二面体群の整数係数ホッホシルト・コホモロジー環について有限群のコホモロジー論とその周辺

河野 貴臣

数理解析研究所講究録

数理解析研究所講究録

河野 貴臣

数理解析研究所講究録

数理解析研究所講究録

京都大学
二面体群の整係数ホッホシルト・コホモロジー環について

愛媛大学・理工学研究科 河野 豊臣 (Takaomi Kawano)
Graduate school of science and engineering
Ehime University

1. 序

この報告では、有限群の二面体群 \(G = \langle x, y \mid x^{2^{n+1}} = y^2 = 1, yxy = x^{-1} \rangle \) について、そのホッホシルト・コホモロジー環 \(HH^*(GZ, GZ) \) の構造を決定することを目的とした。

定義 (Hochschild cohomology). 可換環 \(R \), \(R\)-algebra \(A \), \(A \)-両側加群 \(M \) に対して、\(M \) 係数のホッホシルト・コホモロジー環は次で定義される。

\[
HH^*(A, M) = \text{Ext}_A^n(A, M),
\]

但し、\(A^e = A \otimes A^{op} \) となる。

一般に有限群 \(G \) に対して、\(A = GZ \) の場合には、\(G \) の \(M \) への作用を共役で定義したときの普通のコホモロジー環 \(H^*(G, M) \) と同型であることが知られている:

\[
HH^*(GZ, M) \simeq H^*(G, M).
\]

今回考えるのは、特に \(A = M = GZ \) の場合であり、この同型対応により \(H^*(G, GZ) \) を考えることと同値であることが分かれる。従って、以下では \(H^*(G, GZ) \) について議論する。今 \(G \) の共役の解を考えてことにより、\(H^*(G, GZ) \) は次の様に直和分解されることが分かれる。

\[
H^*(G, GZ) = H^*(G, Z) \oplus H^*(G, Z_z) \oplus \left(\bigoplus_{1 \leq k \leq s-1} H^*(G, Z_{C_{x^k}}) \right) \oplus H^*(G, Z_{C_y}) \oplus H^*(G, Z_{C_{yx}}).
\]

但し、ここで \(z = x^{2^n} \) とし、\(C_{x^k}, C_y, C_{yx} \) はそれぞれ \(x^k, y, yx \) を含む共役類とする。この直和分解における各項は、\(H^*(G, Z) \) の元との積について閉じているので、\(H^*(G, GZ) \) の生成元として、各項の \(H^*(G, Z) \) 上の生成元を採用した。また、この直和分解において、\(H^*(G, Z_{C_{x^k}}), H^*(G, Z_{C_y}), H^*(G, Z_{C_{yx}}) \) はそれぞれ \(H^*(G, Z_{x^k}), H^*(G, Z_y), H^*(G, Z_{yx}) \) からのコストリクションとして導かれる。(但し、ここでの \(Z_{x^k}, Z_y, Z_{yx} \) の作用は共役で定義されることに注意する。) このことより、実際の計算にはフロベニウスの相互律を利用した。

最後にこの報告を通して、次の記号はそれぞれ以下の意味で用いるものとする。

\[
N = \sum_{t \in \langle x \rangle} t, \quad E = \sum_{t \in C_y} t, \quad D = \sum_{t \in C_{yx}} t
\]

また、\(s, z \) は次の意味で用いる:

\[
s = \frac{|x|}{2} = 2^n \quad z = x^s
\]

2. 生成元

今回は、\(H^*(G, GZ) \) の生成元として、各項の \(H^*(G, Z) \) 上の生成元を選んだ。この節ではそれらを、より扱いやすいコホモロジー群 \(H^*(G, \mathbb{F}_2), H^*(G, \mathbb{Z}_y) \) などに関連付けて紹介する。
2.1. $H^*(G, \mathbb{Z})$ の構造。

命題 2.1.

$$ H^*(G, \mathbb{Z}) \simeq \mathbb{Z}[\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4]/I, $$

但し I は後述の関係式 (1),(6),(7) が生成するイデアルを意味する。

命題 2.2.

$$ H^*(G, \mathbb{F}_2) \simeq \mathbb{Z}/2\mathbb{Z}[x^*, y^*, \omega]/(x^*(x^*+y^*)), $$

但し, x^*, y^*, ω はそれぞれ次で定義される。

\[x^* : \begin{cases} x-1 & \mapsto 1 \\ y-1 & \mapsto 0 \end{cases}, \quad y^* : \begin{cases} x-1 & \mapsto 0 \\ y-1 & \mapsto 1 \end{cases}, \quad \omega : \begin{cases} (N,0) & \mapsto 1 \\ (y+1, x+1) & \mapsto 0 \end{cases} \]

$H^*(G, \mathbb{Z})$, $H^*(G, \mathbb{F}_2)$ の構造は、これらの命題 (2.1),(2.2) で与えられるが、ここでは $H^*(G, \mathbb{Z})$ の生成元 $\epsilon_1, \epsilon_2, \epsilon_3$ をそれぞれ x^*, y^*, ω に、ϵ_4 を $H^*(\langle x \rangle, \mathbb{Z})$ の生成元 χ に関連付けて紹介する:

\[
0 \rightarrow \mathbb{Z} \xrightarrow{x^2 \mod 2} \mathbb{F}_2 \rightarrow 0
\]

