<table>
<thead>
<tr>
<th>Title</th>
<th>Optimal non-projective ternary linear codes (Theory and Applications of Combinatorial Designs with Related Field)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Takenaka, Mito; Okamoto, Kei; Maruta, Tatsuya</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1465: 107-118</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/48020</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Optimal non-projective ternary linear codes

Mito Takenakaa(竹中みと), Kei Okamotob(岡本けい),
Tatsuya Marutab (丸田辰哉)

aDepartment of Applied Mathematics
Osaka Women’s University
(大阪女子大学大学院 理学研究科)

bDepartment of Mathematics and Information Sciences
Osaka Prefecture University
(大阪府立大学大学院 理学系研究科)

Abstract

We prove the existence of a $[406, 6, 270]_3$ code and the nonexistence of linear codes with parameters $[458, 6, 304]_3$, $[467, 6, 310]_3$, $[471, 6, 313]_3$, $[522, 6, 347]_3$. These yield that $n_3(6, d) = g_3(6, d)$ for $268 \leq d \leq 270$, $n_3(6, d) = g_3(6, d) + 1$ for $d \in \{280 - 282, 304 - 306, 313 - 315, 347, 348\}$, $n_3(6, d) = g_3(6, d)$ or $g_3(6, d) + 1$ for $298 \leq d \leq 301$ and $n_3(6, d) = g_3(6, d) + 1$ or $g_3(6, d) + 2$ for $310 \leq d \leq 312$, where $n_q(k, d)$ denotes the minimum length n for which an $[n, k, d]_q$ code exists and $g_q(k, d) = \sum_{i=0}^{k-1} \lceil d/q^i \rceil$.

1. Introduction

Let $V(n, q)$ denote the vector space of n-tuples over $GF(q)$, the Galois field of order q. A q-ary linear code C of length n and dimension k is a k-dimensional subspace of $V(n, q)$. The Hamming distance $d(x, y)$ between two vectors $x, y \in V(n, q)$ is the number of nonzero coordinate positions in $x - y$. Now the minimum distance of a linear code C is defined by $d(C) = \min\{d(x, y) \mid x, y \in C, x \neq y\}$ which is equal to the minimum weight of C defined by $wt(C) = \min\{wt(x) \mid x \in C, x \neq 0\}$, where 0 is the all-0-vector and $wt(x) = d(x, 0)$ is the weight of x. A q-ary linear code of length n, dimension k and minimum distance d is referred to as an $[n, k, d]_q$ code. The weight distribution of C is the
list of numbers \(A_i \) which is the number of codewords of \(C \) with weight \(i \). A \(k \times n \) matrix having as rows the vectors of a basis of \(C \) is called a generator matrix of \(C \).

A fundamental problem in coding theory is to find \(n_q(k, d) \), the minimum length \(n \) for which an \([n, k, d]_q \) code exists ([13]). An \([n, k, d]_q \) code is called optimal if \(n = n_q(k, d) \). There is a natural lower bound on \(n_q(k, d) \), the so-called Griesmer bound ([8],[25]):

\[
 n_q(k, d) \geq g_q(k, d) = \sum_{i=0}^{k-1} \left\lfloor \frac{d}{q^i} \right\rfloor,
\]

where \(\lfloor x \rfloor \) denotes the smallest integer greater than or equal to \(x \). The values of \(n_q(k, d) \) are determined for all \(d \) only for some small values of \(q \) and \(k \). For ternary linear codes, \(n_3(k, d) \) is known for \(k \leq 5 \) for all \(d \). As for the case \(k = 6 \), the value of \(n_3(6, d) \) is unknown for many integers \(d \) ([1],[4],[5],[9],[10],[17],[20],[22]). See [2] or [24] for the updated table of \(n_q(k, d) \) for some small \(q \). A linear code \(C \) with a generator matrix \(G \) is called projective if any two columns of \(G \) are independent, equivalently, if the dual code of \(C \) has the minimum distance \(> 2 \).

