<table>
<thead>
<tr>
<th>Title</th>
<th>On a class of rigid Coxeter groups (Cohomology Theory of Finite Groups and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hosaka, Tetsuya</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2006, 1466: 99-102</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/48044</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>Publisher</td>
</tr>
</tbody>
</table>
On a class of rigid Coxeter groups

保坂 哲也 (Tetsuya Hosaka)

The purpose of this note is to introduce some results of recent papers [4] and [5] about rigid Coxeter groups.

A Coxeter group is a group W having a presentation

$$\langle S \mid (st)^{m(s,t)} = 1 \text{ for } s,t \in S \rangle,$$

where S is a finite set and $m : S \times S \to \mathbb{N} \cup \{\infty\}$ is a function satisfying the following conditions:

(i) $m(s,t) = m(t,s)$ for any $s,t \in S$,

(ii) $m(s,s) = 1$ for any $s \in S$, and

(iii) $m(s,t) \geq 2$ for any $s,t \in S$ such that $s \neq t$.

The pair (W,S) is called a Coxeter system. For a Coxeter group W, a generating set S' of W is called a Coxeter generating set for W if (W,S') is a Coxeter system. Let (W,S) be a Coxeter system. For a subset $T \subset S$, W_T is defined as the subgroup of W generated by T, and called a parabolic subgroup. A subset $T \subset S$ is called a spherical subset of S, if the parabolic subgroup W_T is finite.

Let (W,S) and (W',S') be Coxeter systems. Two Coxeter systems (W,S) and (W',S') are said to be isomorphic, if there exists a bijection $\psi : S \to S'$ such that

$$m(s,t) = m'(\psi(s), \psi(t))$$

for every $s,t \in S$, where $m(s,t)$ and $m'(s',t')$ are the orders of st in W and $s't'$ in W', respectively.
A diagram is an undirected graph Γ without loops or multiple edges with a map $\text{Edges}(\Gamma) \rightarrow \{2, 3, 4, \ldots\}$ which assigns an integer greater than 1 to each of its edges. Since such diagrams are used to define Coxeter systems, they are called Coxeter diagrams.

In general, a Coxeter group does not always determine its Coxeter system up to isomorphism. Indeed some counter-examples are known.

Example ([1, p.38 Exercise 8], [2]). It is known that for an odd number $k \geq 3$, the Coxeter groups defined by the diagrams in Figure 1 are isomorphic and D_{2k}.

![Figure 1](image1.png)

Figure 1. Two distinct Coxeter diagrams for D_{2k}

Example ([2]). It is known that the Coxeter groups defined by the diagrams in Figure 2 are isomorphic by the diagram twisting ([2, Definition 4.4]).

![Figure 2](image2.png)

Figure 2. Coxeter diagrams for isomorphic Coxeter groups

Here there exists the following natural problem.

Problem ([2], [3]). When does a Coxeter group determine its Coxeter system up to isomorphism?
A Coxeter group W is said to be *rigid*, if the Coxeter group W determines its Coxeter system up to isomorphism (i.e., for each Coxeter generating sets S and S' for W the Coxeter systems (W, S) and (W, S') are isomorphic).

A Coxeter system (W, S) is said to be *even*, if $m(s, t)$ is even for all $s \neq t$ in S. Also a Coxeter system (W, S) is said to be *strong even*, if $m(s, t) \in \{2\} \cup 4\mathbb{N}$ for all $s \neq t$ in S.

The following theorem was proved by Radcliffe in [6].

Theorem 1 ([6]). If (W, S) is a strong even Coxeter system, then the Coxeter group W is rigid.

In [4], we first proved the following theorem which give a new class of rigid Coxeter groups.

Theorem 2. Let (W, S) be a Coxeter system. Suppose that

0. for each $s, t \in S$ such that $m(s, t)$ is even, $m(s, t) = 2$,
1. for each $s \neq t \in S$ such that $m(s, t)$ is odd, $\{s, t\}$ is a maximal spherical subset of S,
2. there does not exist a three-points subset $\{s, t, u\} \subset S$ such that $m(s, t)$ and $m(t, u)$ are odd, and
3. for each $s \neq t \in S$ such that $m(s, t)$ is odd, the number of maximal spherical subsets of S intersecting with $\{s, t\}$ is at most two.

Then the Coxeter group W is rigid.

Example. The Coxeter groups defined by the diagrams in Figure 3 are rigid by Theorem 2.

![Figure 3](image-url)
In [5], we also proved the following theorem which is an extension of Theorem 1 and Theorem 2.

Theorem 3. Let \((W, S)\) be a Coxeter system. Suppose that

1. for each \(s, t \in S\) such that \(m(s, t)\) is even, \(m(s, t) \in \{2\} \cup 4\mathbb{N}\),
2. for each \(s \neq t \in S\) such that \(m(s, t)\) is odd, \(\{s, t\}\) is a maximal spherical subset of \(S\),
3. there does not exist a three-points subset \(\{s, t, u\} \subset S\) such that \(m(s, t)\) and \(m(t, u)\) are odd, and
4. for each \(s \neq t \in S\) such that \(m(s, t)\) is odd, the number of maximal spherical subsets of \(S\) intersecting with \(\{s, t\}\) is at most two.

Then the Coxeter group \(W\) is rigid.

References

Department of Mathematics, Utsunomiya University, Utsunomiya, 321-8505, Japan

E-mail address: hosaka@cc.utsunomiya-u.ac.jp