<table>
<thead>
<tr>
<th>Title</th>
<th>Note on blocks of p-solvable groups with same Brauer category (Cohomology Theory of Finite Groups and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Watanabe, Atumi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1466: 115-118</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/48047</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Note on blocks of p-solvable groups with same Brauer category

熊本大学理学部 渡辺アツミ (Atumi Watanabe)
Department of Mathematics, Faculty of Science
Kumamoto University

1

Let p be a prime and let O be a complete discrete valuation ring with an algebraically closed residue field k of characteristic p. Let G be finite group and b be a block of G with maximal (G,b)-subpair (P,e_P) where b is a block idempotent of OG. For any subgroup Q of P, let (Q,e_Q) be a unique (G,b)-subpair contained in (P,e_P). Following Kessar, Linckelmann and Robinson [4], we denote by $\mathcal{F}_{(P,e_P)}(G,b)$ the category whose objects are subgroups of P and for Q, $R \leq P$, whose set of morphisms from Q to R are the set of group homomorphisms $\varphi : Q \to R$ such that there exists $x \in G$ such that $\varphi(Q,e_Q) \subseteq (R,e_R)$ and $\varphi(u) = xux^{-1}$ for all $u \in Q$. We call $\mathcal{F}_{(P,e_P)}(G,b)$ the Brauer category of b. Let $B_G(b)$ be the Brauer category of b in the sense of Thévenaz [10], § 47. The categories $\mathcal{F}_{(P,e_P)}(G,b)$ and $B_G(b)$ are equivalent. Let R be a normal subgroup of P such that $N_G(P) \subseteq N_G(R)$ and c be the Brauer correspondent of b in $N_G(R)$, that is, c is a unique block of $N_G(R)$ such that $Br_P(c) = Br_P(b)$ where Br_P is the Brauer homomorphism from $(OG)^P$ onto $kC_G(P)$. Set $N = N_G(R)$. The notations R, c and N are fixed. Thus $b = c^G$ and (P,e_P) is a maximal (N,c)-subpair. The arguments in the proof of Theorem in Kessar-Linckelmann [5] imply the following.

Theorem 1 Assume that G is p-solvable. With the above notations, suppose that $\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e_P)}(N,c)$. Then there is an indecomposable OGb-ONc-bimodule M which satisfies the following.

(i) M and its O-dual M^* induce a Morita equivalence between OGb and ONc.

(ii) As an $O(G \times N)$-module M has a vertex ΔP and an endo-permutation $O(\Delta P)$-module as a source where $\Delta P = \{(u,u) \mid u \in P\}$.

Let $H^*_r(P,e_P)(G,b)$ be the cohomology ring of b in the sense of Linckelmann [6], [7], that is, $H^*_r(P,e_P)(G,b)$ is the subring of $H^*_r(P,k)$ consisting of $\zeta \in H^*_r(P,k)$ satisfying $\text{res}_Q \zeta = g \text{res}_Q \zeta$ for all $Q \leq P$ and, for all $g \in N_G(Q,e_Q)$. We prove the following.

Theorem 2 Assume that G is p-solvable. With the above notations, if $H^*_r(P,e_P)(G,b) = H^*_r(P,e_P)(N,c)$, then $\mathcal{F}_{(P,e_P)}(G,b) = \mathcal{F}_{(P,e_P)}(N,c)$.
We prove Theorem 1 using the following.

Lemma 1 (Harris-Linckelmann [3], Lemma 4.2) Assume that G is p-solvable. For any p-subgroup Q of G, we have $O_{p'}(N_{G}(Q)) = O_{p'}(G) \cap N_{G}(Q) = O_{p'}(G) \cap C_{G}(Q) = O_{p'}(C_{G}(Q))$.

Proposition 1 (Harris-Linckelmann [2], Proposition 3.1 (iii)) Let G be a p-solvable group and b be a block of G such that b covers a G-invariant block of $O_{p'}(G)$. Then b is of principal type. That is, for any p-subgroup Q of G, $Br_{Q}(b)$ is a block of $kC_{G}(Q)$.

