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0 Introduction

Tn [Ar-1] and [Ar-2] Arakawa initiated the study of certain non-holomorphic automorphic
forms on the real symplectic group Sp(1,q) of signature (14,¢—). He defined them as
automorphic forms on Sp(1,q) with the reproducing kernel function given by the matrix
coefficient of some discrete series representation. That discrete is known as an example of
quaternionic discrete series in the sense of Gross-Wallach [G-W]. Arakawa’s definition deals
ouly with bounded automorphic forms, assuming the integrability of the discrete series. In
[N-1] we reformulated Arakawa’s notion of the automorphic forms by using representation
theoretic terminologies, without assuming the boundedness of the forms or the integrability
of the discrete series. In other words we understood them as automorphic forms on Sp(1,q)
generating quaternionic discrete series.

In this note we provide three kinds of explicit constructions given in [N-2] for these au-
tomorphic forms. More precisely we construct Eisenstein series, Poincaré series and theta
series for them. As for the construction by theta series, we consider the theta lifting from
elliptic cusp forms to automorphic forms on Sp(1, ¢) formulated by Arakawa in his unpub-
lished note. This work was inspired by Kudla lifting, i.e. the theta lifting from elliptic
modular forms to holomorphic automorphic forms on SU(1,q) (cf. [Ku]). The fundamental
tool for our results is the Fourier expansion of our automorphic forms developed in [N-1).
By virtue of it we can prove that our Eisenstein series and Poincaré series form a basis of
the space of automorphic forms generating quaternionic discrete series and that the images
of Arakawa lifting are bounded automorphic forms generating such discrete series for an
arbitrary g. The latter result is a generalization of Arakawa’s work on the lifting, which
proves the case of ¢ = 1 in a different method.

*The author was partially supported by JSPS research fellowships for young scientists and staying at
Kyoto Sangyo University when the conference took place.
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1 Basic notations and the definition of our automor-
phic forms

Throughout this note let H denote the Hamilton quaternion algebra with the standard basis
{1,4,5,k} and let tr (resp. v) the reduced trace (resp. reduced norm) of Hl. For £ € H we

put d(§) := /v(§).

Let G be the real symplectic group Sp(1,¢) of signature (14, g—) given by
Sp(l,q) = {g € My1(H) | 'gQg = Q},

where

([-5S
0 1] (¢g>1

0 1
\(1 0) (g=1)

with a positive definite quaternion Hermitian matrix S of degree ¢ — 1. From now on, we
fix a definite quaternion algebra B over Q contained in H and assume S € M,_1(B).
This simple Lie group G acts on the quaternion hyperbolic space

- {{Z: (w,7) e HI ' x H | tr7 — wS'w > 0} (g > 1)
{z € H| tr(z) > 0} (g=1)

via the linear fractional transformation

gozi= (a1w -+ b7 + ¢y, aow + by + (g, 2)0 (g>1)
(a12 + b1)ulg, 2) (q=1)"
where
,
a1 b1 Cy

az by (g>1)
g=4 \as b3 c3

\ (Z; @ (a=1)
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with a; € M, _1(H) b1,c1,%a0,%az € "HI! by, by, co,c3 € H (resp. a1, a9,b1,b0 € H) for
g > 1 (resp. ¢ = 1) and the automorphic factor

asw + by + ¢ > 1
M(g;z):: 3 3 3 (q )
(L2Z+b2 (q:l)

0,1) (¢>1)
1 (g=1)
Sp*(q) x Sp*(1), where Sp*(q) denotes the compact real form of the complex symplectic
group of degree ¢g. This forms a maximal compact subgroup of G.

Hereafter x denotes a positive integer. For such k we define a representation (75, Vi) of

K by

We set K :={g € G| g-2 = %} with 2z = { . This is isomorphic to

To(k) = ou(ulk, 20)) (k€ K),

where (0., V;,) is the k-th symmetric tensor representation of Sp*(1). For this representation
we note 7, 22 idgy(y) Mo.. In what follows we fix an K-invariant inner product (%, %), of Vi
with respect to 7, and denote by || | the norm of V, induced by (¥, %)s.

For k > 2g — 1 let 7, be the discrete series representation of G with minimal K-type 7.
This 7, is known as an example of “quaternionic discrete series” introduced by B.Gross and
N.Wallach [G-W]. When & > 4q, 7, is integrable.

