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Abstract

We prove the existence of a [406,6,270]3 code and the nonexistence of linear
codes with parameters [458, 6, 304]s, [467,6, 310]3, [471, 6, 313]3, [522, 6, 347]3. These
yield that n3(8,d) = g¢3(6,d) for 268 < d < 270, n3(6,d) = ¢3(6,d) +1 for d €
{280 — 282,304 — 306,313 — 315,347, 348}, n3(6,d) = g3(6,d) or g3(6,d) + 1 for
298 < d < 301 and n3(6,d) = ¢3(6,d) + 1 or g3(6,d) + 2 for 310 < d < 312,
where ng(%, d) denotes the minimum length n for which an [n, k, d]; code exists and

94(k,d) = 200 [d/¢].

1. Imtroduction

Let V(n,q) denote the vector space of n-tuples over GF(g), the Galois field of order g.
A g-ary linear code C of length n and dimension & is a k-dimensional subspace of V(n, g).
The Hamming distance d(z, y) between two vectors x,y € V(n,q) is the number of
nonzero coordinate positions in & — y. Now the minimum distance of a linear code C is
defined by d(C) = min{d(z,y) | z,y€ C, & # y} which is equal to the minimum weight
of C defined by wt(C) = min{wt(z) | z € C, © # 0}, where 0 is the all-O-vector and
wt(z) = d(z,0) is the weight of . A g-ary linear code of length n, dimension & and
minimum distance d is referred to as an [n, k, d}, code. The weight distribution of C is the
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list of numbers A; which is the number of codewords of C with weight ¢. A £ x n matrix
having as rows the vectors of a basis of C is called a generator matrix of C.

A fundamental problem in coding theory is to find ng(k, d), the minimum length n for
which an [n, k,d], code exists ([13]). An [n,k,d], code is called optimal if n = n,(k,d).
There is a natural lower bound on n,(k, d), the so-called Griesmer bound ([8],[25]):

nalhod) = gk d) = 3 [qi] ,

3=0

where [2] denotes the smallest integer greater than or equal to z. The values of ng(k, d)
are determined for all d only for some small values of ¢ and k. For ternary linear codes,
ns(k,d) is known for k < 5 for all d. As for the case k = 6, the value of n3(6, d) is unknown
for many integers d ([1],[4],[5},{9],[10], [17],[20},[22]). See [2] or [24] for the updated table
of ny(k, d) for some small g. A linear code C with a generator matrix G is called projective
if any two columns of G are independent, equivalently, if the dual code of C has the
minimum distance > 2.

We concentrate ourselves to find optimal ternary linear codes of dimension 6 with the
minimum distance d > 243, which are necessarily non-projective. For d > 244, it is only
known ([20]) that ns(6,d) = g3(6,d) + 1 for 349 < d < 351 and that n3(6,d) = gs5(6,d)
for d > 352. The existence of an [ny, k, di], code and an [ng, k, ds), code trivially implies
the existence of an [n; + ng, k, d; + da}s code. For example, one can get a [372, 6, 246];
code from a [56, 6, 36]; code and a [316,6,210]3 code. Similarly one can get [g5(6,d), 6, d]s
codes for d € {244 — 252,271 — 279,322 — 330,334 — 336}, [g3(6,d) + 1,6,d]; codes for
d € {253 — 270,331 ~ 333,337 — 351} and [g5(6, d) +2, 6, d|s codes for 280 < d < 315 from
the known ny(6, d) table. We also have [g3(6, d), 6, d]3 codes for 316 < d < 321 by Theorem
2.11n [13] and a [474, 6, 315]5 code by Theorem 4.5 in [12] from a [158, 5, 105]5 code. On the
other hand, the nonexistence of [n, 5,d]; codes for (n,d) € {(143,94), (144,95), (145,96),
(147,97), (148,98), (149,99)} implies n3(6,d) > g¢3(6,d) + 1 for 280 < d < 297, for the
residual code (see [13]) of each [¢3(6, d), 6, d]s code with respect to a codeword with weight
d can not exist. Hence we obtain the following.

Theorem 1.1.