Proposition 2 (Fong[1]; Puig[9]) Let G be a p-solvable group and b be a block of G with defect group P. Then the following holds.

(i) There is a subgroup H of G and an H-invariant block e of $O_{p'}(H)$ such that $O_{p'}(G)P \subseteq H$ and $OGb \cong \text{Ind}_{H}^{G}(OHe)$ as interior G-algebras.

(ii) P is a Sylow p-subgroup of H and P is a defect group of e as a block of H. Moreover, let (P,e_{P}) be a maximal (H,e)-subpair and let $e_{P} = \mathcal{T}_{C_{H}(P)}^{G}(e_{P})$. Then (P,e_{P}) is a maximal (G,b)-subpair.

Note that in the above proposition $\mathcal{F}_{(Pe_{P})}(G,b) = \mathcal{F}_{(Pe_{P})}(H,e)$ since $OGb \cong \text{Ind}_{H}^{G}(OHe)$ as interior G-algebras.

Proposition 3 ([5]. Proposition 6) With the notations in the above proposition, let R be a subgroup of P such that $N_{G}(P) \subseteq N_{G}(R)$. Denote by c the Brauer correspondent of b in $N_{G}(R)$, and by f the Brauer correspondent of e in $N_{H}(R)$. Then f is an $N_{H}(R)$-invariant block of $O_{p'}(N_{H}(R))$ and $ON_{G}(R)c \cong \text{Ind}_{N_{H}(R)}^{N_{G}(R)}(ON_{H}(R)f)$ as interior $N_{G}(R)$-algebras.

The following is shown in the proof of Theorem in [5].

Theorem 3 (Kessar-Linckelmann) Let G be a p-solvable group and b be a block of G with defect group P. Let R be a subgroup of P such that $N_{G}(P) \subseteq N_{G}(R)$ and let c be the Brauer correspondent of b in N where we set $N = N_{G}(R)$. If b covers a G-invariant block of $O_{p'}(G)$ and if $G = O_{p'}(G)N$, then there is an indecomposable $OGb \cdot ONc$-bimodule M which satisfies the following.

(i) M and its O-dual M^{*} induce a Morita equivalence between OGb and ONc.

(ii) As an $O(G \times N)$-module M has a vertex ΔP and an endo-permutation $O(\Delta P)$-module as a source.

Proof of Theorem 1. We prove by induction on $|G|$. Let H, e, e_{P} and e_{P} be as in Proposition 2, and let f be as in Proposition 3. We may assume that e_{P}'s in Theorem 1 and Proposition 2 are equal by replacing H, e, e_{P} and f, by H^{x}, e^{x}, $(e_{P})^{x}$ and f^{x} respectively for some $x \in N_{G}(P)$ if necessary. By Proposition 2,

$$\mathcal{F}_{(Pe_{P})}(G,b) = \mathcal{F}_{(Pe_{P})}(H,e).$$
By Proposition 3, \((P, e'_p)\) is a maximal \((N_H(R), f)\)-subpair and
\[
\mathcal{F}_{(P,e'_p)}(N, c) = \mathcal{F}_{(P,e'_p)}(N_H(R), f).
\]
So by the assumption we have \(\mathcal{F}_{(P,e'_p)}(H, e) = \mathcal{F}_{(P,e'_p)}(N_H(R), f)\). Since \(\mathcal{O}Gb \cong \text{Ind}^G_H(\mathcal{O}He)\) as interior \(G\)-algebras, the \(\mathcal{O}Gb-\mathcal{O}He\)-bimodule \(b\mathcal{O}Ge = \mathcal{O}Ge\) and the \(\mathcal{O}He-\mathcal{O}Gb\)-bimodule \(e\mathcal{O}G\) induce a Morita equivalence between \(\mathcal{O}Gb\) and \(\mathcal{O}He\). Similarly the \(\mathcal{O}Nc-\mathcal{O}N_H(R)f\)-bimodule \(\mathcal{O}Nf\) and the \(\mathcal{O}N_H(R)f-\mathcal{O}Nc\)-bimodule \(f\mathcal{O}N\) induce a Morita equivalence between \(\mathcal{O}Nc\) and \(\mathcal{O}N_H(R)f\). Suppose that \(H < G\). By the induction hypothesis for \(H\) and \(e\), there is an indecomposable \(\mathcal{O}He-\mathcal{O}N_H(R)f\)-bimodule \(M_0\) such that \(M_0\) and \(M'_0\) induce a Morita equivalence between \(\mathcal{O}He\) and \(\mathcal{O}N_H(R)f\) and that \(M_0\) as an \(\mathcal{O}(H \times N_H(R))\)-module has a vertex \(\Delta P\) and an endo-permutation \(\mathcal{O}(\Delta P)\)-module as a source. Set \(M = b\mathcal{O}G \otimes_{\mathcal{O}He} M_0 \otimes_{\mathcal{O}N_H(R)f} \mathcal{O}Nc \cong M_0^{G \times N}\). Then \(M\) satisfies (i) and (ii) in Theorem 1. Therefore we may assume that \(H = G\). Then \(b = e\).

