BROWN-PETERSON COHOMOLOGY OF BPU(p)

MASAKI KAMEKO (亀子正喜 富山国際大学地域学科) NOBUAKI YAGITA (柳田伸顕 茨城大学教育学部)

Let p be a fixed odd prime and denote by $BP^*(X)$ (resp. $P(m)^*(X)$) the Brown-Peterson cohomology of a space X with the coefficient ring $BP^* = \mathbb{Z}_{(p)}[v_1, v_2, \cdots]$ (resp. $P(m)^* = \mathbb{Z}/p[v_m, v_{m+1}, \cdots]$) where $\deg v_k = -2p^k + 2$. We denote by PU(n) the projective unitary group which is the quotient of the unitary group U(n) by its center S^1 . Recall that the cohomologies of PU(p) and exceptional Lie groups F_4, E_6, E_7, E_8 have odd torsion elements. In this paper, we compute the Brown-Peterson cohomologies of classifying spaces BG of these Lie groups G as BP^* -modules using the Adams spectral sequence. Let us write $H^*(X; \mathbb{Z}/p)$ by simply $H^*(X)$ and let A be the mod p Steenrod algebra.

Our main result is as follows:

Theorem 0.1. Let (G,p) be one of cases (G = PU(p),p) for an arbitrary odd prime p and $G = F_4$, E_7 for p = 3, and $G = E_8$ for p = 5. Then the E_2 -terms of the Adams spectral sequences abutting to $BP^*(BG)$ and $P(m)^*(BG)$ for $m \ge 1$

$$\operatorname{Ext}_{A}^{s,t}(H^{*}(BP),H^{*}(BG)), \qquad \operatorname{Ext}_{\mathcal{A}}^{s,t}(H^{*}(P(m)),H^{*}(BG))$$

have no odd degree elements.

As an immediate consequence is as follows:

Corollary 0.2. For (G,p) in Theorem 1.1, the Adams spectral sequence abutting to $BP^*(BG)$ and $P(m)^*(BG)$ in the previous theorem collapse at the E_2 -level. In particular $BP^{odd}(BG) = P(m)^{odd}(BG) = 0$.

Recall $K(m)^*(X) \cong K(m)^* \otimes_{P(m)^*} P(m)^*(X)$ is the Morava K-theory. From above theorem and corollary, we see $K(m)^{odd}(BPU(p)) = 0$. Then we have the following corollary ([Ko-Ya],[Ra-Wi-Ya])

Corollary 0.3. For (G, p) in Theorem 1.1, the following holds:

- (1) $BP^*(BG)$ is BP^* -flat for $BP^*(BP)$ -modules, i.e., $BP^*(BG \times X) \cong BP^*(BG) \otimes_{BP^*} BP^*(X)$ for all finite complexes X
- (2) $K(n)^*(BG) \cong K(n)^* \otimes_{BP^*} BP^*(BG)$.
- (3) $P(n)^*(BG) \cong P(n)^* \otimes_{BP^*} BP^*(BG)$.

We give the BP^* -module structure of $BP^*(BPU(p))$ more explicitly, in this talk.

Theorem 0.4. There is a BP*-algebra isomorphism

$$0 \to BP^* \widehat{\otimes} M \to grBP^* (BPU(p)) \to BP^* \widehat{\otimes} IN/(f_0, f_1) \to 0$$

where

- 1. $M \cong \mathbb{Z}_{(p)}[x_4, x_6, \cdots, x_{2p}]$ as $\mathbb{Z}_{(p)}$ -modules (but not $\mathbb{Z}_{(p)}$ algebras).
- 2. $IN \cong \mathbb{Z}_{(p)}[x_{2p+2}, x_{2p(p-1)}]\{x_{2p+2}\}$; the principal ideal of $\mathbb{Z}[x_{2p+2}, x_{2p(p-1)}]$ generated by x_{2p+2} .

MASAKI KAMEKO (亀子正喜 富山国際大学地域学科) NOBUAKI YAGITA (柳田伸顕 茨城大学教育学部)

3. relations f_0, f_1 are given with modulo $(p, v_1, v_2, \cdots)^2$

$$f_0 \equiv v_0 - v_2 x_{2v+2}^{p-1} + \cdots, \quad f_1 \equiv v_1 - v_2 x_{2v(p-1)} + \cdots.$$

Remark 0.5. In the above theorem, suffix i of x_i means its degree. $BP^*(BPU(p))$ does not contain the subalgebra $BP^*\widehat{\otimes}\mathbb{Z}_{(p)}[x_4,\ldots,x_{2p}]$, but contains a subalgebra which is isomorphic as BP^* -modules to the above BP-subalgebra.