(1) a(6, d) = g5(6,d) for d € {244 — 252,271~ 279, 316 — 330, 334 — 336} and for d > 352.
(2) n3(6,d) = g3(6,d) + 1 for 349 < d < 351.

(3) n3(6,d) = g3(6,d) or g5(6,d) + 1 for d € {253 — 270,313 — 315,331 — 333,337 — 348}.
(4) n3(6,d) = g3(6,d) + 1 or g3(6,d) + 2 for 280 < d < 297.

(5) g3(6,d) < n3(6,d) < g3(6,d) + 2 for 298 < d < 312.

We improve Theorem 1.1 for d € {268 — 270,280 — 282,298 — 301, 304 — 306, 310 —
315,347,348} as follows.
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Theorem 1.2. (1) n3(6,d) = g3(6,d) for 268 < d < 270.

(2) s (6,d) = g3(6,d) + 1 for d € {280 — 282,304 — 306, 313 — 315, 347, 348}
(3) na(6,d) = g3(6,d) or g3(6,d) + 1 for 298 < d < 301.

(4) n3(6,d) = g3(6,d) + 1 or g3(6,d) + 2 for 310 < d < 312.

'To prove Theorem 1.2, we need to show the following theorems.
Theorem 1.3. There exist a [406,6,270]; code.
Theorem 1.4. There ezists no [g3(6,d), 6, d]s code for d = 304, 310, 313, 347.

We prove Theorem 1.4 in Section 4 and Theorems 1.3 and 1.2 in Section 5.

2. Preliminaries

We denote by PG(r, ) the projective geometry of dimension 7 over GF(g). A j-flat is
a projective subspace of dimension j in PG{r,g). 0-flats, 1-flats, 2-flats, 3-flats, (r — 2)-
flats and {r — 1}-flats are called points, lines, planes, solids, secundums and hyperplanes
respectively. We denote by F; the set of j-flats of PG(r, q) and denote by 6, the number

of points in a j-flat, i.e. .
b= ("""~ 1)/(a—1).

Let C be an [n, k, d], code which does not have any coordinate position in which all the
codewords have a zero entry. The columns of a generator matrix of C can be considered
as a multiset of n points in ¥ = PG(k ~ 1, ¢) denoted also by C. We see linear codes from
this geometrical point of view. An ¢-point is a point of & which has multiplicity 4 in C.
Denote by v, the maximum multiplicity of a point from ¥ in C and let C; be the set of
i-points in X, 0 < 7 < 7. For any subset S of ¥ we define the multiplicity of S with
respect to C, denoted by me(S), as

me(S) = 30 #150Cil,

=1

where [T'| denotes the number of points in T for a subset 7’ of £. When the code is
projective, i.e. when v, = 1, the multiset C forms an n-set in ¥ and the above mg(S) is
equal to [C N S|. A line [ with t = me() is called a t-line. A t-plane, a t-solid and so on
are defined similarly. Then we obtain the partition ¥ = J2, C; such that

n = me(¥),
n—d = max{me(n) | 7€ Froa}.
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Conversely such a partition ¥ = U2, C; as above gives an [n, &, d], code in the natural
manner. For an m-flat IT in ¥ we define

() = maz{me(A) | A CH, A€ F}, 0<j<m.
We denote simply by 7; instead of v;(X). Clearly we have y,_2 =n — d, V-1 =n.

Lemma 2.1 ([22]). (1) Let T be an (s — 1)-flat in &, 2 < s < k — 1, with me(TI) = w.
For any (s — 2)-flat § in II, we have

n—w
mel{d) < Yep — .
c()_%l 91«—5“1‘
In particular for 0 < j <k -3,
URe D!
Ly — T
’Y] — fYJ+1 9]9_.2_]' _ 1

(2) Let &, and &y be distinct t-flats in a fized (t+1)-flat A in 0, 1 <t <k —2. Then

me(61) + me(da) = me(A) — (g — 1)y + gme (8 N 6).

When C attains the Griesmer bound, ;’s are uniquely determined as follows.