Let \(Y = O_{p',p}(G)\). Then \(b\) is a \(G\)-invariant block of \(Y\) because \(Y/O_{p'}(G)\) is a \(p\)-group. Furthermore we have \(Y = O_{p'}(G)(Y \cap P)\). Set \(Q = P \cap Y\). Then \(Q\) is a defect group of \(b\) as a block of \(Y\). Now since \(G\) is constrained, \(C_Y(Q) = C_G(Q)\). Therefore we see that \((Q, e_Q)\) is a maximal \((Y, b)\)-subpair. By the Frattini argument and the assumption that \(\mathcal{F}_{(P,e_p)}(G, b) = \mathcal{F}_{(P,e_p)}(N, c)\).

\[
G = N_G(Q, e_Q)Y \subseteq N_N(Q)C_G(Q)Y \subseteq NY \subseteq NO_{p'}(G).
\]
So we have \(G = NO_{p'}(G)\). This and Theorem 3 complete the proof.

Proof of Theorem 2. We prove by induction on \(|G|\). Let \(H, e, e'_p\) and \(e_p\) be as in Proposition 2, and let \(f\) be as in Proposition 3. We may assume that \(e_p\)'s in Theorem 2 and Proposition 2 are equal as in the proof of Theorem 1. Since \(\mathcal{F}_{(P,e_p)}(G, b) = \mathcal{F}_{(P,e'_p)}(H, e)\) and \(\mathcal{F}_{(P,e_p)}(N, c) = \mathcal{F}_{(P,e'_p)}(N_H(R), f)\) we have
\[
\]
\[
\]
From the assumption, we have \(H^*_*(P,e'_p)(H, e) = H^*_*(P,e'_p)(N_H(R), f)\). Suppose that \(H < G\). Then by the induction hypothesis, \(\mathcal{F}_{(P,e_p)}(H, e) = \mathcal{F}_{(P,e'_p)}(N_H(R), f)\), and hence \(\mathcal{F}_{(P,e_p)}(G, b) = \mathcal{F}_{(P,e_p)}(N, c)\). Therefore we may assume that \(H = G\). Then \(b\) covers a \(G\)-invariant block of \(O_{p'}(G)\) and \(P\) is a Sylow \(p\)-subgroup of \(G\). Note that the element \(b \in O_{p'}(G)\).

From Proposition 1, \(b\) is of principal type. On the other hand, by Lemma 1, \(\text{Br}_R(b)\) is an \(N\)-invariant block idempotent of \(kO_{p'}(N)\) and \(c\) is a lifting of \(\text{Br}_R(b)\) to \(\mathcal{O}N\). So by Proposition 1, \(c\) is also of principal type. So we may assume that \(b\) is a principal block. Therefore by a theorem of Mislin [8], we obtain \(\mathcal{F}_{(P,e_p)}(G, b) = \mathcal{F}_{(P,e_p)}(N, c)\). This completes the proof.
References

