ON CRITICAL VALUES OF ADJOINT L-FUNCTIONS FOR GSp(4)

ATSUSHI ICHINO

1. Introduction

Let $f \in S_k(SL(2, \mathbb{Z}))$ be a normalized Hecke eigenform and $\pi = \otimes_{\nu} \pi_{\nu}$ the irreducible cuspidal automorphic representation of $GL(2, \mathbf{A}_{\mathbb{Q}})$ determined by f. Then the result of Rankin [12] says that

$$L(1, \pi, Ad) = C_{\infty} \langle f, f \rangle,$$

where Ad: $GL(2, \mathbb{C}) \to GL(3, \mathbb{C})$ is the adjoint representation, $C_{\infty} = 2^k$ is a constant which depends only on π_{∞} , and

$$\langle f, f \rangle = \int_{\mathrm{SL}(2, \mathbf{Z}) \setminus 5} |f(\tau)|^2 \, \mathrm{Im}(\tau)^{k-2} \, d\tau$$

is the Petersson norm of f. This formula was generalized to the case of GL(n) by Jacquet, Piatetski-Shapiro, and Shalika [6]. In this note, we give an analogue for GSp(4).

2. Deligne's conjecture [3]

We first give some speculation about the transcendental part of critical values of adjoint L-functions for GSp(4). Let f_{hol} be a Siegel cusp form of degree 2 and of weight k with respect to $Sp(4, \mathbb{Z})$. We assume that f_{hol} is a Hecke eigenform and is not a Saito-Kurokawa lift. Let π_{hol} be the irreducible cuspidal automorphic representation of $GSp(4, \mathbf{A_Q})$ determined by f_{hol} . By Arthur's conjecture [1], there would exist an irreducible generic cuspidal automorphic representation π_{gen} of $GSp(4, \mathbf{A_Q})$ such that $\Pi = \{\pi_{hol}, \pi_{gen}\}$ is an L-packet. Namely,

$$L(s, \pi_{\text{hol}}, r) = L(s, \pi_{\text{gen}}, r)$$

for any finite dimensional representation r of $GSp(4, \mathbb{C})$. Let M be the hypothetical motive attached to the spinor L-function of f_{hol} . Then M would be of rank 4 and of pure weight 2k-3. Moreover, the Hodge decomposition

$$H_{\mathrm{DR}}(M) \otimes \mathbb{C} \cong H^{2k-3,0} \oplus H^{k-1,k-2} \oplus H^{k-2,k-1} \oplus H^{0,2k-3}$$

would have a basis

$$\{f_{\mathrm{hol}}, f_{\mathrm{gen}}, \overline{f_{\mathrm{gen}}}, \overline{f_{\mathrm{hol}}}\}$$
.

Here $f_{\rm gen}$ is an element of $\pi_{\rm gen}$. By Yoshida's formula [13, (4.15)], we have

$$c^{+}(\text{Sym}^{2}(M)) = (2\pi \sqrt{-1})^{12-6k} c^{+}(M)c^{-}(M)\langle f_{\text{hol}}, f_{\text{hol}} \rangle,$$

where $c^+(\operatorname{Sym}^2(M))$ is Deligne's period of $\operatorname{Sym}^2(M)$, etc. Moreover, the relative trace formula of Furusawa and Shalika [4] suggests that the equality

$$\frac{|B_D(1)|^2}{\langle f_{\text{hol}}, f_{\text{hol}} \rangle} = L\left(\frac{1}{2}, \Pi\right) L\left(\frac{1}{2}, \Pi \otimes \chi_D\right) \frac{|W(1)|^2}{\langle f_{\text{gen}}, f_{\text{gen}} \rangle}$$

should hold up to an elementary constant. Here D < 0 is a fundamental discriminant, χ_D is the Dirichlet character associated to $\mathbf{Q}\left(\sqrt{D}\right)/\mathbf{Q}$, B_D is the D-th Bessel function of f_{hol} , and W is the Whittaker function of f_{gen} . This leads to speculation that

$$c^+(\operatorname{Sym}^2(M)) \stackrel{?}{=} \langle f_{\operatorname{gen}}, f_{\operatorname{gen}} \rangle.$$

3. Result

We now give a precise description of our result. Let

$$GSp(4) = \left\{ g \in GL(4) \middle| g \begin{pmatrix} 0 & \mathbf{1}_2 \\ -\mathbf{1}_2 & 0 \end{pmatrix}^t g = \nu(g) \begin{pmatrix} 0 & \mathbf{1}_2 \\ -\mathbf{1}_2 & 0 \end{pmatrix}, \ \nu(g) \in \mathbf{G}_m \right\}$$

be the symplectic similitude group in four variables. Let $\pi = \bigotimes_{\nu} \pi_{\nu}$ be an irreducible generic cuspidal automorphic representation of $GSp(4, \mathbf{A_Q})$ with trivial central character. We assume that

- π_p is unramified for all primes p,
- $\pi_{\infty}|_{\operatorname{Sp}(4,\mathbb{R})} = D_{(\lambda_1,\lambda_2)} \oplus D_{(-\lambda_2,-\lambda_1)} \text{ with } 1 \lambda_1 \leq \lambda_2 \leq 0.$

Here $D_{(\lambda_1,\lambda_2)}$ is the (limit of) discrete series representation of Sp(4, **R**) with Blattner parameter (λ_1,λ_2) . By [2], π has a functorial lift Π to GL(4, $\mathbf{A_Q}$). We assume that Π is cuspidal.