$Z G$-加群の定義より、次のコホモロジーの完全系列を導く。

\[
\cdots \rightarrow H^{q-1}(G, \mathbb{F}_2) \xrightarrow{\Delta} H^q(G, \mathbb{Z}) \xrightarrow{x^2 \mod 2} H^q(G, \mathbb{Z}) \rightarrow \cdots
\]

$H^*(G, \mathbb{Z})$ の生成元 ϵ_1, ϵ_2 はそれぞれ、連結単純型 $\Delta : H^1(G, \mathbb{F}_2) \rightarrow H^2(G, \mathbb{Z})$ による x^*, y^* の像として得られる。すなわち、

\[
\epsilon_1 = \Delta(x^*), \quad \epsilon_2 = \Delta(y^*).
\]

同様に、ϵ_3 は連結単純型 $\Delta : H^2(G, \mathbb{F}_2) \rightarrow H^3(G, \mathbb{Z})$ による ω の像として得られる。すなわち、

\[
\epsilon_3 = \Delta(\omega).
\]

次に、4 次の生成元 ϵ_4 は $H^3(x, \mathbb{Z})$ から $H^4(G, \mathbb{Z})$ への norm map による x^*, y^* の像として得られる。すなわち、

\[
\epsilon_4 = \chi_{s}^{\emptyset G},
\]

但し、χ は次で定義される。

\[
\chi : N = \sum_{t \in \langle x \rangle} t \mapsto 1.
\]

2.2. $H^*(G, \mathbb{Z}z)$ の生成元。

$H^*(G, \mathbb{Z}z)$-加群として、$H^*(G, \mathbb{Z}z)$ は $H^*(G, \mathbb{Z})$ 同型なので、$H^*(G, \mathbb{Z}z)$ は $\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4$ に対応した元で生成される。ここではそれらを $\zeta_1, \zeta_2, \zeta_3, \zeta_4$ と表すことにする。すなわち、

\[
\zeta_1 = \Delta((x^*)_z), \quad \zeta_2 = \Delta((y^*)_z), \quad \zeta_3 = \Delta((\omega)_z), \quad \zeta_4 = \chi_{s}^{\emptyset G}.
\]

但し、$(x^*)_z, (y^*)_z, \omega_z$ はそれぞれ次で定義され、$\chi_{s} : N \mapsto z$ とする。

\[
(x^*)_z : \begin{cases} x-1 & \mapsto z \\ y-1 & \mapsto 0 \end{cases}, \quad (y^*)_z : \begin{cases} x-1 & \mapsto 0 \\ y-1 & \mapsto z \end{cases}, \quad \omega_z : \begin{cases} (N,0) & \mapsto z \\ (y+1, x+1) & \mapsto 0 \end{cases}.
\]
2.3. \(H^* (G, \mathbb{Z}C_y)\) の生成元

Eckman-Shapiro の補題により \(H^* (G, \mathbb{Z}C_y)\) は \(H^* ((y, z), \mathbb{Z}y)\) から次のように得られる。

(A)

\[
H^* (G, \mathbb{Z}C_y) = \text{cor}^G_{(y, z)} H^* ((y, z), \mathbb{Z}y).
\]

これにより、\(H^* (G, \mathbb{Z}C_y)\) の構造を \(H^* ((y, z), \mathbb{Z}y)\) と関連付けて考えることができる。

命題 2.3.

\[
H^* ((y, z), \mathbb{Z}y) \simeq \mathbb{Z}/2\mathbb{Z}[\alpha_y, \beta_y, \gamma_y]/\langle (\gamma^2)_{y} + (\alpha^2\beta)_{y} + (\alpha\beta^2)_{y} \rangle,
\]

但し、\(\alpha_y, \beta_y \in H^2 ((y, z), \mathbb{Z}y)\), \(\gamma_y \in H^3 ((y, z), \mathbb{Z}y)\) はそれぞれ次のように定義される。

\[
\alpha_y : \begin{cases} (z + 1, 0) & \mapsto y \\ (y - 1, -z + 1) & \mapsto 0 \\ (0, y + 1) & \mapsto 0 \end{cases}
\]

\[
\beta_y : \begin{cases} (z + 1, 0) & \mapsto 0 \\ (y - 1, -z + 1) & \mapsto y \\ (0, y + 1) & \mapsto y \end{cases}
\]

\[
\gamma_y : \begin{cases} (z + 1, 0) & \mapsto 0 \\ (y - 1, -z + 1) & \mapsto -y \\ (0, y + 1, -z - 1) & \mapsto -y \\ (0, 0, y - 1) & \mapsto 0 \end{cases}
\]

このとき次の命題が成り立つ。

命題 2.4. \(H^* (G, \mathbb{Z}C_y)\) は \(H^* (G, \mathbb{Z})\) 上次の元で生成される。

\[
\eta_1 = \text{cor}^G_{(y, z)} (\alpha_y + \beta_y),
\eta_2 = \text{cor}^G_{(y, z)} (\beta_y),
\eta_3 = \text{cor}^G_{(y, z)} (\gamma_y),
\eta_4 = \text{cor}^G_{(y, z)} ((\alpha^2)_{y} + (\alpha\beta)_{y}).
\]

Proof. 命題 (2.3) で見たように、\(H^* ((y, z), \mathbb{Z}y)\) は \(\alpha_y, \beta_y, \gamma_y\) で生成され、それらの次の数は順に 2, 2, 3 であった。従って、(A) により、\(H^* (G, \mathbb{Z}C_y)\) の 2 次、3 次部分はそれぞれ \(\mathbb{Z}\) 加群として次のように得られる:

\[
H^2 (G, \mathbb{Z}C_y) = \langle \eta_1, \eta_2 \rangle,
H^3 (G, \mathbb{Z}C_y) = \langle \eta_3 \rangle.
\]