For an algebraic group G over \mathbb{C} , Totaro defines its Chow ring [To] and conjectures that $BP^*(BG) \otimes_{BP^*} \mathbb{Z}_{(p)} \cong CH^*(BG)_{(p)}$. Recall that $PGL(p,\mathbb{C})$ is the algebraic group over \mathbb{C} corresponding the Lie group PU(p).

Theorem 0.6. There is the isomorphism

$$BP^*(BPU(p)) \otimes_{BP^*} \mathbb{Z}_{(p)} \cong CH^*(BGL(p,\mathbb{C}))_{(p)}.$$

Hence there is the additive isomorphism

$$CH^*(BGL(p,\mathbb{C}))_{(p)} \cong \mathbb{Z}_{(p)}[x_4,x_6,\cdots,x_{2p}] \oplus \mathbb{F}_p[x_{2p+2},x_{2p(p-1)}]\{x_{2p+2}\}.$$

Remark. Recently Vistoli [Vi] also determined the additive structure of the Chow ring and integral cohomology of $BPGL(p, \mathbb{F}_p)$ by using stratified methods of Vessozi. Moreover he shows that for $G = PGL(p, \mathbb{C})$

$$H^*(G; \mathbb{Z}) \to H^*(BT; \mathbb{Z})^{W_G(T)}$$

is epic.

Let $MGL^{*,*}(X)$ be the motivic cobordism ring defined by V.Voevodsky [Vo] and $MGL^{2*,*}(X) = \bigoplus_i MGL^{2i,i}(X)$.

Corollary 0.7.
$$MGL^{2*,*}(BPGL(p,\mathbb{C}))_{(p)} \cong MU^*(BPU(p))_{(p)}$$
.

We prove Theorem 1.1 using the Adams spectral sequence converging to the Browen-Peterson cohomology. The E_1 -term of the spectral sequence could be given by

$$\mathbb{F}_p[v_0, v_1, \cdots] \widehat{\otimes} H^*(X) \quad with \quad d_1 x = \sum_{k=0}^{\infty} v_k Q_k x$$

where Q_k 's are Milnor's operations. By the change-of-rings isomorphism, the E_2 -term is

$$\operatorname{Ext}_{\mathcal{A}}(H^*(BP), H^*(X)) \cong \operatorname{Ext}_{\mathcal{E}}(\mathbb{F}_p, H^*(X))$$

where $\mathcal{E} = \Lambda(Q_0, Q_1, \cdots)$. The E_{∞} -term is given by $grBP^*(X)$.

To state the cohomology $H^*(BPU(p))$, we recall the Dickson algebra. Let A_n be an elementary abelian p-group of rank n, and

$$H^*(BA_n) \cong \mathbb{F}_p[t_1, ..., t_n] \otimes \Lambda(dt_1, ..., dt_n)$$
 with $\beta(dt_i) = t_i$.

The Dickson algebra is

$$D_n = \mathbb{F}_p[t_1,...,t_n]^{GL(n,\mathbb{F}_p)} \cong \mathbb{F}_p[c_{n,0},...,c_{n,n-1}]$$

with $|c_{n,i}| = 2(p^n - p^i)$. The invariant ring under $SL(n, \mathbb{F}_p)$ is also given

$$SD_n = \mathbb{F}_p[t_1,...,t_n]^{SL(n,\mathbb{F}_p)} \cong D_n\{1,e_n,...,e_n^{p-2}\} \quad with \ e_n^{p-1} = c_{n,0}.$$

We also recall the Mui's ([Mu]) result by using Q_i by [Ka-Mi]

$$grH^*(BA)^{SL_n(\mathbb{F}_p)} \cong SD_n/(e_n) \oplus SD_n \otimes \Lambda(Q_0, ..., Q_{n-1})\{u_n\}$$

where $u_n = dt_1...dt_n$ and $e_n = Q_0...Q_{n-1}u_n$.

Theorem 0.8. There is the short exact sequence

$$0 \to M/p \to H^*(BPU(p)) \to N \to 0$$

where M/p is the trivial \mathcal{E} -module given in Theorem 1.4 and

$$N = SD_2 \otimes \Lambda(Q_0, Q_1)\{u_2\} \cong \mathbb{F}_p[x_{2p+2}, x_{2(p^2-p)}] \otimes \Lambda(Q_0, Q_1)\{u_2\}$$

identifying $x_{2p+2} = e_2$ and $x_{2(p^2-p)} = c_{2,1}$.

This theorem is proved by using the following facts. The group G = PU(p) has just two conjugacy classes of maximal elementary abelian p-subgroups, one of which is toral and the other is non-toral A of $rank_p = 2$. The cohomology $H^*(BG)$ is detected by this two subgroups. The restriction image to the non-toral subgroup is $i_A^*(H^*PU(p)) \cong H^*(BA)^{SL(2,\mathbb{F}_p)}$. Similar (but not same) facts also hold for the exceptional Lie groups given in Theorem 1.1.