We concentrate ourselves to find optimal ternary linear codes of dimension 6 with the minimum distance \(d > 243 \), which are necessarily non-projective. For \(d \geq 244 \), it is only known ([20]) that \(n_3(6, d) = g_3(6, d) + 1 \) for \(349 \leq d \leq 351 \) and that \(n_3(6, d) = g_3(6, d) \) for \(d \geq 352 \). The existence of an \([n_1, k, d_1]_3 \) code and an \([n_2, k, d_2]_3 \) code trivially implies the existence of an \([n_1 + n_2, k, d_1 + d_2]_3 \) code. For example, one can get a \([372, 6, 246]_3\) code from a \([56, 6, 36]_3\) code and a \([316, 6, 210]_3\) code. Similarly one can get \([g_3(6, d), 6, d]_3\) codes for \(d \in \{244 - 252, 271 - 279, 322 - 330, 334 - 336\} \), \([g_3(6, d) + 1, 6, d]_3\) codes for \(d \in \{253 - 270, 331 - 333, 337 - 351\} \) and \([g_3(6, d) + 2, 6, d]_3\) codes for \(280 \leq d \leq 315 \) from the known \(n_3(6, d) \) table. We also have \([g_3(6, d), 6, d]_3\) codes for \(316 \leq d \leq 321 \) by Theorem 2.1 in [13] and a \([474, 6, 315]_3\) code by Theorem 4.5 in [12] from a \([158, 5, 105]_3\) code. On the other hand, the nonexistence of \([n, 5, d]_3\) codes for \((n, d) \in \{(143,94), (144,95), (145,96), (147,97), (148,98), (149,99)\} \) implies \(n_3(6, d) \geq g_3(6, d) + 1 \) for \(280 \leq d \leq 297 \), for the residual code (see [13]) of each \([g_3(6, d), 6, d]_3\) code with respect to a codeword with weight \(d \) cannot exist. Hence we obtain the following.

Theorem 1.1.

(1) \(n_3(6, d) = g_3(6, d) \) for \(d \in \{244 - 252, 271 - 279, 316 - 330, 334 - 336\} \) and for \(d \geq 352 \).

(2) \(n_3(6, d) = g_3(6, d) + 1 \) for \(349 \leq d \leq 351 \).

(3) \(n_3(6, d) = g_3(6, d) \) or \(g_3(6, d) + 1 \) for \(d \in \{253 - 270, 313 - 315, 331 - 333, 337 - 348\} \).

(4) \(n_3(6, d) = g_3(6, d) + 1 \) or \(g_3(6, d) + 2 \) for \(280 \leq d \leq 297 \).

(5) \(g_3(6, d) \leq n_3(6, d) \leq g_3(6, d) + 2 \) for \(298 \leq d \leq 312 \).

We improve Theorem 1.1 for \(d \in \{268 - 270, 280 - 282, 298 - 301, 304 - 306, 310 - 315, 347, 348\} \) as follows.
Theorem 1.2. (1) \(n_3(6, d) = g_3(6, d) \) for \(268 \leq d \leq 270 \).
(2) \(n_3(6, d) = g_3(6, d) + 1 \) for \(d \in \{280 - 282, 304 - 306, 313 - 315, 347, 348\} \).
(3) \(n_3(6, d) = g_3(6, d) \) or \(g_3(6, d) + 1 \) for \(298 \leq d \leq 301 \).
(4) \(n_3(6, d) = g_3(6, d) + 1 \) or \(g_3(6, d) + 2 \) for \(310 \leq d \leq 312 \).

To prove Theorem 1.2, we need to show the following theorems.

Theorem 1.3. There exist a \([406, 6, 270]_3\) code.

Theorem 1.4. There exists no \([g_3(6, d), 6, d]_3\) code for \(d = 304, 310, 313, 347 \).

We prove Theorem 1.4 in Section 4 and Theorems 1.3 and 1.2 in Section 5.