次に、\(H^4 (G, \mathbb{Z}C_y)\) は \(\mathbb{Z}\) 加群として、\(\text{cor}^G_{(y, z)} (\alpha^2)_{y}, \text{cor}^G_{(y, z)} (\alpha\beta)_{y}, \text{cor}^G_{(y, z)} (\beta^2)_{y}\) で生成されることが分か る。しかし、\(\text{cor}^G_{(y, z)} (\alpha\beta)_{y}, \text{cor}^G_{(y, z)} (\beta^2)_{y}\) は \(e_2\) を用いて次のように表すことが出来る:

\[
\text{cor}^G_{(y, z)} (\alpha\beta)_{y} = \text{cor}^G_{(y, z)} ((\text{res}_{(y, z)} e_2) \cdot \alpha_y) = e_2 \cdot \text{cor}^G_{(y, z)} \alpha_y
\]
\[
\text{cor}^G_{(y, z)} (\beta^2)_{y} = \text{cor}^G_{(y, z)} ((\text{res}_{(y, z)} e_2) \cdot \beta_y) = e_2 \cdot \text{cor}^G_{(y, z)} \beta_y
\]

但し、ここで計算には後述の補題 (3.1) を用いた。従って、

\[
H^4 (G, \mathbb{Z}C_y) \subset H^* (G, \mathbb{Z})[\eta_1, \eta_2, \eta_3, \eta_4].
\]

を得る。同様に 5,6 次部分についても,

\[
H^5 (G, \mathbb{Z}C_y), H^6 (G, \mathbb{Z}C_y) \subset H^* (G, \mathbb{Z})[\eta_1, \eta_2, \eta_3, \eta_4].
\]

と成ることが分かる。以下同様に、より高次の元についても \(\eta_1, \eta_2, \eta_3, \eta_4\) の四つの元で生成される。 □

2.4. \(H^* (G, \mathbb{Z}C_{yx})\) の生成元

\(H^* (G, \mathbb{Z}C_y)\) の場合と同様に、\(H^* (G, \mathbb{Z}C_{yx})\) は \(H^* ((yx, z), \mathbb{Z}yx)\) からのコリストレーションとして得られる:

\[
H^* (G, \mathbb{Z}C_{yx}) = \text{cor}^G_{(yx, z)} H^* ((yx, z), \mathbb{Z}yx).
\]

従って、\(H^* (G, \mathbb{Z}C_y)\) の場合と同様にして、次の命題が得られる。
命題 2.5. $H^*(G, \mathbb{Z}C_{yx})$ は $H^*(G, \mathbb{Z})$ 上次の元で生成される:

\[
\begin{align*}
\theta_1 &= \text{cor}_{(yx, z)}^G (\alpha_{yx} + \beta_{yx}), \\
\theta_2 &= \text{cor}_{(yx, z)}^G (\beta_{yx}), \\
\theta_3 &= \text{cor}_{(yx, z)}^G (\gamma_{yx}), \\
\theta_4 &= \text{cor}_{(yx, z)}^G ((\alpha^2)_{yx} + (\alpha\beta)_{yx}).
\end{align*}
\]

但し、$\alpha_{yx}, \beta_{yx}, \gamma_{yx}$ はそれぞれ $\alpha_y, \beta_y, \gamma_y$ に対応する $H^*(G, \mathbb{Z}C_{yx})$ の元とする。

Proof. 証明は命題 (2.4) の場合と同様。 □

2.5. $H^*(G, \mathbb{Z}C_{yx})$ の生成元. 各 $1 \leq k \leq s-1$ に対して、$H^*(G, \mathbb{Z}C_{yx})$ は $H^*([x], \mathbb{Z}z)$ からのコレストリクションとして得られる:

\[
H^*(G, \mathbb{Z}C_{yx}) = \text{cor}_{(z)}^G H^*([x], \mathbb{Z}z).
\]

ここで、$\chi_k \in H^*([x], \mathbb{Z}z)$ を次のように定義する。

$\chi_k : N \rightarrow z^k$.

命題 2.6. このとき、$H^*(G, \mathbb{Z}C_{yx})$ は $H^*(G, \mathbb{Z})$ 上次の元で生成される。

\[
\begin{align*}
\xi_{(k, 2)} &= \text{cor}_{(x)}^G \chi_k, \quad \text{where } \chi_k \in H^2([x], \mathbb{Z}z) \\
\xi_{(k, 4)} &= \text{cor}_{(x)}^G \chi_k, \quad \text{where } \chi_k \in H^4([x], \mathbb{Z}z)
\end{align*}
\]

