<table>
<thead>
<tr>
<th>Title</th>
<th>ON CRITICAL VALUES OF ADJOINT L-FUNCTIONS FOR $GSp(4)$ (Automorphic Forms and Automorphic L-Functions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ICHINO, ATSUSHI</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1468: 41-45</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/48080</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ON CRITICAL VALUES OF ADJOINT \(L \)-FUNCTIONS FOR GSp(4)

ATSUSHI ICHINO

1. INTRODUCTION

Let \(f \in S_k(SL(2, \mathbb{Z})) \) be a normalized Hecke eigenform and \(\pi = \otimes_v \pi_v \) the irreducible cuspidal automorphic representation of \(GL(2, \mathbb{A}_\mathbb{Q}) \) determined by \(f \). Then the result of Rankin [12] says that
\[
L(1, \pi, \text{Ad}) = C_\infty \langle f, f \rangle,
\]
where \(\text{Ad} : GL(2, \mathbb{C}) \to GL(3, \mathbb{C}) \) is the adjoint representation, \(C_\infty = 2^k \) is a constant which depends only on \(\pi_\infty \), and
\[
\langle f, f \rangle = \int_{SL(2, \mathbb{Z}) \backslash \mathbb{G}} |f(\tau)|^2 \text{Im}(\tau)^{k-2} d\tau
\]
is the Petersson norm of \(f \). This formula was generalized to the case of \(GL(n) \) by Jacquet, Piatetski-Shapiro, and Shalika [6]. In this note, we give an analogue for GSp(4).

2. DELIGNE' S CONJECTURE [3]

We first give some speculation about the transcendental part of critical values of adjoint \(L \)-functions for GSp(4). Let \(f_{\text{hol}} \) be a Siegel cusp form of degree 2 and of weight \(k \) with respect to \(\text{Sp}(4, \mathbb{Z}) \). We assume that \(f_{\text{hol}} \) is a Hecke eigenform and is not a Saito-Kurokawa lift. Let \(\pi_{\text{hol}} \) be the irreducible cuspidal automorphic representation of \(\text{GSp}(4, \mathbb{A}_\mathbb{Q}) \) determined by \(f_{\text{hol}} \). By Arthur's conjecture [1], there would exist an irreducible generic cuspidal automorphic representation \(\pi_{\text{gen}} \) of \(\text{GSp}(4, \mathbb{A}_\mathbb{Q}) \) such that \(\Pi = \{ \pi_{\text{hol}}, \pi_{\text{gen}} \} \) is an \(L \)-packet. Namely,
\[
L(s, \pi_{\text{hol}}, r) = L(s, \pi_{\text{gen}}, r)
\]
for any finite dimensional representation \(r \) of \(\text{GSp}(4, \mathbb{C}) \). Let \(M \) be the hypothetical motive attached to the spinor \(L \)-function of \(f_{\text{hol}} \). Then \(M \) would be of rank 4 and of pure weight \(2k - 3 \). Moreover, the Hodge decomposition
\[
H_{\text{DR}}(M) \otimes \mathbb{C} \cong H^{2k-3,0} \oplus H^{k-1,k-2} \oplus H^{k-2,k-1} \oplus H^{0,2k-3}
\]
would have a basis
\[
\{ f_{\text{hol}}, f_{\text{gen}}, \overline{f_{\text{gen}}}, \overline{f_{\text{hol}}} \}.
\]
Here \(f_{\text{gen}} \) is an element of \(\pi_{\text{gen}} \). By Yoshida's formula [13, (4.15)], we have
\[
c^+(\text{Sym}^2(M)) = (2\pi \sqrt{-1})^{12-6k} c^+(M)c^-(M)(f_{\text{hol}}, f_{\text{hol}}),
\]
where \(c^+(\text{Sym}^2(M)) \) is Deligne's period of \(\text{Sym}^2(M) \), etc. Moreover, the relative trace formula of Furusawa and Shalika [4] suggests that the equality
\[
\frac{|B_D(1)|^2}{\langle f_{\text{hol}}, f_{\text{hol}} \rangle} = L\left(\frac{1}{2}, \Pi \right) L\left(\frac{1}{2}, \Pi \otimes \chi_D \right) \frac{|W(1)|^2}{\langle f_{\text{gen}}, f_{\text{gen}} \rangle}
\]
should hold up to an elementary constant. Here \(D < 0 \) is a fundamental discriminant, \(\chi_D \) is the Dirichlet character associated to \(\mathbb{Q} \left(\sqrt{D} \right) / \mathbb{Q} \), \(B_D \) is the \(D \)-th Bessel function of \(f_{\text{hol}} \), and \(W \) is the Whittaker function of \(f_{\text{gen}} \). This leads to speculation that
\[
c^+(\text{Sym}^2(M)) = \langle f_{\text{gen}}, f_{\text{gen}} \rangle.
\]