2. Preliminaries

We denote by \(\text{PG}(r, q) \) the projective geometry of dimension \(r \) over \(\text{GF}(q) \). A \(j \)-flat is a projective subspace of dimension \(j \) in \(\text{PG}(r, q) \). 0-flats, 1-flats, 2-flats, 3-flats, \((r - 2) \)-flats and \((r - 1) \)-flats are called points, lines, planes, solids, secundums and hyperplanes respectively. We denote by \(\mathcal{F}_j \) the set of \(j \)-flats of \(\text{PG}(r, q) \) and denote by \(\theta_j \) the number of points in a \(j \)-flat, i.e.

\[\theta_j = \frac{q^{j+1} - 1}{q - 1}. \]

Let \(C \) be an \([n, k, d]_q\) code which does not have any coordinate position in which all the codewords have a zero entry. The columns of a generator matrix of \(C \) can be considered as a multiset of \(n \) points in \(\Sigma = \text{PG}(k - 1, q) \) denoted also by \(C \). We see linear codes from this geometrical point of view. An \(i \)-point is a point of \(\Sigma \) which has multiplicity \(i \) in \(C \). Denote by \(\gamma_0 \) the maximum multiplicity of a point from \(\Sigma \) in \(C \) and let \(C_i \) be the set of \(i \)-points in \(\Sigma \), \(0 \leq i \leq \gamma_0 \). For any subset \(S \) of \(\Sigma \) we define the multiplicity of \(S \) with respect to \(C \), denoted by \(m_C(S) \), as

\[m_C(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|, \]

where \(|T|\) denotes the number of points in \(T \) for a subset \(T \) of \(\Sigma \). When the code is projective, i.e. when \(\gamma_0 = 1 \), the multiset \(C \) forms an \(n \)-set in \(\Sigma \) and the above \(m_C(S) \) is equal to \(|C \cap S|\). A line \(l \) with \(t = m_C(l) \) is called a \(t \)-line. A \(t \)-plane, a \(t \)-solid and so on are defined similarly. Then we obtain the partition \(\Sigma = \bigcup_{i=0}^{\gamma_0} C_i \) such that

\[n = m_C(\Sigma), \]
\[n - d = \max\{m_C(\pi) \mid \pi \in \mathcal{F}_{k-2}\}. \]
Conversely such a partition $\Sigma = \bigcup_{i=0}^{n_0} C_i$ as above gives an $[n, k, d]_q$ code in the natural manner. For an m-flat Π in Σ we define

$$\gamma_j(\Pi) = \max\{m_C(\Delta) \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_j\}, 0 \leq j \leq m.$$

We denote simply by γ_j instead of $\gamma_j(\Sigma)$. Clearly we have $\gamma_{k-2} = n - d$, $\gamma_{k-1} = n$.

Lemma 2.1 ([22]). (1) Let Π be an $(s - 1)$-flat in Σ, $2 \leq s \leq k - 1$, with $m_C(\Pi) = w$. For any $(s - 2)$-flat δ in Π, we have

$$m_C(\delta) \leq \gamma_{s-1} - \frac{n - w}{\theta_{k-s} - 1}.$$

In particular for $0 \leq j \leq k - 3$,

$$\gamma_j \leq \gamma_{j+1} - \frac{n - \gamma_{j+1}}{\theta_{k-2-j} - 1}.$$

(2) Let δ_1 and δ_2 be distinct t-flats in a fixed $(t + 1)$-flat Δ in Σ, $1 \leq t \leq k - 2$. Then

$$m_C(\delta_1) + m_C(\delta_2) \geq m_C(\Delta) - (q - 1)\gamma_t + q \cdot m_C(\delta_1 \cap \delta_2).$$

When C attains the Griesmer bound, γ_j's are uniquely determined as follows.

Lemma 2.2 ([19]). Let C be an $[n, k, d]_q$ code attaining the Griesmer bound. Then it holds that

$$\gamma_j = \sum_{u=0}^{j} \left\lceil \frac{d}{q^{k-1-u}} \right\rceil \text{ for } 0 \leq j \leq k - 1.$$

By Lemma 2.2 every $[n, k, d]_q$ code attaining the Griesmer bound is projective if $d \leq q^{k-1}$. Denote by a_i the number of hyperplanes Π in Σ with $m_C(\Pi) = i$ and by λ_s the number of s-points in Σ. Note that we have $\lambda_2 = \lambda_0 + n - \theta_{k-1}$ when $\gamma_0 = 2$. The list of a_i's is called the spectrum of C. Simple counting arguments yield the following.