We consider a non-zero element $f = \bigotimes_{\nu} f_{\nu} \in \pi$ satisfying the following conditions:

- f_p is $GSp(4, \mathbb{Z}_p)$ -invariant for all primes p,
- f_{∞} is the lowest weight vector of the minimal U(2)-type of $D_{(-\lambda_2,-\lambda_1)}$.

Note that f is unique up to scalars. We may normalize f so that W(1) = 1, where W is the Whittaker function of f. Let

$$\langle f, f \rangle = \int_{\mathbf{A}_{\mathbf{Q}}^{\times} \operatorname{GSp}(4, \mathbf{Q}) \backslash \operatorname{GSp}(4, \mathbf{A}_{\mathbf{Q}})} |f(g)|^{2} dg$$

be the Petersson norm of f, where dg is the Tamagawa measure on $GSp(4, \mathbf{A_Q})$. Our main result is as follows.

Theorem 3.1 ([5]). There exists a constant $C_{\infty} \in \mathbb{C}^{\times}$ which depends only on π_{∞} such that

$$L(1, \pi, Ad) = C_{\infty} \langle f, f \rangle.$$

Here Ad: $GSp(4, \mathbb{C}) \to GL(10, \mathbb{C})$ is the adjoint representation.

4. Proof

We use the following three ingredients:

- the integral representation of $L(s, \pi, St)$,
- the integral representation of $L(s, \pi \times \pi^{\vee}) = \zeta(s)L(s, \pi, \operatorname{St})L(s, \pi, \operatorname{Ad})$,
- the Siegel-Weil formula.

Let H = GSp(8) and

$$G = \{(g_1, g_2) \in GSp(4) \times GSp(4) | \nu(g_1) = \nu(g_2)\}.$$

We identify G with its image under the embedding

$$G \longrightarrow H$$
.

$$\left(\begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}, \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \right) \longmapsto \begin{pmatrix} a_1 & 0 & b_1 & 0 \\ 0 & a_2 & 0 & -b_2 \\ c_1 & 0 & d_1 & 0 \\ 0 & -c_2 & 0 & d_2 \end{pmatrix}$$

For an automorphic form φ on $H(\mathbf{A_0})$, let

$$\langle \varphi|_G, \bar{f} \otimes f \rangle = \int_{Z_H(\mathbf{A_O})G(\mathbf{Q}) \backslash G(\mathbf{A_O})} \varphi((g_1, g_2)) f(g_1) \overline{f(g_2)} \, dg_1 \, dg_2.$$

Let

$$P = \left\{ \begin{pmatrix} a & * \\ 0 & v^t a^{-1} \end{pmatrix} \in H \middle| a \in GL(4), \ v \in \mathbf{G}_m \right\}$$

be the Siegel parabolic subgroup of H. Let $F = \bigotimes_{\nu} F_{\nu}$ be a holomorphic section of $\operatorname{Ind}_{P(\mathbf{A}_{\mathbf{Q}})}^{H(\mathbf{A}_{\mathbf{Q}})} \left(\delta_{P}^{s/5} \right)$, where δ_{P} is the modulus character of $P(\mathbf{A}_{\mathbf{Q}})$. Let E(s, F) be the Siegel Eisenstein series attached to F.

Theorem 4.1 (Piatetski-shapiro and Rallis [11]). We have

$$\langle E(s,F)|_G, \bar{f}\otimes f\rangle = \langle f,f\rangle d_P^S(s)^{-1}L^S\left(s+\tfrac{1}{2},\pi,\operatorname{St}\right)\prod_{v\in S}Z_v(s,\phi_v,F_v).$$

Here $d_P^S(s) = \zeta^S\left(s + \frac{5}{2}\right)\zeta^S(2s + 1)\zeta^S(2s + 3)$, ϕ_V is the matrix coefficient of π_V associated to f_V such that $\phi_V(1) = 1$, and $Z_V(s, \phi_V, F_V)$ is the local zeta integral.

Let

$$Q = \left\{ \begin{pmatrix} a & * & * & * \\ 0 & * & * & * \\ 0 & 0 & v^t a^{-1} & 0 \\ 0 & * & * & * \end{pmatrix} \in H \middle| a \in GL(3), v \in \mathbf{G}_m \right\}$$

be a maximal parabolic subgroup of H. Let $\mathcal{F} = \otimes_{\nu} \mathcal{F}_{\nu}$ be a holomorphic section of $\operatorname{Ind}_{Q(\mathbf{A}_Q)}^{H(\mathbf{A}_Q)} \left(\delta_Q^{s/6} \right)$, where δ_Q is the modulus character of $Q(\mathbf{A}_Q)$. Let $\mathcal{E}(s,\mathcal{F})$ be the Eisenstein series attached to \mathcal{F} .

