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概要

In [5] and [6], we have investigated the logical strength of the determinacy of

infinite games in the Baire space up to $\Delta_{3}^{0}$ . In this paper we consider infinite games

in the Cantor space. Let Det* (resp. $\mathrm{D}\mathrm{e}\mathrm{t}$) stand for the determinacy of infinite

games in the Cantor space (resp. the Baire space). In Section 2, we show that

$\Delta_{1}^{0}- \mathrm{D}\mathrm{e}\mathrm{t}^{*}$ , $\Sigma_{1}^{0_{-}}\mathrm{D}\mathrm{e}\mathrm{t}^{*}$ and WKLq are pairwise equivalent over RCAo. In Section 3, we

show that $\mathrm{R}\mathrm{C}\mathrm{A}_{0}+\{\Sigma_{1}^{0}$ A $\Pi_{1}^{0}$ ) $- \mathrm{D}\mathrm{e}\mathrm{t}^{*}$ is equivalent to ACAO. Then, we deduce that
$\mathrm{R}\mathrm{C}\mathrm{A}_{0}$ $+$ $\Delta_{2}^{0_{-}}\mathrm{D}\mathrm{e}\mathrm{t}^{*}$ is equivalent to ATRo- In the last section, we show some more

equivalences among stronger assertions without details, which will be thoroughly

treated elsewhere.

1 Preliminaries
In this section, we recall some basic definitions and facts about second order

arithmetic. The language $\mathcal{L}_{2}$ of second order arithmetic is a two sorted language

with number variables $x$ , $y$ , $z$ , $\ldots$ and unary function variables $f$, $g$ , $h$ , $\ldots$ , consisting

of constant symbols 0, $1,$ $+$ , $\cdot,$ $=,$ $<$ . We also use set variables $X$ , $Y$, $Z$ , $\ldots$ , intending

to range over the set of {0, 1}-valued functions, that is, characteristic functions of

sets.

The formulae can be classified as follows:. $\varphi$ is bounded $(\Pi_{0}^{0})$ if it is built up from atomic formulae by using propositional

connectives and bounded number quantifiers (Vr $<t$), $(\exists x<t)$ , where $t$ does

not contain $x$ .
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. $\varphi$ is $\Pi_{0}^{1}$ if it does not contain any function quantifier. $\Pi_{0}^{1}$ formulae are called

arithmetical formulae.. $\neg\varphi$ is $\Sigma_{n}^{i}$ if $\varphi$ is a $\Pi_{n}^{i}$ formula $(\mathrm{i}\in\{0, 1\}, n\in\omega)$ .. $\forall x_{1}\cdots$ $\forall x_{k}\varphi$ is $\Pi_{n+1}^{0}$ if $\varphi$ is a $\Sigma_{n}^{0}$ formula $(n\in\omega)$ ,. $\forall f_{1}\cdots\forall fk\Psi$ is $\mathrm{I}\mathrm{I}_{n+1}^{1}$ if $\varphi$ is a $\Sigma_{n}^{1}$ formula $(n\in\omega)$ .

Using above classification, we can define schemata of comprehension and induction

as follows.

Definition 1.1 Assume $n\in\omega$ and $\mathrm{i}\in\{0,1\}$ . The scheme of $\Pi_{n}^{i}$ comprehension,

denoted $\Pi_{n^{-}}^{i}\mathrm{C}\mathrm{A}$ , consists of all the $\mathrm{f}\mathrm{o}$ rmulae of the form

$\exists X\forall x(x\in Xrightarrow\varphi(x))$ ,

where $\varphi(x)$ belongs to n4 and $X$ does not occur freely in $\varphi(x)$ . The scheme of
$\Delta_{n}^{i}$- comprehension, denoted I\^I-CA, consists of all the formulae of the form

Vm $(\varphi(n) rightarrow\psi(n))$ $arrow\exists X\forall n(\mathrm{n}\in Xrightarrow\varphi(n))$

where $\varphi(n)$ is $\Sigma_{n}^{\mathrm{i}}$ , $\psi\{n$ ) is $\Pi_{n}^{i}$ , and $X$ is not free in $\varphi(n)$ . The scheme of $\Sigma_{n}^{i}$ induction,

denote $\mathrm{I}_{n}^{i}-\mathrm{I}\mathrm{N}\mathrm{D}$ , consists of all axioms of the form

($\varphi(0)$ A Vn $(\mathrm{p}(\mathrm{n})arrow\varphi(n+1))$) $arrow\forall n\phi(n)$

where $\varphi(n)$ is $\Sigma_{n}^{i}$ .