Lemma 2.3. (1) $\sum_{i=0}^{\gamma_k-3} a_i = \theta_{k-1}$.

(2) $\sum_{i=1}^{\gamma_k-2} ia_i = n\theta_{k-2}$.

(3) $\sum_{i=2}^{\gamma_k-2} i(i-1)a_i = n(n-1)\theta_{k-3} + q^{k-2} \sum_{s=2}^{\gamma_0} s(s-1)\lambda_s$.

Lemma 2.4 ([22]). Let Π be an i-hyperplane through a t-secundum δ with $t = \gamma_{k-3}(\Pi)$. Then
111

(1) \[t \leq \gamma_{k-2} - \frac{n - i}{q} = \frac{i + q\gamma_{k-2} - n}{q}. \]

(2) \[a_i = 0 \] if an \([i, k - 1, d_0]_q\) code with \(d_0 \geq i - \lfloor \frac{i + q\gamma_{k-2} - n}{q} \rfloor\) does not exist, where \(\lfloor x \rfloor\) denotes the largest integer less than or equal to \(x\).

(3) \[t = \left\lfloor \frac{i + q\gamma_{k-2} - n}{q} \right\rfloor \] if an \([i, k - 1, d_1]_q\) code with \(d_1 \geq i - \lfloor \frac{i + q\gamma_{k-2} - n}{q} \rfloor + 1\) does not exist.

(4) Let \(c_j\) be the number of \(j\)-hyperplanes through \(\delta\) other than \(\Pi\). Then the following equality holds:

\[\sum_j (\gamma_{k-2} - j)c_j = i + q\gamma_{k-2} - n - qt. \] \hspace{1cm} (2.1)

(5) For a \(\gamma_{k-2}\)-hyperplane \(\Pi_0\) with spectrum \((\tau_0, \cdots, \tau_{\gamma_{k-2}})\), \(\tau_t > 0\) holds if \(i + q\gamma_{k-2} - n - qt < q\).

The code obtained by deleting the same coordinate from each codeword of \(C\) is called a punctured code of \(C\). If there exists an \([n + 1, k, d + 1]_q\) code \(C'\) which gives \(C\) as a punctured code, \(C\) is called extendable (to \(C')\) and \(C'\) is an extension of \(C\).

Let \(C\) be an \([n, k, d]_q\) code with \(k \geq 3\), \(\gcd(q, d) = 1\). Define

\[\Phi_0 = \frac{1}{q - 1} \sum_{q|\iota, \iota \neq 0} A_{i}, \quad \Phi_1 = \frac{1}{q - 1} \sum_{i \neq 0, d \mod q} A_{i}, \]

where the notation \(x|y\) means that \(x\) is a divisor of \(y\). The pair \((\Phi_0, \Phi_1)\) is called the diversity of \(C\) (\(\text{[21]}\)).

Theorem 2.5 (\(\text{[14]}\)). Let \(C\) be an \([n, k, d]_q\) code with diversity \((\Phi_0, \Phi_1)\), \(\gcd(q, d) = 1\), \(k \geq 3\). Then \(C\) is extendable if \(\Phi_1 = 0\).

See \(\text{[23]}\) for the extendability of ternary linear codes in detail. Note that \(a_i = A_{n-i}/(q-1)\) for \(0 \leq i \leq \gamma_{k-2}\). Hence the above diversity is given as

\[\Phi_0 = \sum_{i \equiv n \mod 3} a_i, \quad \Phi_1 = \sum_{i \not\equiv n, n-d \mod 3} a_i. \]

The following is known as the Ward's divisibility theorem.

Theorem 2.6 (\(\text{[26]}\)). Let \(C\) be an \([n, k, d]_p\) code, \(p\) a prime, attaining the Griesmer bound. If \(p^e|d\), then \(p^e\) is a divisor of all nonzero weights of \(C\).
3. The spectra of some ternary linear codes of dimension $k \leq 5$

We supply the results about the possibilities of spectra for some ternary linear codes of dimension $k \leq 5$ which we need to prove Theorem 1.4 in the next section.

