d_2]_q$ code.

Applying Lemma 5.2 to a $[406, 6, 270]_3$ code as C_1 and $[20, 5, 12]_3$, $[47, 5, 30]_3$, $[49, 5, 31]_3$, $[55, 5, 36]_3$ codes as C_2 , we get $[426, 6, 282]_3$, $[453, 6, 300]_3$, $[455, 6, 301]_3$, $[461, 6, 306]_3$ codes respectively. Hence Theorem 1.2 follows from Theorems 1.1 and 1.4.

References

[1] I. Bouyukliev, J. Simonis, Some new results for optimal ternary linear codes, IEEE Trans. Inform. Theory 48, no.4 (2002) 981-985.

- [2] A.E. Brouwer, Bounds on the minimum distance of linear codes over GF(q) (q = 2,3,4,5,7,8,9), http://www.win.tue.nl/~aeb/voorlincod.html.
- [3] A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261–266.
- [4] R. N. Daskalov, The non-existence of ternary linear [158,6,104] and [203,6,134] codes, Proc. 5th Intern. Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Sozopol, Bulgaria (1996) 111–116.
- [5] R. N. Daskalov, E. Metodieva, The nonexistence of ternary [105,6,68] and [230,6,152] codes, Discrete Math. 286 (2004) 225–232.
- [6] M. van Eupen, R. Hill, An optimal ternary [69,5,45] code and related codes, Des. Codes Cryptogr. 4 (1994) 271–282.
- [7] M. van Eupen, P. Lisoněk, Classification of some optimal ternary linear codes of small length, Des. Codes Cryptogr. 10 (1997) 63–84.
- [8] J.H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop. 4 (1960) 532-542.
- [9] S. Guritman, Restrictions on the weight distribution of linear codes, Thesis, Techn. Univ. Delft, 2000.
- [10] S. Guritman, J. Simonis, Nonexistence proofs for some ternary linear codes, Proc. 7th Intern. Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Bansko, Bulgaria (2000) 157–161.
- [11] N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math. 116 (1993) 229–268.
- [12] N. Hamada, A survay of recent work on characterization of minihypers in PG(t,q) and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. & Syst. Sci. 18 (1993) 161–191.
- [13] R. Hill, Optimal linear codes, in: C. Mitchell, ed., Cryptography and Coding II (Oxford Univ. Press, Oxford, 1992) 75–104.
- [14] R. Hill, An extension theorem for linear codes, Des. Codes Cryptogr. 17 (1999) 151– 157.
- [15] R. Hill, D.E. Newton, Optima ternary linear codes, Des. Codes Cryptogr. 2 (1992) 137–157.

- [16] R. Hill, E. Kolev, A survey of recent results on optimal linear codes, Combinatorial Designs and their Application, CRC Research Notes in Mathematics, 403 (1999) 127-152.
- [17] C. M. Jones, Optimal Ternary Linear Codes, PhD thesis, University of Salford, 2000.
- [18] I.N. Landjev, The nonexistence of some optimal ternary codes of dimension five, Des. Codes Cryptogr. 15 (1998) 245–258.
- [19] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. 22 (2001) 165–177.
- [20] T. Maruta, The nonexistence of ternary [525,6,349] codes, Proc. 9th Intern. Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Kranevo, Bulgaria (2004) 286–291.
- [21] T. Maruta, A new extension theorem for linear codes, Finite Fields Appl. 10 (2004) 674–685.
- [22] T. Maruta, The nonexistence of ternary linear codes of dimension 6, Discrete Math. 288 (2004) 125-133.
- [23] T. Maruta, Extendability of ternary linear codes, Des. Codes Cryptogr. 293 (2005) 195–203.
- [24] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.appmath.osaka-wu.ac.jp/ maruta/griesmer.htm.
- [25] G. Solomon, J.J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control 8 (1965) 170–179.
- [26] H.N. Ward, Divisibility of codes meeting the Griesmer bound, J. Combin. Theory Ser. A 83, no.1 (1998) 79–93.