以上より、$H^*(G, \mathbb{Z})$ 上の $H^*(G, \mathbb{Z}G)$ の生成元として次が得られた。

<table>
<thead>
<tr>
<th>$q = 2$</th>
<th>$q = 3$</th>
<th>$q = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H^q(G, \mathbb{Z})$</td>
<td>$e_1 = \Delta(x^*)$</td>
<td>$e_3 = \Delta(\omega)$</td>
</tr>
<tr>
<td>$H^q(G, \mathbb{Z}z)$</td>
<td>$\zeta_1 = \Delta((x^*)_z)$</td>
<td>$\zeta_3 = \Delta(\omega_z)$</td>
</tr>
<tr>
<td>$H^q(G, \mathbb{Z}C_{yx})$</td>
<td>$\eta_1 = (\alpha_y + \beta_y) \uparrow_{(yx)}^G$</td>
<td>$\eta_3 = (\gamma_y) \uparrow_{(yx)}^G$</td>
</tr>
<tr>
<td>$H^q(G, \mathbb{Z}C_{yx})$</td>
<td>$\theta_1 = (\alpha_{yx} + \beta_{yx}) \uparrow_{(yx, z)}^G$</td>
<td>$\theta_3 = (\gamma_{yx}) \uparrow_{(yx, z)}^G$</td>
</tr>
<tr>
<td>$H^q(G, \mathbb{Z}z)$</td>
<td>$\xi_{(k, 2)} = \chi_k \uparrow_{(z)}^G$</td>
<td>$\xi_{(k, 4)} = \chi_k \uparrow_{(z)}^G$</td>
</tr>
</tbody>
</table>

余白の都合上、ここではtでコレストリクションを表した。
3. 基本関係式

前節では、$H^*(G, ZG)$ の生成元と、それぞれ $H^*([y, z], ZG)$ の生成元などに関連付けて紹介した。このような関連付けを生成元に与えることで、積を計算するのにフロベニウスの相互律を用いることが出来る。

以下では、この有用性に着目して $H^*(G, ZG)$ の基本関係式を紹介する。

各生成元の位数を考えることにより、次の関係式が得られる。

(1) $2e_1 = 2e_2 = 2e_3 = 2s e_4 = 0$,
(2) $2\xi_1 = 2\xi_2 = 2\xi_3 = 2s \xi_4 = 0$,
(3) $2s\xi_{(k,2)} = 2s\xi_{(k,4)} = 0$,
(4) $2t_1 = 2t_2 = 2t_3 = 2t_4 = 0$,
(5) $2\theta_1 = 2\theta_2 = 2\theta_3 = 2\theta_4 = 0$.

$H^*(G, ZG)$ の直和分解において、各直和因子はそれぞれ $H^*(G, Z)$-加群であった。また、特に $H^*(G, Zx)$ は $H^*(G, Z)$-加群として $H^*(G, Z)$ と同型であり、$igoplus_{1\leq k\leq s-l} H^*(G, ZC_{x^k})$, $H^*(G, ZC_{y})$, $H^*(G, ZC_{y})$ は $H^*(G, Zx)$-加群である。このことに注意して、最初に η, θ 型生成元と $H^*(G, ZG)$ の元との積の間の関係を考える。

1. $H^*(G, Z)$ において、次の関係式が成り立つことが知られている:
(6) $(\epsilon_1)^2 + \epsilon_2 \cdot \epsilon_1 = 0$,
(7) $(\epsilon_3)^2 + \epsilon_2 \cdot \epsilon_4 = 0$.

一方、$\epsilon_2 = 1$ であり、先に述べたように $H^*(G, Z)$-加群として $H^*(G, Z)$ と $H^*(G, Zx)$ は同型なので、

η 型生成元と θ 型生成元との間には次の関係が成り立つ:

(8) $e_h \cdot e_k = \zeta_h \cdot \zeta_k \quad (h, k \in \{1, 2, 3, 4\})$.
(9) $e_h \cdot \zeta_k = \zeta_h \cdot e_k \quad (h, k \in \{1, 2, 3, 4\})$.

2. 次に、ϵ 型生成元と $\bigoplus_{1\leq k\leq s-l} H^*(G, ZC_{x^k})$ の元との積について、$\text{res}_{(z)} \epsilon_2 = \epsilon_3 = 0$ なので、

ϵ_2, ϵ_3 に対して、次の (9)～(12) が得られる。

(10) $\epsilon_2 \cdot \xi_{(k,2)} = 0$,
(11) $\epsilon_2 \cdot \xi_{(k,4)} = 0$,
(12) $\epsilon_3 \cdot \xi_{(k,2)} = 0$,
(13) $\epsilon_3 \cdot \xi_{(k,4)} = 0$.

また、$\text{res}_{(z)} \epsilon_1 : N \rightarrow s$ なので、ϵ_1 との積について次の方程式が得られる。

(14) $\epsilon_1 \cdot \xi_{(k,2)} = s \xi_{(k,4)}$,
(15) $\epsilon_1 \cdot \xi_{(k,4)} = s \xi_{(k,2)}$.

一方、$z \cdot x^k = x^{k+s}$ なので、η 型と ξ 型の積、θ 型と ξ 型の積の間には次の関係が成り立つ:

(16) $\zeta_h \cdot \xi_{(k,2)} = \epsilon_h \cdot \xi_{(k+s,2)} \quad (h \in \{1, 2, 3, 4\})$,
(17) $\zeta_h \cdot \xi_{(k,4)} = \epsilon_h \cdot \xi_{(k+s,4)} \quad (h \in \{1, 2, 3, 4\})$.

3. η 型生成元と $H^*(G, ZC_{y})$ の元との積について考えるために、先ず次の補題を導入する。

補題 3.1.

$\text{res}_{(y,z)} \epsilon_1 = 0$, $\text{res}_{(y,z)} \epsilon_2 = \beta$, $\text{res}_{(y,z)} \epsilon_3 = \gamma$,
$\text{res}_{(y,z)} \epsilon_4 = (\alpha^2 + \alpha \beta)$.