In the subsequent argument we need wy : G — End(V,) defined by

we(g) = ox(alg)) vlalg))
where .

alg) == '2*(7(9 - z0) + 1)u(g, 20)
with

{the second entry of z (g > 1)
7(2) ==

z (g=1)

for z € H. This w, is the matrix coefficient of 7.
Now we state the definition of the automorphic forms in our concern:

Definition 1.1. Let 5 > 2¢g — 1. For an arithmetic subgroup I' of G, A(I'\G, 7,) denotes
the space of all V,-valued C*™-functions f on G satisfying:

(1) flvgk) = (k)7 f(g) V(1,9 k) € T x G X K,

(2) (coeff. of f(xg) | g € G) ~ m, as (g, K)-modules (g:Lie algebra of G),
(3) f is of moderate growth when g = 1.

Furthermore we put Ag(T\G, 7) := {f € A(T'\G,7,) | f:bounded}.
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Remark 1.2. (1) When ¢ > 1, f automatically satisfies the moderate growth condition.
We call this property Koecher principle (cf. [N-1, Theorem 7.1])

(2) The second condition can be replaced by
D.-f=0 (D.:Schmid operator)

(cf. [N-1, Theorem 8.2]). For the definition of the Schmid operator see [Kn, Chap.XII, §10, Prob-
lems] and [N-1, Definition 5.2].
(3) Moreover, assuming that f is bounded, we can replace this condition by

" fG wnlg™ B f(g)dg = f(R)

(cf. [N-1, Theorem 8.7]), where ¢, = % with the formal degree d, of 7,. Under the

assumption we can verify that f is cuspidal (cf. [Ar-2, Proposition 3.1}).

2 Fourier expansion

In this section we write down the Fourier expansion for A(T'\G, ), developed in [Ar-2] and
N-1]. It plays a crucial role to obtain our results.
We introduce notations necessary to describe the expansion. Let

4 qul O w wE th_~1
n(w,z) = | 'wS 1 FwSw+z cx (¢>1)
N = 0o 0 1 ’

meX} (g=1)

o

X ={zcH|trz =0}

with

and let
.

a=a, = NG yeR, » (g>1)
A= \/5"1

k{a,:ay:: (\/5 \/?7_1) y€R+} (g=1)

Then G admits the Iwasawa decomposition G = NAK.
We fix Q-structure G(Q) := G N M, 1(B) and let T' C G(Q) be an arithmetic subgroup
of G. For the standard proper parabolic subgroup P of G we put P(Q) := PN G(Q). We
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denote by = a complete set of representatives of I'\G{Q)/P(Q), i.e. the set of I'-cusps. For
¢ € = we set

Np = ¢ T'en N,
Xre:={z € X |n(0,z) € Nr.},
Ao = {A el | n(A zy) € Np,, Jz5 € X},

where the lattice A, is defined only when g > 1.
When g > 1 we introduce a space of theta functions for £ € X7\ {0} defined by

gprty | 000+ ) = eftr£(wS) - 22))0(w) VA € A,
Ot {QEC H | Fope—s Fe !, )0’ = 0(aw) }

where
ke(w', w) = A(S)249 7 Dy(€) L exp(—2md(€) (w — w')S(w — w'))e(— tr(€'w'Sw))

with d(Sw) = A(S)?dw. This space has an inner product given by

(61, 00)c.0 = / 0, () (w)dw
Hea-1/L,
For each € € Xf .\ {0} we fix u¢ € {a € H| v(a) = 1} such that ugivg = £/d(£). Then we
have
Proposition 2.1. The Fourier expansion of f € A(T\G,7.) at a cusp c € E is wrillen as

follows:

flen{w,z)a ZC’fyZJ“ Vi + Y7 Z af (w)e ™ e (tr £z)o . (ue v (¢ > 1),
i=0 &EX;,C\{O}

flen(z)a) = Znyz i Fystt Z Cge%“d(@ye(tr £x)o(ug)ve s (g=1),

gexy \{0}
where

o {itocics i a fived basis of Vi, with a highest weight vector vy satisfying some stan-
dard relation (for its precise meaning see [N-1, (2.1) (2.2) (2.3)]),

e ag(w) € B¢, and C’g (resp. C{) is a constant dependent only on (£, f) (vesp. (i, f))-