3. Result

We now give a precise description of our result. Let
\[
\text{GSp}(4) = \left\{ g \in \text{GL}(4) \mid g \begin{pmatrix} 0 & 1_2 \\ -1_2 & 0 \end{pmatrix}, g = \nu(g) \begin{pmatrix} 0 & 1_2 \\ -1_2 & 0 \end{pmatrix}, \nu(g) \in \text{G}_m \right\}
\]
be the symplectic similitude group in four variables. Let \(\pi = \otimes_v \pi_v \) be an irreducible generic cuspidal automorphic representation of \(\text{GSp}(4, \mathbb{A}_{\mathbb{Q}}) \) with trivial central character. We assume that
- \(\pi_p \) is unramified for all primes \(p \),
- \(\pi_{\infty}|_{\text{Sp}(4, \mathbb{R})} = D_{(\lambda_1, \lambda_2)} \oplus D_{(-\lambda_2, -\lambda_1)} \) with \(1 - \lambda_1 \leq \lambda_2 \leq 0 \).

Here \(D_{(\lambda_1, \lambda_2)} \) is the (limit of) discrete series representation of \(\text{Sp}(4, \mathbb{R}) \) with Blattner parameter \((\lambda_1, \lambda_2) \). By [2], \(\pi \) has a functorial lift \(\Pi \) to \(\text{GL}(4, \mathbb{A}_{\mathbb{Q}}) \). We assume that \(\Pi \) is cuspidal.

We consider a non-zero element \(f = \otimes_v f_v \in \pi \) satisfying the following conditions:
- \(f_p \) is \(\text{GSp}(4, \mathbb{Z}_p) \)-invariant for all primes \(p \),
- \(f_{\infty} \) is the lowest weight vector of the minimal \(\text{U}(2) \)-type of \(D_{(-\lambda_2, -\lambda_1)} \).

Note that \(f \) is unique up to scalars. We may normalize \(f \) so that \(W(1) = 1 \), where \(W \) is the Whittaker function of \(f \). Let
\[
\langle f, f \rangle = \int_{\text{A}_Q^\times \text{GSp}(4, \mathbb{Q}) \backslash \text{GSp}(4, \mathbb{A}_Q)} |f(g)|^2 \, dg
\]
be the Petersson norm of \(f \), where \(dg \) is the Tamagawa measure on \(\text{GSp}(4, \mathbb{A}_Q) \).

Our main result is as follows.

Theorem 3.1 ([5]). There exists a constant \(C_\infty \in \mathbb{C}^\times \) which depends only on \(\pi_{\infty} \) such that
\[
L(1, \pi, \text{Ad}) = C_\infty \langle f, f \rangle.
\]
Here \(\text{Ad} : \text{GSp}(4, \mathbb{C}) \to \text{GL}(10, \mathbb{C}) \) is the adjoint representation.
ON CRITICAL VALUES OF ADJOINT L-FUNCTIONS FOR GSp(4)

4. Proof

We use the following three ingredients:

- the integral representation of $L(s, \pi, \mathrm{St})$,
- the integral representation of $L(s, \pi \times \pi') = \zeta(s)L(s, \pi, \mathrm{St})L(s, \pi, \mathrm{Ad})$,
- the Siegel-Weil formula.

Let $H = \mathrm{GSp}(8)$ and $G = \{(g_1, g_2) \in \mathrm{GSp}(4) \times \mathrm{GSp}(4) | \nu(g_1) = \nu(g_2)\}$.

We identify G with its image under the embedding $G \mapsto H.$

For an automorphic form φ on $H(\mathbb{A}_\mathbb{Q})$, let

$$
\langle \varphi|_{G}, \overline{f} \otimes f \rangle = \int_{Z_H(\mathbb{A}_\mathbb{Q})G(\mathbb{Q}) \backslash G(\mathbb{A}_\mathbb{Q})} \varphi((g_1, g_2)) f(g_1) \overline{f(g_2)} \, dg_1 \, dg_2.
$$

Let $P = \{ (_{0}^{a} \, v^{-1}a^{-1}) \in H | a \in \mathrm{GL}(4), v \in \mathbb{G}_m \}$ be the Siegel parabolic subgroup of H. Let $F = \otimes_v F_v$ be a holomorphic section of $\text{Ind}^{H(\mathbb{A}_\mathbb{Q})}_{P(\mathbb{A}_\mathbb{Q})}(\delta_P^{s/5})$, where δ_P is the modulus character of $P(\mathbb{A}_\mathbb{Q})$. Let $E(s, F)$ be the Siegel Eisenstein series attached to F.