An f-set F in $\text{PG}(n, q)$ satisfying

$$m = \min\{|F \cap \pi| \mid \pi \in \mathcal{F}_{n-1}\}$$

is called an $\{f, m; n, q\}$-minihyper. When an $[n, k, d]_q$ code is projective (i.e. $\gamma_0 = 1$), the set of 0-points C_0 forms a $(\theta_{k-1} - n, \theta_{k-2} - (n - d); k - 1, q)$-minihyper, where $\theta_j = (q^{j+1} - 1)/(q - 1)$. The following lemma can be obtained from the classification of some minihypers by Hamada [11].

Lemma 3.1. (1) The spectrum of a $[80, 5, 53]_3$ code is $(a_0, a_{26}, a_{27}) = (1, 40, 80)$.
(2) The spectrum of a $[81, 5, 54]_3$ code is $(a_0, a_{27}) = (1, 120)$.
(3) The spectrum of a $[104, 5, 69]_3$ code is $(a_{26}, a_{32}, a_{36}) = (4, 13, 104)$.
(4) The spectrum of a $[107, 5, 71]_3$ code is $(a_{26}, a_{27}, a_{35}, a_{36}) = (1, 3, 39, 78)$.
(5) The spectrum of a $[108, 5, 72]_3$ code is $(a_{36}, a_{39}) = (4, 117)$.
(6) The spectrum of a $[113, 5, 75]_3$ code is $(a_{32}, a_{35}, a_{39}) = (1, 24, 96)$.
(7) The spectrum of a $[116, 5, 77]_3$ code is $(a_{35}, a_{36}, a_{39}) = (4, 9, 36, 72)$.
(8) The spectrum of a $[117, 5, 78]_3$ code is $(a_{36}, a_{39}) = (13, 108)$.

Since a $[\theta_{k-1} - e, k, q^{k-1} - e]_3$ code $(0 \leq e \leq 2)$ is projective, the set of 0-points C_0 consists of e points. Hence the following lemma follows.

Lemma 3.2. Assume $k \geq 3$ and put $u = \theta_{k-2}$.
(1) The spectrum of a $[\theta_{k-1} - 2, k, q^{k-1} - 2]_3$ code is $(a_{u-2}, a_{u-1}, a_u) = (\theta_{k-3}, (\theta_{k-1} - \theta_{k-3})/2, (\theta_{k-1} - \theta_{k-3})/2)$.
(2) The spectrum of a $[\theta_{k-1} - 1, k, q^{k-1} - 1]_3$ code is $(a_{u-1}, a_u) = (\theta_{k-2}, q^{k-1})$.
(3) The spectrum of a $[\theta_{k-1}, k, q^{k-1}]_3$ code is $a_u = \theta_{k-1}$.

The following lemma relies upon the classification of some optimal ternary linear codes of small length by van Eupen and Lisoněk [7].

Lemma 3.3 ([7]). (1) The spectrum of a $[8, 3, 5]_3$ code is $(a_0, a_2, a_3) = (1, 4, 8)$.
(2) The spectrum of a $[9, 3, 6]_3$ code is $(a_0, a_3) = (1, 12)$.
(3) The spectrum of a $[14, 3, 9]_3$ code is either $(a_4, a_5) = (9, 4), (a_2, a_5) = (3, 10)$ or $(a_3, a_4, a_5) = (3, 3, 7)$.
(4) The spectrum of a $[18, 3, 12]_3$ code is $(a_0, a_6) = (1, 12)$ or $(a_3, a_6) = (2, 11)$.
(5) The spectrum of a $[20, 3, 13]_3$ code satisfies $a_i = 0$ for all $i \not\in \{2, 3, 4, 5, 6, 7\}$.

(6) The spectrum of a $[10, 4, 6]_3$ code is $(a_1, a_4) = (10, 30)$.

(7) The spectrum of a $[19, 4, 12]_3$ code is $(a_1, a_4, a_7) = (1, 9, 30)$.

(8) The spectrum of a $[27, 4, 35]_3$ code is $(a_0, a_9) = (1, 39)$.

(9) The spectrum of a $[32, 4, 21]_3$ code is $(a_8, a_12) = (1, 32)$.