Lemma 2.2 ([19]). Let C be an [n,k,d], code attaining the Griesmer bound. Then it
holds that '
J d

y=0

By Lemma 2.2 every [n, k, d}, code attaining the Griesmer bound is projective if d <
g*~!. Denote by a; the number of hyperplanes II in 3} with me(II) = ¢ and by A, the
number of s-points in 2. Note that we have Ay = A\g + n — 6;_, when v, = 2. The list of
a;’s is called the spectrum of C. Simple counting arguments yield the following.

Te-2 Th-2
Lemma 2.3. (1) Y a; =06k, (2) Y ig; = nfj-s.
Th—2 =0 =t Y0
(3) Y it —Las=n(n— s+ 7" 2> s(s — 1A,
1==2 s=2

Lemma 2.4 ([22]). Let IT be an i-hyperplane through a t-secundum § with t = _s(II).
Then
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n—1 1+qY¥-2—"n
q q '
(2) a; =0t an [¢,k —1,dy], code with dy > i—{

(1)t < gz —
1+ qQVg—2 — N

. J does not ezist, where |z

denotes the largest integer less than or equal to .

QY2 — N , ' 2~
(3)t= [Lﬂ%—LJ if an [i,k — 1,d1], code with dy > i — [WJ + 1 does
g
not exist.
(4) Let ¢; be the number of j-hyperplanes through & other than II. Then the following
equality holds:

> (Vo2 = J)¢; = i+ g%z — 1 — gt. (2.1)

j
(5) For a y_o-hyperplane Iy with spectrum (7o, -+, 7, ), 7t > 0 holds if i+qVp_g—n—qt <
q.

The code obtained by deleting the same coordinate from each codeword of C is called
a punctured code of C. If there exists an [n + 1,k,d + 1], code C' which gives C as a
punctured code, C is called estendable (to C') and C’ is an extension of C.
Let C be an [n, k, d], code with k& > 3, ged(g, d) = 1. Define
Go= Y A, @=—— T 4
0= —— i P =— i
g1 it 0= 1 0.4 mod o)

where the notation x|y means that z is a divisor of y. The pair (®¢, ;) is called the
diversity of C ([21]).

Theorem 2.5 ([14]). Let C be an [n, k,d), code with diversity ($q, ®y), ged(q,d) = 1,
k > 3. Then C is extendable if &, = Q.

See [23] for the extendability of ternary linear codes in detail. Note that a; = A,_;/(g—
1) for 0 <1 < y,_9. Hence the above diversity is given as

Gy = z aq, Py = Z Qj.

i=n{mod 3) iZn,n—d (mod 3)
The following is known as the Ward’s divisibility theorem.

Theorem 2.6 ([26]). Let C be an [n, k,d], code, p a prime, attaining the Griesmer bound.
If p°|d, then p° is o divisor of all nonzero weights of C.
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3. The spectra of some ternary linear codes of dimension & <5

We supply the results about the possibilities of spectra for some ternary linear codes
of dimension k& < 5 which we need to prove Theorem 1.4 in the next section.
An f-set F in PG(r,q) satisfying

m=min{|FN~x| |7 € F_i}

is called an {f,m;r,q}-minthyper. When an [n,k,d], code is projective (i.e. v = 1),
the set of O-points Cy forms a {01 — n, Ok-2 — (n — d); k — 1, g}-minihyper, where 6; =
(¢7*' — 1)/(g — 1). The following lemma can be obtained from the classification of some
minihypers by Hamada [11].

Lemma 3.1. (1) The spectrum of a (80, 5,535 code is (ag, ass, az7) = (1,40, 80).
(2) The spectrum of a [81,5,54]s code is (ag, aa7) = (1,120).

(3) The spectrum of a [104,5,69]5 code is (ag, ase, ass) = (4,13, 104).

(4) The spectrum of a [107,5,71]3 code is {ags, @27, a5, a3s) = (1, 3,39, 78).

(8) The spectrum of a [108,5,72]3 code is (agy, ass) = (4,117).

(6) The spectrum of a [113,5,75]5 code is {as2, ass, ass) = (1,24, 96).