For this proposition see [Ar-2, Thecrem 6.1] and [N-1, Theorem 6.3, §9].
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3 Eisenstein-Poincaré series

This section provides explicit constructions of the automorphic forms in A(I'\G,m,) by
Eisenstein series and Poincaré series.
We first consider the Eisenstein series. For s € C and v € V,; we set

Wso{n{w, z)ayk) == (k) 'y,

where we replace n{w,z) by n(z) when ¢ = 1. When s = § + 1 for s > 2¢ — 1 this
is a generalized Whittaker functions for m, with K-type (7., Vi) attached to the trivial
representation of N (cf. [N-1, Theorem 5.5]). For a representative ¢ of = we define an
Eisenstein series at a cusp ¢ as follows:

Ec,'u(g; 5) = E Ws,v(c_lvg)'

gErMe N I\T"

Theorem 3.1. E_,(g;s) converges absolutely and uniformly on any compact subset of G if
Re(s) > 2¢ + 1. In particular, Eq,(g; § + 1) € A(T\G, 7,;) when x > 4q.

Proof. The convergence range is due to the Godement’s criterion on the convergence of
Eisenstein series (cf. [B-1, Lemma 11.1 and Theorem 12.1}), which was pointed out by
Arakawa in [Ar-2, §6.2]. For the rest of the assertion we recall that D, - W%H,U(g) =
0 (cf. [Y, Proposition 2.1, Theorem 2.4]) with the Schmid operator D, (for D, see Remark
1.2 (2)) and that E_,(g, s) defines a smooth automorphic form on G (c¢f. [Ha, Chap.II, §2]).
These imply D, - E.,(g9;% + 1) = 0. In view of Remark 1.2 (2) we see E..(9:5+1) €
AM\G, 7). O

Next we consider the construction by Poincaré series. For £ € Xf_\ {0}, § € O, and
v € V,, we put
Wy o(n(w, z)ayk) := 7o(k) 7 0(w)y s e 4 We(tr £2) U (v) (g > 1),
We o(n{z)ayk) = Te(k) Ty e e (tr £ YU (v) (¢ = 1),

where Uy € End(Vj) is the projection from V, to Co(ue)vy, .
Using this, we define a Poincaré series at a representative ¢ of = by

Poo(g;0) = Y Waulcyg) (2>1),
PneNe—\I'

Peo(g:6) = >, Weulchvg) (¢=1).

TMeNe= I\l
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Theorem 3.2. Suppose k > 4q.

(1) For each fized c € Z, {P.,(g,8) | v € Vi, 0 € Og, £ € X5 \{0}} (resp. {Few(9;8) |
v € Ve, €€ X1, \{0}}) spans Ao(T\G,7s) when g > 1 (resp. q = 1).

(2) Assume that W1, 1s left ¢ I'eNP-invariant for each ¢ € E. Then {Pe0v(9;0), Eco(g; 5+
1) |c€E, veVy 0€6, £€ XE N{0}} (resp. {Pen(9:6), Ben(gs5+1) [c€EE, vE
Ve, €€ X7 \{0}}) spans A(T\G, ) when g > 1 (resp. ¢ = 1).

Proof. We omit the case of ¢ = 1 since the proof is similar to the case of ¢ > 1. Let
us consider the first assertion. We can verify the boundedness of P,,(g,6) by following
similarly the standard argument on the absolute convergence of Poincaré series by A.Borel
[B-2, Theorem 6.1]. In fact, such argument deduces

| Peo(g; O)llx < M - “W9,U(C—1H)H&dh < 00,
INeNe NG

where M denotes a constant not dependent on g. Moreover we can show that Wy, satisfies
the property in Remark 1.2 (3) (cf. [N-1, Lemma 8.6]). Thus we see Pe,(g,0) € Ao(I'\G, )
in view of Remark 1.2 (3). The proof for the exhaution of Ao(I'\G, ) by the Poincaré
series is also standard.
As for the second assertion, it is important to note that the constant term of E., at

¢ € = is equal to

[¢ ' Ten P NrJysttv (¢ =¢),

0 - ([d#9
under the assumption on Wyy1,. Then we see that the assertion is an immediate conse-
quence of the Fourier expansion in Proposition 2.1. O