Algebraic main result in this talk is as follows:

Theorem 0.9. For $m \geq 0$, define $f_0, ..., f_{n-1}$ in $P(m)^* \widehat{\otimes} SD_n$ by

$$d_1 u_n = \sum_{k \ge m} v_k Q_k(u_n) = f_0 Q_0 u_n + \dots + f_{n-1} Q_{n-1} u_n.$$

Then the sequence f_0, \ldots, f_{n-1} is a regular sequence in $P(m)^* \widehat{\otimes} SD_n$.

With the notation in this theorem, we prove that the complex

$$C = (P(m)^* \widehat{\otimes} SD_n \otimes \Lambda(Q_0, Q_1, \cdots, Q_{n-1}) \{u_n\}, d_1)$$

with the differential $d_1u_n = \sum_{i=0}^{n-1} f_i Q_i u_n$ is a Koszul complex. This means that

$$H_i(C, d_1) = \begin{cases} P(m)^* \widehat{\otimes} SD_n\{e_n\}/(f_0, \dots, f_{n-1}) & \text{for } i = 0\\ 0 & \text{for } i \ge 1. \end{cases}$$

Thus Theorem 1.1 follows from the above theorem.

Remark about the convergence of the Adams spectral sequence. By Theorem 15.6 in Boardman's paper [Bo2], since $H^*(BP)$ is of finite type, the above Adams spectral sequence is conditionally convergent. Moreover, since we prove the above Adams spectral sequence collapses at the E_2 -level, by the remark after Theorem 7.1 in [Bo1], the above Adams spectral sequence is strongly convergent, so that we know the Brown-Peterson cohomology up to group extension.

REFERENCES

[A-G-M-V] K.Andersen, J.Grodal, J.Moller and A.Viruel, The classification of p-compact groups for p odd. preprint arXiv:math. AT/0302346 vl 27 Feb. (2003).

[Bo1] J.M.Boardman, Operations and the Adams spectral sequence for Brown-Peterson homology and cohomology. preprint (1988).

[Bo2] J.M. Boardman, Conditionally Convergent Spectral Sequences. Contemp. Math., 239 (1999) 49-84.

[Ka-Mi] M.Kameko and M.Mimura, Mui invariant and Milnor operations preprint

[Kal] M.Kameko Poincare series of cotorsion products Preprint

[Ka2] M.Kameko In preparation.

[Ko-Mi] A.Kono and M.Mimura, Cohomology of mod 3 of the classifying space of the Lie group $E_6.Math.\ Scand.\ 46\ (1978),\ 223-235.$

[Ko-Ya] A. Kono and N. Yagita. Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups. Trans. of AMS. 339 (1993), 781-798.

[Mu] H.Mui. Modular invariant theory and the cohomology algebras of symmetric groups. J.Fac.Sci. U. of Tokyo 22 (1975), 319-369.

MASAKI KAMEKO (亀子正喜 富山国際大学地域学科) NOBUAKI YAGITA(柳田伸顕 茨城大学教育学部)

- [Toda] H.Toda Cohomology mod 3 of the classifying space BF_4 of the exceptional group F_4 . J.Math.Kyoto Univ. 13 (1973) 97-115.
- [To] B. Totaro. The Chow ring of classifying spaces. Proc. of Symposia in Pure Math. "Algebraic K-theory" (1997: University of Washington, Seattle) 67 (1999), 248-281.
- [Ve] G.Vezzosi. On the Chow ring of the classifying stack of $PGL_{3,C}$. J.Reine Angew. Math. 523 (2000), 1-54.
- [Vo] V. Voevodsky. The Milnor conjecture. www.math.unic.edu/K-theory/0176 (1996)
- [Ra-Wi-Ya] D. C. Ravenel, W. S. Wilson and N. Yagita. Brown-Peterson cohomology from Morava K-theory. K-theory 15 (1998), 147-199.
- [Vi] A.Vistoli. On the cohomology and the chow ring of the classifying space of PGL_p . http://orgi.math.purdue.edu (2005), May.
- [Te-Ya] M. Tezuka and N.Yagita. The varieties of the mod p cohomology rings of extraspecial p-groups for an odd prime p. Math. Proc. Cambridge Phil. Soc. 94 (1983) 449-459.
- [Ya] N.Yagita. Applications of Atiyah-Hirzebruch spectral sequences for motivic cobordism. Proc. London Math. Soc. 90 (2005) 783-816.

Faculty of Regional science, Toyama University of Internal Studies, Toyama, Japan

Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan kameko@tuins.ac.jp, yagita@mx.ibaraki.ac.jp