但し、α, β, γ は命題 (2.9) の中で定義した α_y, β_y, γ_y に対応する $H^*([y, z], Z)$ の生成元とする。
この補題により、

\[(\epsilon_1 + \epsilon_2) \times H^*(G, \mathbb{Z}C_y) = \overline{0},\]

である。更に、命題 (2.4) を用いて、その他の \eta 型生成元と \eta_2, \eta_3, \eta_4 との積について次の関係式が得られる:

\[(\epsilon_4 \cdot \eta_2 = \epsilon_2 \cdot \eta_4 = \epsilon_3 \cdot \eta_3),\]

\[(\epsilon_3 \cdot \eta_2 = \epsilon_2 \cdot \eta_3),\]

\[(\epsilon_3 \cdot \eta_4 = \epsilon_4 \cdot \eta_3).\]

これと同様の関係式が \zeta 型生成元と \eta 型生成元との積においても成り立ち、それらの間は次の関係で結ばれる:

\[(\eta_h + \epsilon_h) \cdot \eta_k = \overline{0} \quad (h, k \in \{2, 3, 4\}).\]

最後に、\eta との積について次の関係が成り立つ:

\[(\epsilon_h + \zeta_h) \cdot \eta_1 = \epsilon_h \cdot \eta_2 \quad (h \in \{2, 3, 4\}).\]

4. \eta 型との積の場合と同様に、\epsilon 型の生成元と \theta 型生成元との積についても先に補題を一つ導入する。

補題 3.2.

\[
\text{res}_{(yx, z)} \epsilon_1 = \beta', \quad \text{res}_{(yx, z)} \epsilon_2 = \beta', \quad \text{res}_{(yx, z)} \epsilon_3 = \gamma',
\]

ここで、\alpha', \beta', \gamma' はそれぞれ、\alpha_{yx}, \beta_{yx}, \gamma_{yx} に対応する \textit{H}^*((yx, z), \mathbb{Z}) の生成元とする。

この補題により、\epsilon_1, \epsilon_2 と \theta 型生成元との間に、次の関係が存在する:

\[(\epsilon_1 + \epsilon_2) \times H^*(G, \mathbb{Z}C_y) = \overline{0}.\]

また、その他の \epsilon 型生成元と \theta_2, \theta_3, \theta_4 との積について、この補題と命題 (2.5) により次の関係式が得られる:

\[\epsilon_2 \cdot \theta_4 = \epsilon_4 \cdot \theta_2 = \epsilon_3 \cdot \theta_3,\]

\[\epsilon_2 \cdot \theta_3 = \epsilon_3 \cdot \theta_2,\]

\[\epsilon_3 \cdot \theta_4 = \epsilon_4 \cdot \theta_3.\]

これらの関係式が、\zeta 型生成元と \theta 型生成元との積についても成り立ち、更にそれらは次の関係で結ばれる:

\[(\xi_1 + \xi_2) \times H^*(G, \mathbb{Z}C_y) = \overline{0},\]

\[(\epsilon_h + \zeta_h) \times H^*(G, \mathbb{Z}C_y) = \overline{0} \quad (h \in \{2, 3, 4\}).\]

命題 (2.6) で見たように、各 \(1 \leq k \leq s-1\) について \(\xi_{(k,2)}, \xi_{(k,4)}\) はそれぞれ次のように定義された:

\[
\xi_{(k,2)} = \text{cor}_{(x)}^G \chi_k \quad (\deg \chi_k = 2),
\]

\[
\xi_{(k,4)} = \text{cor}_{(x)}^G \chi_k \quad (\deg \chi_k = 4).
\]

一方、\(\xi_{(k,2)}, \xi_{(k,4)}\) の \(\langle x \rangle\) への制限はつぎで与えられる:

補題 3.3.

\[
\text{res}_{(x)} \xi_{(k,2)} = \chi_{s+k} - \chi_k,
\]

\[
\text{res}_{(x)} \xi_{(k,4)} = \chi_{s+k} + \chi_k.
\]
従って、\(\xi \) 型生成元同士の積について次の関係が成り立つ:

(30) \[\xi_{(k,2)} \cdot \xi_{(l,2)} = \xi_{(k+l,4)} - \xi_{(k-l,4)} \]

(31) \[\xi_{(k,2)} \cdot \xi_{(l,4)} = \xi_{(k+l,2)} \cdot \epsilon_{4} + \xi_{(k-l,2)} \cdot \epsilon_{4} \]

(32) \[\xi_{(k,4)} \cdot \xi_{(l,4)} = \xi_{(k+l,4)} \cdot \epsilon_{4} + \xi_{(k-l,4)} \cdot \epsilon_{4} \]

また、\(\alpha_{y}, \beta_{y}, \gamma_{y} \) の \(\langle z \rangle \) への制限は次で与えられる:

補題 3.4.

\[\text{res}_{\langle z \rangle} \alpha_{y} : z + 1 \mapsto y \quad \text{res}_{\langle z \rangle} \beta_{y} = \bar{0} \quad \text{res}_{\langle z \rangle} \gamma_{y} = \bar{0} \]

この補題 (3.4) と補題 (3.3) を用いて、次のように \(\eta \) 型生成元と \(\xi \) 型生成元との積を計算することができる:

\[
\eta_{1} \cdot \xi_{(k,2)} = \text{cor}_{\langle x \rangle}^{G} \left(\left(\text{cor}_{\langle x \rangle}^{y} \text{res}_{\langle z \rangle} (\alpha_{y} + \beta_{y}) \right) \cdot \chi_{k} \right) \\
= \text{cor}_{\langle x \rangle}^{G} \left(\left(\text{cor}_{\langle x \rangle}^{y} \text{res}_{\langle z \rangle} \alpha_{y} \right) \cdot \chi_{k} \right) \\
= \text{cor}_{\langle x \rangle}^{G} \text{res}_{\langle x \rangle} \eta_{4} = \bar{0}.
\]