4 Arakawa’s theta lifting

In this section we consider the theta lifting from elliptic cusp forms to automorphic forms
on Sp(1,q) formulated by Arakawa. For this lifting we should note that (SLo(R), Sp(l,q))
does not form any reductive dual pair unless ¢ = 1. Thus, when g > 1, we can not provide
the usual formulation of the theta lifting for a pair (SL2(R), Sp(1,¢)) by means of the Weil
representation. In order to overcome this difficulty Arakawa regarded Sp(1,q) as a subgroup
of SO(4,4q) and considered the restriction of a theta series on a dual pair SL; (R)xSO(4,4q)
to a non-dual pair SLao(R) x Sp(1,q) for the formulation of the lifting. More precisely, he
constructed a theta series on § x SO(4, 4q) after Shintani [Shin] and restrict it to § x Sp(1, q)
to formulate the lifting, where b denotes the complex upper half plane.

Let us introduce the theta series on § x G to construct the lifting. We provide two
quaternion Hermitian forms

(%, %)g : HTT x H 3 (z,y) — (2,y)0 = tr(@Q'7) € R
(x,%)g : HO x HO™ 3 (z,y) = (z,9)r = tr(zR'y) € R
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with

S
R:= ( 12) (@>1) (majorant of Q).
1g (¢=1)

We note that (¥,%)g is regarded as a symmetric bilinear form on R¥?*D ~ H¢*!, Via this
form we can consider Sp(1,q) as a subgroup of the special orthogonal group SO(4,4q) of
signature (4+, 4g—).

For z = s ++/—1t € h and z = (%, 24, Zg11) € HT™ we put

Fo(z) = 04(zq + Tqt1)€ (%(s(w, T)g + v —1t(z, x)R)) :

Then we give a theta series on b X Sp(1,q) defined by Arakawa as follows:

0(z,9) =12 F.('g ),

lel

where L := Q9" with a fixed maximal order @ of B.
From now on, we assume

S =diag(on, aa, ..., 05-1) (04 € Zsg)

and let N € Zso be divisible by the least common multiplier of {2,d(B), aq,..., 041},
where d(B) denotes the product of ramified primes of B. For such N we set

To(N) = { (‘C‘ 2) € SLy(Z)

Furthermore we fix an arithmetic subgroup

Ii={y€GQ | Ly=L}.

c=0 modN}‘

Then we have

Proposition 4.1 (Arakawa). Let the notations be as above. Then 6(z, g) satisfies
6(6(2),7gk) = J(6,2)"2 726z, g) 7 (k)
for (6,7,k) eT4(N)xT'x K.

The most difficult step of this proposition is the transformation formula with respect to
To(N). It is settled by using basically Shintani’s argument on the transformation formula
of a theta series attached to the Weil representation (cf. [Shin, Proposition 1.6]).
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Now we formulate Arakawa’s theta lifting by using the theta series #(z, g). Let Se—gq+2(To(V))
be the space of elliptic cusp forms of weight x — 2¢ + 2 with respect to T'o(V). For

[ € Sk_2g42(lo(N)) we put
(g, f) ::/ 8(z, g)* f(2)t" *dsdt,
To(N)\b

which is End(V,)-valued.

Proposition 4.2 (Arakawa). The End(V,)-valued function ®(g, f) converges absolutely
and uniformly on any compact subset of G. Moreover ®(g, f) is of moderate growth.

Proof. We can prove this by the reasoning similar to [O, §5, 2]. The point is to estimate the
norm of #(z, g) by Epstein zeta function attached to R. O

Now we state our theorem on the theta lifting.
Theorem 4.3 (Arakawa, N). Let x > 49+ 2. Forv €V,
(g, f) v € A(T\G, 7).