Theorem 4.2 (Jiang [7]). We have

$$\langle \mathcal{E}(s,\mathcal{F})|_G, \bar{f} \otimes f \rangle = d_Q^S(s)^{-1} L^S\left(\frac{s+1}{2}, \pi \times \pi^\vee\right) \prod_{v \in S} \mathcal{Z}_v(s, W_v, \mathcal{F}_v).$$

Here $d_Q^S(s) = \zeta^S(s+1)\zeta^S(s+2)\zeta^S(s+3)\zeta^S(2s+2)$, W_v is the Whittaker function of π_v associated to f_v such that $W_v(1) = 1$, and $Z_v(s, W_v, \mathcal{F}_v)$ is the local zeta integral.

To compare these two integral representations, we use the Siegel-Weil formula. Recall the analytic behavior of the Eisenstein series:

- E(s, F) has at most a simple pole at $s = \frac{1}{2}$ (Kudla and Rallis [10]),
- $\mathcal{E}(s,\mathcal{F})$ has at most a double pole at s=1 (Jiang [7]).

On the other hand, since Π is cuspidal,

- $L^{S}\left(s+\frac{1}{2},\pi,\operatorname{St}\right)$ is holomorphic and non-zero at $s=\frac{1}{2}$,
- $L^{S}\left(\frac{s+1}{2}, \pi \times \pi^{\vee}\right)$ has a simple pole at s=1.

Hence the first terms in the Laurent expansions of the Eisenstein series do not contribute to special values. This means that we must compare the second terms.

Proposition 4.3. There exist F and F which are $H(\hat{\mathbf{Z}})$ -invariant and which satisfies the following:

• For

$$\varphi = \operatorname{Res}_{s=1} \mathcal{E}(s, \mathcal{F}) - \zeta(4)^{-1} \operatorname{CT}_{s=\frac{1}{2}} E(s, F),$$

we have

$$\langle \varphi |_G, \bar{f} \otimes f \rangle = 0.$$

- $Z_{\infty}(s, \phi_{\infty}, F_{\infty})$ is holomorphic and non-zero at $s = \frac{1}{2}$.
- $\mathcal{Z}_{\infty}(s, W_{\infty}, \mathcal{F}_{\infty})$ is holomorphic and non-zero at s = 1.

The proof of this proposition is based on the regularized Siegel-Weil formula of Kudla and Rallis [10], Kudla [9], and Jiang [8].

Now it is easy to check that

$$\frac{L(1,\pi,\mathrm{Ad})}{\langle f,f\rangle} = C'_{\infty} \frac{Z_{\infty}\left(\frac{1}{2},\phi_{\infty},F_{\infty}\right)}{Z_{\infty}(1,W_{\infty},\mathcal{F}_{\infty})},$$

where

$$C'_{\infty} = 2^{-1} \zeta_{\infty}(4)^{-1} L_{\infty}(1, \pi_{\infty}, \mathrm{Ad}) \in \mathbb{C}^{\times}.$$

Since ϕ_{∞} and W_{∞} depend only on π_{∞} , the right-hand side depends only on π_{∞} , F_{∞} , and \mathcal{F}_{∞} . However, the left-hand side is independent of F_{∞} and \mathcal{F}_{∞} . This completes the proof of Theorem 3.1.

REFERENCES

- [1] J. Arthur, Unipotent automorphic representations: conjectures, Astérisque 171-172 (1989), 13-71.
- [2] J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to GL_N, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 5–30.
- [3] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Automorphic forms, representations and L-functions, Proc. Sympos. Pure Math. 33, Part 2, Amer. Math. Soc., 1979, pp. 313–346.
- [4] M. Furusawa and J. A. Shalika, On central critical values of the degree four L-functions for GSp(4): the fundamental lemma, Mem. Amer. Math. Soc. 782 (2003).
- [5] A. Ichino, On critical values of adjoint L-functions for GSp(4), preprint.
- [6] H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367-464.

- [7] D. Jiang, Degree 16 standard L-function of GSp(2) × GSp(2), Mem. Amer. Math. Soc. 588 (1996).
- [8] _____, The first term identities for Eisenstein series, J. Number Theory 70 (1998), 67-98.
- [9] S. S. Kudla, Some extensions of the Siegel-Weil formula, preprint:
- [10] S. S. Kudla and S. Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. 140 (1994), 1-80.
- [11] I. I. Piatetski-Shapiro and S. Rallis, *L-functions for the classical groups*, Explicit constructions of automorphic *L*-functions, Lecture Notes in Mathematics **1254**, Springer-Verlag, 1987, pp. 1–52
- [12] R. A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. I. The zeros of the function $\sum_{n=1}^{\infty} \frac{\tau(n)}{n^s}$ on the line $\Re s = \frac{13}{2}$. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 351–372.
- [13] H. Yoshida, Motives and Siegel modular forms, Amer. J. Math. 123 (2001), 1171-1197.

Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

E-mail address: ichino@sci.osaka-cu.ac.jp