また、これ以外の元の積についてもこのように考え、結果として次の関係式を得る:

(33) \[H^{*}(G, \mathbb{Z}C_{x^{k}}) \times H^{*}(G, \mathbb{Z}C_{y}) = \bar{0}. \]

同様に、\(\theta \) 型生成元と \(\xi \) 型生成元との積についても次の関係式を得る:

(34) \[H^{*}(G, \mathbb{Z}C_{x^{k}}) \times H^{*}(G, \mathbb{Z}C_{yx}) = \bar{0}. \]

最後に、\(H^{*}(G, \mathbb{Z}C_{x}) \oplus H^{*}(G, \mathbb{Z}C_{yx}) \) の元同士の積について、紹介する。

\[
\eta_{4} \cdot \theta_{1} = \text{cor}_{\langle y,2 \rangle}^{G} \left(((\alpha^{2})_{yx} + (\alpha\beta)_{yx}) \cdot \text{cor}_{\langle y,s \rangle}^{G} ((\alpha^{2})_{y} + (\alpha\beta)_{y}) \right) \\
= \text{cor}_{\langle y,2 \rangle}^{G} \left[\text{res}_{\langle y \rangle} \text{cor}_{\langle y,2 \rangle}^{G} ((\alpha^{2})_{yx} + (\alpha\beta)_{yx}) \cdot ((\alpha^{2})_{y} + (\alpha\beta)_{y}) \right] \\
= \text{cor}_{\langle y,2 \rangle}^{G} \left[\text{cor}_{\langle y,2 \rangle}^{G} \left(\text{res}_{\langle y \rangle} \text{con}^{2} ((\alpha^{2})_{yx} + (\alpha\beta)_{yx}) \right) \cdot ((\alpha^{2})_{y} + (\alpha\beta)_{y}) \right] \\
= \sum_{0 \leq k \leq \frac{a}{2} - 1} \text{cor}_{\langle y,2 \rangle}^{G} \left(\text{res}_{\langle y \rangle} \text{con}^{2} ((\alpha^{2})_{yx} + (\alpha\beta)_{yx}) \cdot \text{res}_{\langle y \rangle} ((\alpha^{2})_{y} + (\alpha\beta)_{y}) \right)
\]

ここで、次のことに注意する:

\[
\text{cor}_{\langle y,2 \rangle}^{G} \left(\text{res}_{\langle y \rangle} \text{con}^{2} ((\alpha^{2})_{yx} + (\alpha\beta)_{yx}) \right) \cdot \text{res}_{\langle y \rangle} ((\alpha^{2})_{y} + (\alpha\beta)_{y}) \\
= (N \mapsto s\chi_{-2k-1}) = s\chi_{-2k-1}
\]

従って、(\(\phi \)) は次の様に変形される:

\[
\phi = \sum_{0 \leq k \leq \frac{a}{2} - 1} \text{cor}_{\langle y,2 \rangle}^{G} (s\chi_{-2k-1}) \\
= s \sum_{1 \leq k \leq 2a - 1} \xi_{(k,2)} \cdot \xi_{4}
\]

命題 (2.4),(2.5) により、\(\eta_{1} \) と \(\theta_{1} \) の積はこのように得られるが、その他の元の積についても同様に考えられ、その結果として次の関係式を得る:
1. \(\eta \) 型生成元同士の積について、

\[(35) \quad \eta_2 \cdot \eta_3 = 0 \]
\[(36) \quad \eta_2 \cdot \eta_4 = 0 \]
\[(37) \quad \eta_3 \cdot \eta_4 = 0 \]

\[(38) \quad \eta_3 \cdot \eta_3 = 0 \]
\[(39) \quad \eta_3 \cdot \eta_4 = 0 \]

\[(40) \quad \eta_4 \cdot \eta_4 = \sum_{2 \leq k: \text{even}, k \neq 0, s} \xi_{(k,4)} \cdot \epsilon_4 + s \epsilon_4 \cdot \epsilon_4 + s \zeta_4 \cdot \epsilon_4 \]

\[(41) \quad \eta_2 \cdot \eta_1 = \epsilon_1 \cdot \epsilon_2 + \epsilon_1 \cdot \zeta_2 + \epsilon_2 \cdot \epsilon_2 + \epsilon_2 \cdot \zeta_2 \]

\[(42) \quad \eta_3 \cdot \eta_1 = \epsilon_1 \cdot \epsilon_3 + \epsilon_2 \cdot \epsilon_3 + \zeta_1 \cdot \epsilon_3 + \zeta_2 \cdot \epsilon_3 \]

\[(43) \quad \eta_4 \cdot \eta_1 = \epsilon_2 \cdot \epsilon_4 + \zeta_2 \cdot \epsilon_4 + \epsilon_1 \cdot \epsilon_4 + \epsilon_1 \cdot \zeta_4 + \sum_{2 \leq k: \text{even} \leq s-2} \epsilon_1 \cdot \xi_{(k,4)} \]

\[(44) \quad \eta_1 \times \eta_1 = s \sum_{2 \leq k: \text{even} \leq s-2} \xi_{(k,4)} + s \epsilon_4 + s \zeta_4 + \epsilon_1 \cdot \epsilon_2 \]

