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On standard L-function for
generic cusp forms on U(2,1)

Yoshi-hiro Ishikawa

Introduction
The main object of our concern is ramified factors of zeta integrals. By definition, zeta
integrals ”interpolates” automorphic L-functions to deduce their some analytic properties,

‘say meromorphic continuation. But this is just the first step of study of L-functions.

Actually special values, entireness or poles of L-functions encode very deep and fascinating
arithmetic information. It is quite hard to investigate these properties. However it has
been believed since the beginning of the history of automorphic representations, that
through the study of zeta integrals one can reach the depth of arithmetic nature. Besides
Jacquet-Langlands theory of the standard L-function for GL(2), we should cite a great
work [Rama] of Ramakrishnan, which says that the Garrett integral coincides the triple
L-function including the ramified factors with the help of Ikeda’s archimedean calculus
[Ike]. Takloo-Bighash investigate the Novodvorsky integral to determine local factors of
the spinor L-function for the generic representations of GSp(4) [Tak].

In this note we would like to treat the Gelbart Piatetski-Shapiro integral, which are
recalled in §1, and report some results on ramified factors of the standard L-function for
U(3). In §2, we calculate the "GCD” of p-adic components of the zeta integral for the
generic representations of U(3). In §3, we redo the calculation of [K-O] to give a cleaner
form of the "GCD” of archimedean component.

Contents

1 Gelbart Piatetski-Shapiro zeta integral 1
2 p-adic factors 4
3 Archimedean factors 6

1 Gelbart Piatetski-Shapiro zeta integral

Note that we can obtain the same result without any loss of generality, even if we formulate
the problem over an arbitrary totally real algebraic number field. So we take @ for our
ground field.
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<Group structure>
Let F be an imaginary quadratic extension of Q and denote the non-trivial element of its
Galois group by ~. Put

1 1
G = {geGL(3,E) |'g 1 g= 1 )}
1 1

This defines a quasi-split unitary group of three variables over Q. Let
G = NTK
be the Iwasawa decomposition of G. Then each subgroups are expressed as

1 b z
N = { 1 -b |eGlbzekFE, z+E:—|b(2E},

T = { 8 \EGIaEEX,ﬂEE“)}

and
K = GnNM;(Og).

A Borel subgroup of G is given by
B = NxT.

We need a subgroup

* *
H = Img(L:U(l,l)B(: :)H 1 EG)

* *

as the Euler subgroup for a Rankin-Selberg integral. The Iwasawa decomposition of H is

H = ZyAKy
with
1 z
ZN _,—;{ 1 GG}ZER},
1
a
A ={ 1 €GlaeQ*}
a!
and
Ky = KNH.
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<The standard L-function>
For a cuspidal automorphic representation 7 = ®,m, of G(A) = U(3), and a Hecke
character £ of F, the standard L-function is defined by a local way as an Euler product

L(s;m ® &) HL (857, ® &)

For the unramified principal series 7, = Indgﬁ (x), the unramified factor is given by
Ly(s;mp ® &) = Lipp(s;€p) Lp(2s; Epx) Lp(28; 65/ X)-

<Zeta integral>
For a generic cusp form ¢ belonging to a generic 7, Gelbart and Piatetski-Shapiro intro-

‘duced the following zeta integral
2508 = [ plu()E (s m)dh
H(Q\H(4)

Here E4# is an Eisenstein series on H(A) corresponding to the principal series Indggﬁ ), (£).

By the Langlands theory of Eisenstein series the integral is continued to the whole s-plane.
<Unfolding and local integrals>

Assume the generic cusp form is localizable; ¢ = ®,¢,. By using the multiplicity one

result on Whittaker models and an unfolding procedure, the Rankin-Selberg integral

decomposes into a product of local integrals:

Z(s;0,6) = [[ 2o(s; W, @),

with
Z,(5;W,80)) = / W, |11, (ho) @ (hy)dh.

ZN,v\Hv
Here Zy,, is the center of the maximal nilpotent subgroup N, of G, W,,, is a Whittaker
Vector corresponding to ¢, € m, and @és) is a special section of the principal series

Bﬂ m, (€l-|*) of H induced up from its Borel subgroup ((* })). Note that this integral
Va,mshes “unless w is a generic cusp form.

Over the places where everything is unramified, Gelbart and Piatetski-Shapiro showed
the coincidence of local factors of L-function and zeta integral by using the Casselman-

Shalika formula.
Proposition 1 ([Ge-PS] §4) For the unramified (i.e. K,-spherical )m,’s,
Z,(s; W, ®éS)> = Ly(8;m, ®&p).
O

Next step of investigation is to analyze ramified factors. The p-adic case was treated
by Baruch in his thesis [Ba]. We record two of his results.
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Proposition 2 ([Ba]) For any non-archimedean m,’s, the followings hold.
i) The family of zeta integrals for the Jacquet sections

(Z,(s; W, 8%)) | K, — finite W € Why(m,), ¢ € S(Q})}

admits the "GCD”. Note the (i’(‘:)ﬁ ’s is dence in the representation space of princepal sertes.
i) There is a rational function v,(8; Tp, €p; Yo, X&) in q~° such that the local functional
equation
Z,(1 -5 W, 08, ) = (5 & Yo x5) - ol W, L)

holds. Here ;5 is the Fourier transform of ¢. O

Note that Baruch get the local functional equation by showing the generic multiplicity
one for the space of invarient bi-linear forms ;

dime Bil (|, Tod {3, (€] 9) <1
for almost all of s € €. And the explicit form of gamma factor has not been known so far.