The rest of this note is devoted to overviewing the proofs of this theorem by Arakawa
and us. The first step of it is to consider the lifting of elliptic Poincaré series

Gn(z)i= S J(7,2) 0 De(m(5(2))) (2 €h)

6€T oo \T'0 (V)

he€Zy and J(v,z) means the

0 1
standard C-valued automorphic factor. It suffices to prove ®(g, Gp) - v € Ao(I'\G, 7,) for
every m since {Gp, | m € Zso} spans Se—ag42(To(IV)). Arakawa obtained

for each positive integer m, where ' = {i (1 h)

g)I‘(&—% 1)

e Qi ()

(g, Grm) = (2m)"F

with

= T wtitoon ()

lel
(I,hg=2m

where, for [ = (I,1;,lgs1) € HI™U x H x H (I = (lg, lg41) € H x H when ¢ = 1) with the
positive (I,1)q, we can take a unique p; € NA such that

{(*( i k) € H (a>1)

Pz -
e € H (g=1)
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This converges absolutely and uniformly on any compact subset of G when k > 4q + 2.
Then the next step is to prove that §,,(g) - v belongs to Ao(I'\G, 7). For this step
Arakawa’s idea and ours are different. We first explain Arakawa’s proof, which deals with
the case of ¢ = 1.
Let g = 1 and put L(m) :={l € L | ({,1)g = 2m} for every positive integer m. Arakawa

showed
#(L(m)/T) < oo,

where I acts on L(m) via
I'sy:Lim) 21151 € L(m).
This is verified by considering the embedding
Lm)/T3( modT)w (pr-20 modl)e\H

together with an explicit description of a fundamental domain of I'\H. As a result, it can
be proved that

Qm(g) = const. x Z K. 9),
leL{m),/T

where KL (g1,92) = > er Walgr lvgs) is the Godement kernel function for A(T\G, ).
Since KL (go,g) - v € Ag(T\G,7,) for v € V, and a fixed gy € G, this formula of ,,(g)
implies the theorem for the case of ¢ = 1.

Next we explain our idea. Our method is to use Fourier expansion in Proposition 2.1.
To obtain the Fourier expansion of £,,(g) - v we need

Lemma 4.4 (Fourier Transformation of w,). Let £ € Xg. When g > 1

/X we(py n(w, z)a)e(~(tr&(z)))dz = d(€)" " 8¢(v, m, k)kg (wy, w)y* exp(—drd(€)y) - U(E)

and when g =1

/Xwn(pv17&(%)@)9(—(131‘5(96)))6556 = d()" (v, m, k)yE T exp(—4rd(€)y) - U(E),

where
o (w,n) =mplz) € H,
o KW, w) = (A(S)2M (e ) e, ),

o U(&) € End(V,) is the projection from V. onto C - o, (ug)ve s,
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72 (4 )F] m O\ 5
Se(l,m, k) = 2 (i!) (Véq-%-l)) exp (—%i—z)@) e(—%trg(’rz - 7))

In paticular, this is equal to 0 when £ = 0.

This is a consequence of Arakawa’s Fourier transformation formula of w,; (cf. [Ar-1, Lemma
1.2]). In addition, we use

Lemma 4.5. Let & > 4q. If cuspidal automorphic forms on G of weight 7, with respect to
T have the Fourier expansion of the form in Proposition 2.1, they belong to Ag(T\G, 7).

For this lemma see [N-2, Proposition 2.4].
By virtue of Lemma 4.4 we obtain a Fourier expansion of Q,, at a cusp ¢ € E:

U {nlan, 7)) = m&;\w be )y exp(~4md(E))e(tr(£x)) (> 1),
1 ’ m, 1+%
Qn(en{z)a) = m £€XZ:\{0} Ci'y T2 exp(—4nd(&)y)e(tr(§z)) (g = 1),
where

vol(Xg/Xr,) := the volume of the quotient Xg/Xr.

be(w) = Y dE) (v, m, )RY(w,, w) - U(E) - o (d?vi_ﬁ ) —

vELe/Nr NZ(N)
(vv)g=2m

an - Z d(g)n—lé'{(v,m, KL) - U(&-) * O (dzjs:l))—

vE€Lo/Nr (NZ(N)
(vw)g=2m

with the center Z(N) of N and L, := L'z . Here the quotient L by Np.NZ (N) is induced
by the action of ¢™'T"c on L., which is similar to the action of I' on L(m).

We can prove that 8¢(w) is a bounded function on H9! and that 0, (w) satisfies the two
conditions of O (cf. [N-2, Proposition 4.7 (1)]). Therefore the coefficients of §¢(w) belong
to O, Then we see that {,,(g) - v has the same Fourier expansion as in Proposition 2.1.

Thus Lemma 4.5 implies Q,,(g) - v € Ao(T\G,7x).
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