2. \(\theta \) 型生成元同士の積において、

\[(45) \quad \theta_2 \cdot \theta_2 = 0 \]
\[(46) \quad \theta_3 \cdot \theta_2 = 0 \]
\[(47) \quad \theta_4 \cdot \theta_2 = 0 \]

\[(48) \quad \theta_3 \cdot \theta_3 = 0 \]
\[(49) \quad \theta_4 \cdot \theta_3 = 0 \]

\[(50) \quad \theta_4 \cdot \theta_4 = \eta_4 \cdot \eta_4 \]

\[(51) \quad \theta_1 \cdot \theta_2 = \epsilon_1 \cdot \epsilon_2 + \epsilon_1 \cdot \zeta_2 \]
\[(52) \quad \theta_1 \cdot \theta_3 = \epsilon_1 \cdot \epsilon_3 + \epsilon_1 \cdot \zeta_3 \]
\[(53) \quad \theta_1 \cdot \theta_4 = s \sum_{2 \leq k: \text{even} \leq s-2} \xi_{(k,4)} \cdot \epsilon_4 + \epsilon_1 \cdot \epsilon_4 + \epsilon_1 \cdot \zeta_4 \]

\[(54) \quad \theta_1 \cdot \theta_1 = s \sum_{2 \leq k: \text{even} \leq s-2} \xi_{(k,4)} + s \epsilon_4 + s \zeta_4 + \epsilon_1 \cdot \epsilon_2 \]

3. \(\eta \) 型生成元と \(\theta \) 型生成元との積について、次の関係が成り立つ:
(55) \(\eta_2 \cdot \theta_2 = \bar{0} \)
(56) \(\eta_3 \cdot \theta_2 = \eta_2 \cdot \theta_3 = \bar{0} \)
(57) \(\eta_4 \cdot \theta_2 = \eta_2 \cdot \theta_4 = \bar{0} \)

(58) \(\eta_3 \cdot \theta_3 = \bar{0} \)
(59) \(\eta_4 \cdot \theta_3 = \eta_3 \cdot \theta_4 = \bar{0} \)

(60) \(\eta_4 \cdot \theta_4 = s \sum_{1 \leq k: \text{odd} \leq s-1} \xi_{(k,4)} \cdot e_4 \)

(61) \(\eta_1 \cdot \theta_2 = \theta_1 \cdot \eta_2 = \bar{0} \)
(62) \(\eta_1 \cdot \theta_3 = \theta_1 \cdot \eta_3 = \bar{0} \)

(63) \(\theta_1 \cdot \eta_4 = \eta_1 \cdot \theta_4 \)

(64) \(\eta_1 \cdot \theta_1 = s \sum_{1 \leq k: \text{odd} \leq s-1} \xi_{(k,4)} \)

4. \(H^*(G,\mathbb{Z}G) \) の構造

命題 4.1.

\(H^*(G,\mathbb{Z}G) \cong \mathbb{Z}[G]/(L) \),

但し、\(G \) は 2 節で紹介した生成元の集合、\(L \) は 3 節で紹介した関係式を含む (1 ～ 64) の集合とする。

この節では、この命題の証明を簡単に紹介する。

(準備)

補題 4.2. 各 \(q \) に対して、\(H^q(G,\mathbb{Z}) \), \(H^q(G,\mathbb{Z}z) \) の位数は次で与えられる。

1. \(q \) が \(\text{odd} \) のとき、\(2^{s-1} \),
2. \(q \equiv 2 \pmod{4} \) のとき、\(2^{s-1} \),
3. \(q \equiv 0 \pmod{4} \) のとき、\(2^{s-1} + 2s \).

補題 4.3. 各 \(q \) に対して、\(H^q(G,\mathbb{Z}C_y) \), \(H^*(G,\mathbb{Z}C_{xy}) \) の位数は次で与えられる。

1. \(q \) が \(\text{even} \) のとき、\(2^{s+1} \),
2. \(q \) が \(\text{odd} \) のとき、\(2^{s+1} \).

補題 4.4. 各 \(q \) に対して、\(\bigoplus_{1 \leq k \leq s-1} H^q(G,\mathbb{Z}C_{x^k}) \) の位数は次で与えられる。

1. \(q \) が \(\text{odd} \) のとき、0,
2. \(q \equiv 2 \pmod{4} \) のとき、\((2s)^{s-1} \),
3. \(q \equiv 0 \pmod{4} \) のとき、\((2s)^{s-1} \).

今、先に紹介した生成元と関係式によって定義される環 \(F \) を次の様に定義する。次に、\(I, Z, E, D, X \) を次で定義する。
定義。

\[I = \{ I_1, I_2, I_3, I_4 \} \]
\[Z = \{ Z_1, Z_2, Z_3, Z_4 \} \]
\[E = \{ E_1, E_2, E_3, E_4 \} \]
\[D = \{ D_1, D_2, D_3, D_4 \} \]
\[\mathcal{X} = \{ X_{(k,2)}, X_{(k,4)} \} \quad (1 \leq k \leq s-1) \]

今、対応 \(f \) を次で定める。

\[
\begin{align*}
\epsilon_1 & \mapsto I_1 & \zeta_1 & \mapsto Z_1 & \xi_{(k,2)} & \mapsto X_{(k,2)} \quad (1 \leq k \leq s-1) \\
\epsilon_2 & \mapsto I_2 & \zeta_2 & \mapsto Z_2 & \xi_{(k,4)} & \mapsto X_{(k,4)} \quad (1 \leq k \leq s-1) \\
\epsilon_3 & \mapsto I_3 & \zeta_3 & \mapsto Z_3 & \\
\epsilon_4 & \mapsto I_4 & \zeta_4 & \mapsto Z_4 & \\
\end{align*}
\]