(7) The spectrum of a [116,5,77]5 code is (ass, ass, ass, a30) = (4,9, 36,72).

(8) [ Is (

The spectrum of o [117,5,78]3 code is (azs, aze) = (13, 108).

Since a [fy_1 — €,k,q* — €]3 code (0 < e < 2) is projective, the set of O-points Cj
consists of e points. Hence the following lemma follows,

Lemma 3.2. Assume k£ > 3 and put u = 6;_,.
(1) The spectrum of a [fz—1 — 2, k, ¢t — 2|3 code is

(Qu—2, Gu—1,04) = (Or—3, (Ox—1 — O5-3)/2, (Bke1 — O=3)/2).

(2) The spectrum of a [fx—1 — 1,k, "' — 13 code is (ay-1, ) = (Bp—2,9"").
(3) The spectrum of a [Op-1,k,¢* |3 code is ay = O5_;.

The following lemma relies upon the classification of some optimal ternary linear codes
of small length by van Eupen and Lisongk [7].

Lemma 3.3 ([7]). (1) The spectrum of a [8,3,5]3 code is (ag, as,a3) = (1,4,8).

(2) The spectrum of a [9,3,6]s code is (ag,a3) = (1,12).

(3) The spectrum of a [14,3,9]5 code is either (as, as) = (9,4), (az,as) = (3,10) or
(a3, Q4, (l5) = (3, 3, 7)

(4) The spectrum of a [18,3,12]3 code is (ag, as) = (1,12) or (a3, ag) = (2,11).
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(5) The spectrum of a [20,3,13]3 code satisfies a; = 0 for all i #{2,3,4,5,6,7}.
(6) The spectrum of a (10,4, 6] code is (a1, aq) = (10,30).

(7) The spectrum of a [19,4,12]3 code is (a1, a4, a7) = (1,9, 30).

(8) The spectrum of a [27,4,35]3 code is (ao, a9) = (1,39).

(9) The spectrum of a [32,4,21]3 code is (ag,a13) = (8,32).

(10) The spectrum of a [35,4,23]5 code is (as, ag, a11, ara) = (1,3,12, 24).

(11) The spectrum of a [36,4,24]5 code is (ag, a15) = (4, 36).

Lemma 3.4. The spectrum of a [41,4, 27]3 code satisfies a; = 0 for all i & {11,12,13,14}.
Lemma 3.5. (1) The spectrum of a [52,4, 34]3 code satisfies
a; =0 for alli¢{0,7,8,9,16,17,18}.

(2) The spectrum of a [53,4,35]3 code is one of the following:

(a) (ao,al?,als) = (1: 13, 25), (b) (a’87a9va171 ‘118) = (1, 1,12, 26), (C) (@9#117,&%18) =
(2, 13,25).

Lemma 3.6. The spectrum of a [59, 4,393 code satisfies a; = 0 for alld ¢ {8,11,14,17,20}.
Lemma 3.7. The spectrum of a [122,5, 81 code satisfies a; = 0 for all i ¢ {38,39,40,41}.
The following lemma is due to Landjev [18].

Lemma 3.8 ([18]). (1) The spectrum of a [50,4,33]; code is one of the following:

(a) (as;a14,a17) = (2,4,34),  (b) (a11,014,017) = (2,6,32), (c) (aws,a17) = (11, 30).
(2) Bvery [49,4,32]5 code is extendable, so a; = 0 for all i & {7,8,10,11, 13, 14, 16, 17}.
Lemma 3.9. The spectrum of a [154, 5, 102]5 code satisfies a; = O for alls & {25,46,49, 52}.

Lemma 3.10. (1) The spectrum of a [158,5,105]3 code is (ass, aso, ass) = (2,13, 106).
(2) Bvery [157,5,104]; code is extendable.

We omit the proof of Lemmas 3.1-3.10 here.

Lemma 3.11. (1) The spectrum of o [176,5,117]3 code is either
(a) (a3, aso,as0) = (1,8,112) or
(b) (a41,a50, as9) = (@, 11 — 2a,110 + a) for some a with 0 < a < 5.