The remaining problems are following.

Problems

1) Calculate Zp(s;ﬂﬂ@és)) for "bad” finite places v = p to determine the ramified
L-factor Ly(s;m, @ &) as the ”GCD”. '

2) Calculate archimedean Z.(s; W, @és)) and study the "GCD”.

2 p-adic factors

There are several ways to analyze ramified L-factors. Here we follow the method of
Takloo-Bighash [Tak], where he calculated the Novodvorsky integral for the generic 7,’s
of GSp(4) and determined ramified L-factors. The strategy, which is divided into three
steps, is simple but relys on Shalika’s ingenious fundamental work.

Step 1 : Germ expansion of Whittaker functions.
By nature of Whittaker functions, we only need their A,-radial part, which can be ex-

panded as
a

W, ( 1 ) = D be(a)-cla),
a” ! cE8ry
by using finite functions ¢ on Q. Here coefficient functions ¢, are Schwartz functions
and the index set S, is a finite set determiner by m,. The size of set can be bounded by
Shalika’s argument on distribution. In our case, |Sx,| < 2.
Step 2 : Shahidi theory of intertwiners.
Let I,(v) denote the principal series Indngﬂ - |% of G,. Here ¢ is given by

g T — CX
diag(e, B,a71) — x(e)x/(afat),
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where x and x' are quasi-character and character of £ respectively. And v € Cis a
complex parameter. Consider the Whittaker vector corresponding to a section f € I,(v).
Then the A,-radial part can be expressed as

Wil 1) = %) x(@) + Clow) demAlio,w) ) () - x 7 @)

a1
Here A\, : I,(v) — C is the Whittaker functional for I,(v) and
Alvyo,w) @ I,(v) = Lw(—v)

is the intertwiner. Similarly Ajw : Jouw(—v) — C is the Whittaker functional for Ju(—v).
The action of Weyl element w is given by o® := (¢ %, x). The proportional factor C{o, w)
is Shahidi’s local coefficients.

Note that if the section f sits in 7, then f is our ¢,. So we need to know which 7, is
kernel/image of the intertwiner. We appeal to

Step 3 : Classification result of m,’s.

A general result of Shahidi says that the reducing points of the standard moddules
induced up from mazimal parabolic subgroup can be 0, =1 or +1/2. In our case, all of
these occur.

Proposition 3 ([Ke]) The standard module I,(v) is irreducible except the following three
cases.
1) When v = %1, the constituent of the standard module is given by the ezact sequence

0 — Sty — I,(+1) — x' - det — 0.

Here St,. is the twisted Steinberg representation and is the kernel of A(+1;0,w). For
v = —1, submodule and quotient in the above exact sequence are substituted.
2) When v = £1/2 and x|ox = sgn,

0— 7% — L(+1/2) = 7™ —= 0

is an exact sequence. Here m% is a square integrable representation and is the kernel of

A(+1/2;0,w). The quotient 7™ is a non-tempered unitary representation. Forv = —1/2,
submodule and quotient are substituted.
3) When v = £0 and X1Q;,< =1gx, X #1 g, the standard module decomposes into a
direct sum _
L,(0) = 7%9 @ 74
where 79, ™ stands for irreducible degenerate, irreducible non-degenerate representa-

tions respectively. A general result of Shahidi says that non-degenerate representations
can not be annihirated by intertwiners. So the kernel of A(0; o, w) is w99, O

Now we define the local factor L,(s;m, ® &,) as the "GCD” of Baruch’s family. Then
the above argument gives the following result for special representations and the fact that
W hy(m,) coincides the full S(Q)) for super-cuspidals.



51

Theorem 4 The local factor Ly(s;m, ® &,) of standard L-function for U(3) is given as
follows.
0) When m, is an irreducible standard module I1,(v),

L (8 &) Lp(25 + 20, £X) Lp(28 + 20,65/ X)) -

1) When m, is the tuisted Steinberg representation Sty,

Lpp(s;&p)Lp(25 +2; £X)-

2) When m, is the twisted Steinberg representation Sty,

LE,p(‘S; fp)LP(QS +1; ng)»

8) When m, is the irreducible square-integrable representation 72,

Lgy(s; €p) Lp(28; EpX)-

4) When m, is o super-cuspidal representation,

LEp(s; £p)-

|

We note that Watanabe studied related subject in a broader setting [Wat], where the
representations are limitted to regular and tamely ramified though, and covers much of
Theorem 4. For the twisted Steinberg representation St,/, the author culculated the zeta
integral for Iwahori sherical vector by using a Casselman-Shalika type formula of Li [Li],
which was reported in annual work shop at RIMS in 2004.