この対応を用いて、抽象的に望む構造を持つ環を \(\mathcal{F} \) とする。

\[\mathcal{F} = Z[G \text{ を対応 } f \text{ で書き換えたもの}](\mathcal{G} \text{ を対応 } f \text{ で書き換えたもの}) \]

補題 4.5. \(\mathcal{F}_q(\mathcal{F} \text{ の } q \text{ 次成分全体}) \) において、次が成り立つ。

\[\mathcal{F}_q = \mathcal{I}_q + \mathcal{J}_q + \mathcal{E}_q + \mathcal{D}_q + \mathcal{X}_q \quad (q \geq 0) \]

ただし、\(\mathcal{I}_q, \mathcal{J}_q, \mathcal{E}_q, \mathcal{D}_q, \mathcal{X}_q \subseteq \mathcal{F} \) は、それぞれ次で定義される。

定義. \(\mathcal{I}_q \) は次の元で生成される \(Z \)-加群:

1. \(q \) : 奇数のとき,
 \[I_1^i I_2^j I_3 \quad , 4i + 2j + 3 = q \]
 \[I_1^i I_2^j I_1 I_3 \quad , 4i + 2j + 5 = q \]

2. \(q \) : 偶数のとき,
 \[I_1^i I_2^j \quad , 4i + 2j = q \]

\(\mathcal{J}_q \) は次の元で生成される \(Z \)-加群:

1. \(q \) : 奇数のとき,
 \[I_1^i I_2^j Z_3 \quad , 4i + 2j + 3 = q \]
 \[I_1^i I_2^j I_3 Z_1 \quad , 4i + 2j + 5 = q \]

2. \(q \) : 偶数のとき,
 2.a. \(q \equiv 2 \pmod{4} \) ならば,
 \[I_1^i Z_2^j \quad , 4i + 2j = q \]
 2.b. \(q \equiv 0 \pmod{4} \) ならば,
 \[I_1^i Z_2^j \quad , 4i + 2j = q \quad i \geq 1 \]
 \[I_1^i Z_4^j \quad , 4i + 4 = q \]

\(\mathcal{E}_q \) は次の元で生成される \(Z \)-加群:
1. q：奇数のとき，
 \[
 \begin{align*}
 &I_1^2 r I_3 E_1, \quad 4i + 2j + 5 = q \\
 &I_1^2 r E_3, \quad 4i + 2j + 3 = q
 \end{align*}
 \]

2. q：偶数のとき，
 2.a. $q \equiv 2 \pmod{4}$ ならば，
 \[
 \begin{align*}
 &I_1^2 r E_1, \quad 4i + 2j + 2 = q \\
 &I_1^2 r E_2, \quad 4i + 2j + 2 = q
 \end{align*}
 \]

 2.b. $q \equiv 0 \pmod{4}$ ならば，
 \[
 \begin{align*}
 &I_1^2 r E_1, \quad 4i + 2j + 2 = q \\
 &I_1^2 r E_2, \quad 4i + 2j + 2 = q \\
 &I_1^4 E_4, \quad 4i + 4 = q
 \end{align*}
 \]

\mathfrak{D}_q は次の元で生成される \mathbb{Z}-加群：
1. q：奇数のとき，
 \[
 \begin{align*}
 &I_1^2 r I_3 D_1, \quad 4i + 2j + 5 = q \\
 &I_1^2 r D_3, \quad 4i + 2j + 3 = q
 \end{align*}
 \]

2. q：偶数のとき，
 2.a. $q \equiv 2 \pmod{4}$ ならば，
 \[
 \begin{align*}
 &I_1^2 r D_1, \quad 4i + 2j + 2 = q \\
 &I_1^2 r D_2, \quad 4i + 2j + 2 = q
 \end{align*}
 \]

 2.b. $q \equiv 0 \pmod{4}$ ならば，
 \[
 \begin{align*}
 &I_1^2 r D_1, \quad 4i + 2j + 2 = q \\
 &I_1^2 r D_2, \quad 4i + 2j + 2 = q \\
 &I_1^4 D_4, \quad 4i + 4 = q
 \end{align*}
 \]

$x_q(q$: 偶数) は次の元で生成される \mathbb{Z}-加群：
1. $q \equiv 2 \pmod{4}$ ならば，
 \[
 I_4 X_{(k,2)} (1 \leq k \leq s - 1).
 \]

2. $q \equiv 0 \pmod{4}$ ならば，
 \[
 I_4 X_{(k,4)} (1 \leq k \leq s - 1).
 \]

命題 4.1 の証明. \mathcal{F} から $H^*(G, \mathbb{Z}G)$ への全射対同型が存在するが，各次数 q での位数を比較することにより，これは同型であることを示したい。補題 (4.5) により

\[
\mathcal{F} = \bigoplus_q (3 + 3 + \mathfrak{D} + \mathfrak{X}).
\]

である。この事と、補題 (4.2) ～(4.4) を用いて、各次数 q について \mathcal{F}_q の位数は高々 $|H^q(G, \mathbb{Z}G)|$ であり、$\mathcal{F} \simeq H^*(G, \mathbb{Z}G)$ を得る。

REFERENCES