(10) The spectrum of a $[35, 4, 23]_3$ code is $(a_8, a_9, a_{12}) = (1, 3, 12, 24)$.

(11) The spectrum of a $[36, 4, 24]_3$ code is $(a_9, a_{12}) = (4, 36)$.

Lemma 3.4. The spectrum of a $[41, 4, 27]_3$ code satisfies $a_i = 0$ for all $i \not\in \{11, 12, 13, 14\}$.

Lemma 3.5. (1) The spectrum of a $[52, 4, 34]_3$ code satisfies

$$a_i = 0 \quad \text{for all} \ i \not\in \{0, 7, 8, 9, 16, 17, 18\}.$$

(2) The spectrum of a $[53, 4, 35]_3$ code is one of the following:

(a) $(a_0, a_{17}, a_{18}) = (1, 13, 26)$,
(b) $(a_8, a_9, a_{11}, a_{12}) = (1, 3, 12, 24)$.

Lemma 3.6. The spectrum of a $[59, 4, 39]_3$ code satisfies $a_i = 0$ for all $i \not\in \{8, 11, 14, 17, 20\}$.

Lemma 3.7. The spectrum of a $[122, 5, 81]_3$ code satisfies $a_i = 0$ for all $i \not\in \{38, 39, 40, 41\}$.

The following lemma is due to Landjev [18].

Lemma 3.8 ([18]). (1) The spectrum of a $[50, 4, 33]_3$ code is one of the following:

(a) $(a_8, a_{14}, a_{17}) = (2, 4, 34)$,
(b) $(a_{11}, a_{14}, a_{17}) = (2, 6, 32)$,
(c) $(a_{14}, a_{17}) = (11, 30)$.

(2) Every $[49, 4, 32]_3$ code is extendable, so $a_i = 0$ for all $i \not\in \{7, 8, 10, 11, 13, 14, 16, 17\}$.

Lemma 3.9. The spectrum of a $[154, 5, 102]_3$ code satisfies $a_i = 0$ for all $i \not\in \{25, 46, 49, 52\}$.

Lemma 3.10. (1) The spectrum of a $[158, 5, 105]_3$ code is $(a_{26}, a_{50}, a_{53}) = (2, 13, 106)$.

(2) Every $[157, 5, 104]_3$ code is extendable.

We omit the proof of Lemmas 3.1–3.10 here.

Lemma 3.11. (1) The spectrum of a $[176, 5, 117]_3$ code is either

(a) $(a_{21}, a_{50}, a_{59}) = (1, 8, 112)$ or

(b) $(a_{41}, a_{50}, a_{59}) = (a, 11 - 2a, 110 + a)$ for some a with $0 \leq a \leq 5$.

(2) Every $[175, 5, 116]_3$ code is extendable.
Proof. (1) See [20].
(2) Let C be a $[175, 5, 116]_3$ code. Then γ_3-solid has no j-solid for $j < 8$ by Lemma 3.6, so $a_i = 0$ for all $i < 22$ by Lemma 2.1. Hence, by Lemma 2.4, we have
\[
a_i = 0 \text{ for all } i \notin \{31, 32, 40, 41, 49, 50, 58, 59\},
\]
which implies that C is extendable by Theorem 2.5.

4. Proof of Theorem 1.4

Theorem 4.1. There exists no $[458, 6, 304]_3$ code.

Proof. Let C be a $[458, 6, 304]_3$ code. Then a γ_4-hyperplane has no j-solid for $j < 25$ by Lemma 3.9, so $a_i = 0$ for all $i < 71$ by Lemma 2.1. Hence $a_i = 0$ for all $i \notin \{80, 81, 104, 107, 108, 113, 116, 117, 119 - 122, 134, 135, 136, 152, 153, 154\}$. by Lemma 2.4. Now, let Π be a 104-hyperplane. Then the spectrum of Π is $(\tau_{26}, \tau_{32}, \tau_{35}) = (4, 13, 104)$ by Lemma 3.1(3), which contradicts Lemma 3.9 (a γ_4-hyperplane has no j-solid for $j = 26, 32, 35$). Hence $a_{104} = 0$. Similarly, we get $a_{107} = a_{108} = a_{113} = a_{122} = 0$ by Lemmas 3.1(4)(5)(6), 3.7, 3.9. Hence
\[
a_i = 0 \text{ for all } i \notin \{80, 81, 116, 117, 119 - 121, 134 - 136, 152 - 154\}.
\]