3 Archimedean factors

As is seen in the previous section, p-adic story is completely similar to the G Lo-case. No
new difficulties come out for U(3). However even for this small group, archimedean factor
is hard to handle. In fact we can not mimic Shalika’s idea over archimedean places. So
we have to find other ways. Here we appeal to a very direct method. That is to compute
out the zeta integral by using an explicit formula for Whittaker functions. This strategy
is not so smart nor elegant, but sometimes powerful and useful. Gross and Kudla [Gr-Ku]
adopted the strategy to compute the ramified factor of the Garrett integral to reduce it
to some Igusa local zeta when one of three cusp form has Iwahori level structure. Over
archimedean places, Moriyama [Mo], Ishii studied the Novodvorsky integral for GSp(4),
and the author [Is] a Shimura type integral for U(2,1) discovered by Shintani [Shi].

We again devide the story into three steps. The crucial step is the first one, where we
compute the A.-radial part of Whittaker function corresponding to the minimal/corner
K.o-type vectors in discrete series /principal series representations.

Step 1 : Explicit formula for the minimal K-type Whittaker functions.
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Again by nature of Whittaker functions, their A, -radial part is essencial. Note K,
is isomorphic to U(2) x U(1). So the functions are of vector-valued in the representation
space of K-type. Fixing a realization, we can expand the A.-radial part with respect
to the basis. And the coefficient functions can be determined by solving the system of
difference—differential equations. Koseki and Oda obtained an explicit formula for the
group SU(2,1). We record a U(2,1)-version, which has cleaner form to handle easier,
by the Gel’fand-Zetlin realization. For our group U(2,1), the representations admitting
Whittaker model is ”large” discrete series or principal series representations. We omit
the principal series case.

Theorem 5 ([K-O], [I]) Let 7o be a "large” discrete series representation wy with Harish-
Chandra parameter (A1, As, As), i.e. Ay > Az > Ao, If the Whittaker function W for my
has the minimal K -type, this Whittaker vector is written as

a
W( 1 ) — Z Ck-G,Al_Az_%W{),k_Al_A2+A3(2\/50) X (1 Al}cAZ > ® 1A3) .

g™t A >k>Ag

Here ¢, and b are constants and | *,™ > stands for the Gel’fand-Zetlin base for U(2)-
representation. O

Step 2 : Recursion relations among arbitrary K-type Zo.(s; W, @és)).
By the branching rule of U(2)-module, we can see

Zo(s; W, @és}) =0 unless A;>m—As;> A,

Here m is the parameter of Hecke character ; £,.(6) =: |§ Ifc(l—‘:ﬂ)m Moreover when the
K -type of Whittaker function W is [A; +a, Ay — b; A3 — a + b], the Ky -type of section
CDES) should be [m — As +a — b, A3 — a + b], if not the zeta integral vanishes. Therefore
most of the members of family {Z,,(s; W, @és})} are zero-function. Among the non-trivial

Zo(s; W, @és) )’s there are recusive relations, which is inherited from ones of K-finite
Whittaker functions deduced from differential equations.

Step 3 : Normalization of Eisenstein series part.

We go back to principal series of Hy, = U(1,1) and consider the intertwiner

Alsi&w) « Ind{py (e ®e® ®@1y) = Indfiz,, (X @™ @ 1y).

We normalize this intertwiner following Langlands, Arthur and Shahidi. Put

5(55£:¢)LE,00(S;§)

Hlsgw) = TP

Als; €, w)

then we have local functional equation of ”Eisenstein series”

A (=567 w) - A*(s;¢,w) = Id.
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Moreover we take natural sections

BY(s;%) = Lo oo(s;6) - Pelsi),

where L% . (s;€) is the archimedean factor of Hecke L modified by Harish-Chandra c-
function and ®¢(s;*) is a standard section normalized by ®¢(—;e) = 1. Then we have
symmetrized functional equation

A(s5;6,w)Bl(s) = e(s6,) - Dha(—s).

Now we define the archimedean L-factor L (8; Teo ® £x) as the ?GCD” of the family
of zeta integrals for K -finite Whittaker vectors and the natural sections. Then the above
argument gives the following result. ‘

Theorem 6 The archimedean factor Loo(s; Moo @ o) for the "large” discrete series rep-
resentation o, = s with Harish-Chandra parameter (Ay, Ag, A3) and o Hecke character
¢ with parameter (t,m) € C X Z is given as follows.

F(3+t‘A3"'A1+§2ﬁ) when m > Ay and m > A4

s _m l}’)i F(S-I-—t—*Ag-F%) whenA12m2A3

2 F(S+t+A1 9 >F<S+t A2+ 2) F(S +t— Ai + znz_) when A3 >m > Al
T(s+t—%) when As > mand Ay >m

supposing Ay + Az > m > Ay + Az, O

We reported archimedean local functional equation in the occasion of the talk in
Jan/21. However some serious mistake was found afterward and has not been removed
5o far. We would like to reconsider this probrem in near future.
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