Theorem 4.1 (Piatetski-shapiro and Rallis [11]). We have

$$
\langle E(s, F)|_{G}, \overline{f} \otimes f \rangle = \langle f, f \rangle d_P^S(s)^{-1} L^S(s + \frac{1}{2}, \pi \times \pi') \prod_{v \in S} Z_v(s, \phi_v, F_v).
$$

Here $d_P^S(s) = \zeta^S(s + \frac{5}{2}) \zeta^S(2s + 1) \zeta^S(2s + 3)$, ϕ_v is the matrix coefficient of π_v associated to f_v such that $\phi_v(1) = 1$, and $Z_v(s, \phi_v, F_v)$ is the local zeta integral.

Let $Q = \{ (_{0}^{a} \, v^{-1}a^{-1}) \in H | a \in \mathrm{GL}(3), v \in \mathbb{G}_m \}$ be a maximal parabolic subgroup of H. Let $\mathcal{F} = \otimes_v \mathcal{F}_v$ be a holomorphic section of $\text{Ind}^{H(\mathbb{A}_\mathbb{Q})}_{Q(\mathbb{A}_\mathbb{Q})}(\delta_Q^{s/6})$, where δ_Q is the modulus character of $Q(\mathbb{A}_\mathbb{Q})$. Let $\mathcal{E}(s, \mathcal{F})$ be the Eisenstein series attached to \mathcal{F}.

Theorem 4.2 (Jiang [7]). We have

$$
\langle \mathcal{E}(s, \mathcal{F})|_{G}, \overline{f} \otimes f \rangle = d_Q^S(s)^{-1} L^S(s + \frac{1}{2}, \pi \times \pi') \prod_{v \in S} Z_v(s, W_v, \mathcal{F}_v).
$$
Here $d_Q^S(s) = \zeta^S(s+1)\zeta^S(s+2)\zeta^S(s+3)\zeta^S(2s+2)$, W_{ψ} is the Whittaker function of π_{ψ} associated to f_{ψ} such that $W_{\psi}(1) = 1$, and $Z_v(s, W_{\psi}, F_{\psi})$ is the local zeta integral.

To compare these two integral representations, we use the Siegel-Weil formula. Recall the analytic behavior of the Eisenstein series:

- $E(s, F)$ has at most a simple pole at $s = \frac{1}{2}$ (Kudla and Rallis [10]),
- $\mathcal{E}(s, F)$ has at most a double pole at $s = 1$ (Jiang [7]).

On the other hand, since Π is cuspidal,

- $L^S\left(s + \frac{1}{2}, \pi, \text{St}\right)$ is holomorphic and non-zero at $s = \frac{1}{2}$,
- $L^S\left(s + \frac{1}{2}, \pi \times \pi^\vee\right)$ has a simple pole at $s = 1$.

Hence the first terms in the Laurent expansions of the Eisenstein series do not contribute to special values. This means that we must compare the second terms.

Proposition 4.3. There exist F and \mathcal{F} which are $H(\mathcal{Z})$-invariant and which satisfies the following:

- For $\varphi = \text{Res}_{s=1} E(s, F) - \zeta(4)^{-1} \text{CT}_{s=\frac{1}{2}} E(s, F)$, we have
 $$\langle \varphi|_G, \overline{f} \otimes f \rangle = 0.$$
- $Z_{\infty}(s, \phi_{\infty}, F_{\infty})$ is holomorphic and non-zero at $s = \frac{1}{2}$.
- $Z_{\infty}(s, W_{\infty}, F_{\infty})$ is holomorphic and non-zero at $s = 1$.

The proof of this proposition is based on the regularized Siegel-Weil formula of Kudla and Rallis [10], Kudla [9], and Jiang [8].

Now it is easy to check that

$$\frac{L(1, \pi, \text{Ad})}{\langle f, f \rangle} = C'_{\infty} \frac{Z_{\infty}\left(\frac{1}{2}, \phi_{\infty}, F_{\infty}\right)}{Z_{\infty}(1, W_{\infty}, F_{\infty})},$$

where

$$C'_{\infty} = 2^{-1} \zeta_{\infty}(4)^{-1} L_{\infty}(1, \pi_{\infty}, \text{Ad}) \in C^\times.$$

Since ϕ_{∞} and W_{∞} depend only on π_{∞}, the right-hand side depends only on π_{∞}, F_{∞}, and F_{∞}. However, the left-hand side is independent of F_{∞} and F_{∞}. This completes the proof of Theorem 3.1.

References

ON CRITICAL VALUES OF ADJOINT L-FUNCTIONS FOR GSp(4)

[12] R. A. Rankin, *Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. I. The zeros of the function $\sum_{n=1}^{\infty} \frac{\tau(n)}{n^s}$ on the line $\Re s = \frac{11}{2}$. II. The order of the Fourier coefficients of integral modular forms*, Proc. Cambridge Philos. Soc. **35** (1939), 351–372.

Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

E-mail address: ichino@sci.osaka-cu.ac.jp