Next, let Π_0 be a 154-hyperplane. Since (2.1) with $i = 154$ has no solution for $t = 25$ and for $t = 49$, the spectrum of Π_0 satisfies $a_i = 0$ for all $i \notin \{46, 52\}$ by Lemma 3.9. Let Δ be a 52-solid in Π_0. Applying Lemma 2.4 to Π_0, (2.1) with $i = 52$ has no solution for $t = 0, 7, 8, 9, 17$. Hence the spectrum of Δ satisfies $a_i = 0$ for all $i \notin \{16, 18\}$ by Lemma 3.5(1). Let δ be a 16-plane in Δ. Applying Lemma 2.4 to Δ, (2.1) with $i = 16$ has no solution for $t = 0, 1, 2, 3, 5$. Hence the spectrum of δ satisfies $a_i = 0$ for all $i \notin \{4, 6\}$. But there exists no $[16, 3, 10]_3$ code with such spectrum (see [7]), a contradiction. This completes the proof.

Theorem 4.2. There exists no $[467, 6, 310]_3$ code.

Proof. Let C be a $[467, 6, 310]_3$ code. Then a γ_4-hyperplane has no j-solid for $j < 25$ by Lemma 3.10, so $a_i = 0$ for all $i < 71$ by Lemma 2.1. Hence
\[
a_i = 0 \text{ for all } i \notin \{74, 80, 81, 104, 107, 108, 113, 116, 117, 119 - 122, 146, 152 - 157\}
\]
by Lemma 2.4. Let Π be a 108-hyperplane. Then the spectrum of Π is $(\tau_{37}, \tau_{38}) = (4, 117)$ by Lemma 3.1(5), which contradicts Lemma 3.10 (a γ_4-hyperplane has no 27-nor 36-solid).
Hence $a_{108} = 0$. Similarly, we get $a_{81} = a_{113} = a_{116} = a_{117} = a_{120} = a_{121} = a_{122} = 0$
by Lemmas 3.1(2)(6)(7)(8), 3.2, 3.7, 3.10. Hence
\[a_i = 0 \text{ for all } i \notin \{74, 80, 104, 107, 113, 116, 117, 120, 121, 122\}. \]

Suppose $a_{80} > 0$ and let Π be a 80-hyperplane. Setting $(i, t) = (80, 27)$, (2.1) has no
solution since $c_{157} = 0$ (a 157-hyperplane has no 27-solid), which contradicts the spectrum
of Π (Lemma 3.1(1)). Hence $a_{80} = 0$. Similarly we get $a_{104} = a_{107} = 0$ by Lemmas 2.5,
3.1(3) (4). Hence $a_i = 0$ for all $i \notin \{74, 146, 152 - 157\}$.

Now, let Π_0 be a 158-hyperplane. Then the spectrum of Π is $(\tau_{26}, \tau_{50}, \tau_{53}) = (2, 13, 106)$
by Lemma 3.10(1), but (2.1) has no solution for $(i, t) = (158, 50)$, a contradiction. This completes
the proof.

Theorem 4.3. There exists no $[471, 6, 313]_3$ code.

Proof. Let C be a $[471, 6, 313]_3$ code. Then a γ_4-hyperplane has no j-solid for $j < 26$ by
Lemma 3.10(1), so $a_i = 0$ for all $i < 75$ by Lemma 2.1. Hence
\[a_i = 0 \text{ for all } i \notin \{81, 108, 117, 120, 121, 156 - 158\} \]
by Lemma 2.4. Now, let Π be a 158-hyperplane. Then the spectrum of Π is $(\tau_{26}, \tau_{50}, \tau_{53}) = (2, 13, 106)$
by Lemma 3.10(1), but (2.1) has no solution for $(i, t) = (158, 50)$, a contradiction. This completes the proof.

Theorem 4.4. There exists no $[522, 6, 347]_3$ code.