(2) Bvery [175,5,116]3 code is extendable.
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Proof. (1) See [20].
(2) Let C be a {175,5,116]3 code. Then 7;-solid has no j-solid for j <8 by Lemma 3.6, so
a; = 0 for all 2+ < 22 by Lemma 2.1. Hence, by Lemma 2.4, we have

a; =0 for all i ¢ {31,32,40,41,49, 50, 58,59},

which implies that C is extendable by Theorem 2.5. O

4. Proof of Theorem 1.4

Theorem 4.1. There exists no [458,6,304]; code.

Proof. Let C be a [458, 6,304]; code. Then a ~y4-hyperplane has no j-solid for j < 25 by
Lemma 3.9, 80 a; =0 for all 4 <71 by Lemma 2.1. Hence

a; =0 for all & ¢ {80,81,104,107,108,113,116, 117, 119122, 134, 135,136, 152, 153, 154}

by Lemma 2.4. Now, let IT be a 104-hyperplane. Then the spectrum of IT is (7og, 732, 735) =
(4,13,104) by Lemma 3.1(3), which contradicts Lemma 3.9 (a v4-hyperplane has no j-
solid for 7 = 26,32,35). Hence ajpq = 0. Similarly, we get ay07 = a5 = G113 = @iz = 0
by Lemmas 3.1(4)(5)(6), 3.7, 3.9. Hence

a; =0 forall 4 ¢ {80,81,116,117,119 — 121,134 — 136,152 — 154}.

Next, let II; be a 154-hyperplane. Since (2.1) with ¢ = 154 has no solution for ¢ = 25
and for ¢ = 49, the spectrum of IIj satisfles a; = 0 for all 7 ¢ {46,52} by Lemma 3.9. Let
A be a 52-solid in Iy. Applying Lemma 2.4 to IIy, (2.1) with 4 = 52 has no solution for
t=0,7,8,9,17. Hence the spectrum of A satisfies a; = 0 for all 5 ¢ {16, 18} by Lemma
3.5(1). Let ¢ be a 16-plane in A. Applying Lemma 2.4 to A, (2.1) with ¢ = 16 has no
solution for ¢ = 0,1,2,3,5. Hence the spectrum of § satisfies a; = 0 for all i ¢ {4,6}.
But there exists no [16, 3, 10]3 code with such spectrum (see [7]), a contradiction. This
completes the proof. O

Theorem 4.2. There erists no [467,6,310]; code.

Proof. Let C be a [467, 6,310]3 code. Then a y4-hyperplane has no j-solid for j < 25 by
Lemma 3.10, s0 a; = 0 for all 7 < 71 by Lemma 2.1. Hence

a; =0 forall 1¢ {74,80,81,104,107,108,113,116,117,119 — 122,146, 152 — 157}

by Lemma 2.4. Let II be a 108-hyperplane. Then the spectrum of IT is (727, 726) = (4, 117)
by Lemma 3.1(5), which contradicts Lemma 3.10 (a y4-hyperplane has no 27- nor 36-solid).
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Hence aipg = 0. Szmilarly, we ge’s ag1 = G113 = Q118 = Q117 = G119 = G190 = Q191 = Q199 = 0
by Lemmas 3.1(2)(6)(7)(8), 3.2, 3.7, 3.10. Hence

a; =0 forall ¢ ¢ {74,80,104,107,146,152 — 157}.

Suppose agy > 0 and let IT be a 80-hyperplane. Setting (z,¢) = (80,27), (2.1) has no
solution since ¢i57 = 0 (a 157-hyperplane has no 27-solid), which contradicts the spectrum
of II (Lemma 3.1(1)). Hence agp = 0. Similarly we get ajps = a107 = 0 by Lemmas 2.1,
2.4, 3.1(3){4). Hence

a; =0 for all ¢ ¢ {74,146,152 — 157}.

Now, let I1y be a 157-hyperplane with the spectrum (745, 726, - -, 753). Then 795+ Tag =
2 by Lemma 3.10. Since all the solutions of (2.1) for ¢ = 157 are (crs, 154, €157) = (1,1,1)
or {¢rs, €155, C156) = (1,1,1) for ¢ = 25; (crq, c157) = (1,2) for ¢ = 26, and so on, we obtain

Urq 2> Tos + Tos = 2.

On the other hand, it holds that a74 <1 by Lemma 2.1, a contradiction. This completes
the proof. a

Theorem 4.3. There exists no [471,6,313]3 code.

Proof. Let C be a [471,6,313]s code. Then a vs-hyperplane has no j-solid for j < 26 by
Lemma 3.10(1), so a; = 0 for all 4 < 75 by Lemma 2.1. Hence

a; =0 for all ¢ {81,108,117,120,121,156 — 158}

by Lemma 2.4. Now, let IT be a 158-hyperplane. Then the spectrum of IT is (72, 750, 753) =
(2,13,106) by Lemma 3.10(1), but (2.1) has no solution for (z,£) = (158,50), a contradic-
tion. This completes the proof. O

Theorem 4.4. There ezists no [522,6,347]3 code.

Proof. Let € be a [522,6,347]s code. Then a y;-hyperplane has no j-solid for 7 < 31 by
Lemma 3.11, so a; =0 for all < < 90 by Lemma 2.1. Hence

a; =0 forall i¢ {90,91,108,117 — 122,162,171,172,174,175},

by Lemma 2.4. Let IT be a ys-hyperplane. Then (2.1) for 7 = 175 has no solution for £ =
49, 50, which contradicts that the spectrum of II satisfies 749 + 750 > 0 by Lemma 3.11.
This completes the proof. O
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5. Proof of Theorem 1.2

A linear code C is w-weight if C has exactly w non-zero weights i with 4; > 0. The
method finding another code (called projective dual in [16]) from a given 2-weight code
was first found by van Eupen and Hill [6], see also [3]. We consider the projective dual
of a 3-weight code with 7o = 2. Recall that A; stands for the number of i-points in
Y =PG(k — 1,q) defined from C. Considering (n — d — 2m)-hyperplanes, (n — d — m)-
hyperplanes and (n — d)-hyperplanes of ¥ as 2-points, 1-points and 0-points respectively
in the dual space ¥* of &, we obtain the following lemma.

Lemma 5.1. Let C be a 3-weight [n, k,d], code with ¢ = p", p prime, vy = 2, whose
spectrum 8 (Gp—d—am; On-d-m, On-d) = (@, 3,0k—1 — @ — 3), where m = p" for some 1 <
r < h(k — 2) satisfying mld and Ay > 0 (0 < 4 < 2). Then there exists a 3-weight
[n* k,d*], code C* with n* = 2o+ §, d* = 2a+ B — nt + '%9};;..2 whose spectrum is
(an*_cl*—-Zt: Ap* d* —t, an*—d‘) = (A2: }‘la /\(}); where t = ph(k—Q)—r.

Proof of Theorem 1.3. Let C be a [14, 6, 6]; code with a generator matrix

1100000102011 07
0 0100600110120 2
0 001 00O0O0T1 0212 2
00001 O0O01 100111
060000102211 200

0000001002211 1]

Then the spectrum of C is (ay, a5, ag) = (93,220, 51) and we have (g, Ay, Ag) = (1,12, 351).
Applying Lemma 5.1 we get a [406, 6, 270]; code C* with the spectrum (agy, a109, a135) =
(1,12, 351). 0

Lemma 5.2 ([15]). Let 1 and Cy be [n1,k,dy], and [ng, k — 1,dy], codes respectively
and assume that C; contains o codeword of weight at least dy + dy. Then there exists an
[n1 + o, k, di + ds], code. '

Applying Lemma 5.2 to a [406, 6, 2705 code as C; and [20, 5, 12]3, [47, 5, 30]s, [49, 5, 31ls,
(55,5, 36]3 codes as Cy, we get [426, 6, 2823, [453, 6, 300]3, (455, 6, 301]5, [461, 6, 306]3 codes
respectively. Hence Theorem 1.2 follows from Theorems 1.1 and 1.4.
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