Proof. Let C be a $[522, 6, 347]_3$ code. Then a γ_4-hyperplane has no j-solid for $j < 31$ by
Lemma 3.11, so $a_i = 0$ for all $i < 90$ by Lemma 2.1. Hence
\[a_i = 0 \text{ for all } i \notin \{90, 91, 108, 117 - 122, 162, 171, 172, 174, 175\}, \]
by Lemma 2.4. Let Π be a γ_4-hyperplane. Then (2.1) for $i = 175$ has no solution for $t = 49, 50$, which contradicts that the spectrum of Π satisfies $\tau_{49} + \tau_{50} > 0$ by Lemma 3.11.
This completes the proof.
5. Proof of Theorem 1.2

A linear code \(C \) is \(w \)-weight if \(C \) has exactly \(w \) non-zero weights \(i \) with \(A_i > 0 \). The method finding another code (called projective dual in [16]) from a given \(2 \)-weight code was first found by van Eupen and Hill [6], see also [3]. We consider the projective dual of a \(3 \)-weight code with \(\gamma_0 = 2 \). Recall that \(\lambda_i \) stands for the number of \(i \)-points in \(\Sigma = \text{PG}(k-1, q) \) defined from \(C \).

Considering \((n-d-2m) \)-hyperplanes, \((n-d-m)- \) hyperplanes and \((n-d) \)-hyperplanes of \(\Sigma \) as \(2 \)-points, \(1 \)-points and \(0 \)-points respectively in the dual space \(\Sigma^* \) of \(\Sigma \), we obtain the following lemma.

Lemma 5.1. Let \(C \) be a \(3 \)-weight \([n, k, d]_q \) code with \(q = p^h \), \(p \) prime, \(\gamma_0 = 2 \), whose spectrum is \((a_{n-d-2m}, a_{n-d-m}, a_{n-d}) = (\alpha, \beta, \theta_{k-1} - \alpha - \beta) \), where \(m = p^r \) for some \(1 \leq r < h(k-2) \) satisfying \(m | d \) and \(\lambda_i > 0 \) \((0 \leq i \leq 2) \). Then there exists a \(3 \)-weight \([n^*, k, d^*]_q \) code \(C^* \) with \(n^* = 2\alpha + \beta \), \(d^* = 2\alpha + \beta - nt + \frac{d}{m}\theta_{k-2} \) whose spectrum is \((a_{n^*-2t}, a_{n^*-t}, a_{n^*-d}) = (\lambda_2, \lambda_1, \lambda_0) \), where \(t = p^{h(k-2)-r} \).

Proof of Theorem 1.3. Let \(C \) be a \([14, 6, 6]_3 \) code with a generator matrix

\[
\begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 2 & 0 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 2 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 2 & 1 & 1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 1 & 1 & 1 & 1
\end{bmatrix}
\]

Then the spectrum of \(C \) is \((a_2, a_5, a_8) = (93, 220, 51) \) and we have \((\lambda_2, \lambda_1, \lambda_0) = (1, 12, 351) \). Applying Lemma 5.1 we get a \([406, 6, 270]_3 \) code \(C^* \) with the spectrum \((a_{82}, a_{109}, a_{136}) = (1, 12, 351) \).

Lemma 5.2 ([15]). Let \(C_1 \) and \(C_2 \) be \([n_1, k, d_1]_q \) and \([n_2, k-1, d_2]_q \) codes respectively and assume that \(C_1 \) contains a codeword of weight at least \(d_1 + d_2 \). Then there exists an \([n_1 + n_2, k, d_1 + d_2]_q \) code.

Applying Lemma 5.2 to a \([406, 6, 270]_3 \) code as \(C_1 \) and \([20, 5, 12]_3 \), \([47, 5, 30]_3 \), \([49, 5, 31]_3 \), \([55, 5, 36]_3 \) codes as \(C_2 \), we get \([426, 6, 282]_3 \), \([453, 6, 300]_3 \), \([455, 6, 301]_3 \), \([461, 6, 306]_3 \) codes respectively. Hence Theorem 1.2 follows from Theorems 1.1 and 1.4.

References