Now we define a basic subsystem of second order arithmetic, called RCAo $\cdot$

Definition 1.2 RCAq is the formal system in the language of $\mathcal{L}_{2}$ which consists

of discrete order semi-ring axioms for $(\mathrm{N}, +, \cdot, 0,1, <)$ plus the schemata of $\Delta_{1}^{0}$ com-

prehension and $\Sigma_{1}^{0}$ in duction.

The following is a formal version of the normal form theorem for $\Sigma_{1}^{0}$ relations.

Theorem 1.3 (normal form theorem) Let $\varphi(f)$ be a $\Sigma_{1}^{\mathrm{Q}}$ formula. Then we can

find a $\mathrm{n}_{0}^{0}$ $fo$ rmula $R(s)$ such that RCAq proves

$\forall f(\varphi(f)rightarrow\exists mR(f[m]))$

where $f[m]$ is the code for the finite initial segment of $f$ with length $m$ . Note thai
$\varphi(f)$ may contain free variables other than $f$ .
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Proof. See also Simpson [7, Theorem II.2.7]. $\square$

We loosely say that a formula is $\Sigma_{n}^{i}$ (resp. $\Pi_{n}^{i}$ ) if it is equivalent over a base

theory (such as $\mathrm{R}\mathrm{C}\mathrm{A}_{0}$ ) to a $\psi\in\Sigma_{n}^{i}$ (resp. $\Pi_{n}^{i}$ ).

The next theorem asserts that the universe of functions is closed under the least

number operator, i.e., minimization.

Theorem 1.4 (minimization) The following is provable in RCAO) Let $f$ : $\mathrm{N}^{k+1}arrow$

$\mathrm{N}$ be such that for all ($n_{1}$ , $\ldots nk\rangle\in \mathrm{N}$ there eists $m\in \mathrm{N}$ such that $f(m, n1, \ldots nk)$ $=1$ ,

Then there exists $g$ : $\mathrm{N}^{k}arrow \mathrm{N}$ such that $g(n_{1\ldots k},n)$ is the least $m$ such that
$f(m, n_{1}, \ldots, n_{k})=1$ .

Proof. See Simpson [7, Theorem II.3.5]. $\square$

2 $\mathrm{W}\mathrm{K}\mathrm{L}_{0}$ and $\Sigma_{1}^{0}-\mathrm{D}\mathrm{e}\mathrm{t}^{*}$

Let $X$ be either {0, 1} or $\mathrm{N}$ and let $\varphi$ be a formula with a distinct variable $f$

ranging over $X^{\mathrm{N}}$ . A two person game $G_{\varphi}$ (or simply $\varphi$) over $X^{\mathrm{N}}$ is defined as follows:

player I and player II alternately choose elements from $X$ (starting with I) to form

an infinite sequence $f\in X^{\mathrm{N}}$ and I (resp. $\mathrm{I}\mathrm{I}$ ) wins iff $\varphi(f)$ (resp. $\neg\varphi(f)$ ). A strategy

of player I (resp. $\mathrm{I}\mathrm{I}$ ) is a map $\sigma$ : $X^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}=$ { $s\in X^{<\mathrm{N}}|s$ has even length} $arrow X$

(resp. $X^{\mathrm{o}\mathrm{d}\mathrm{d}}arrow X$). We say that $\varphi$ is determinate if one of the players has a winning

strategy, that is, a strategy a such that the player is guaranteed to win every play

$f$ in which he played $f(n)=\sigma([f(n)])$ whenever it was his turn to play,

Given a class of formulae $\mathrm{C}$ , $\mathrm{C}$-determinacy is the axiom scheme which states that

any game in $\mathrm{C}$ is determinate. We use $\mathrm{C}$-Det* (resp C-Det) to denote C-determinacy

in the Cantor space (resp. the Baire space).

A set $T$ of finite sequences is a tree if it is closed under initial segment, i.e., $t\in T$

and $s\subseteq t$ implies $s\in T$ . A function $f$ is a path of $T$ if each initial segment of $f$ is

a sequence of $T$ .

Definition 2.1 $\mathrm{W}\mathrm{K}\mathrm{I}_{-}\mathrm{o}$ is a subsystem of second order arithmetic whose axioms are

those of RCAo pins weak Konig’s lemma which states that every infinite binary tree

$T\subseteq 2^{<\mathrm{N}}$ has an infinite path.

Next, we prove the equivalences among WKLq, $\Sigma_{1}^{0}-\mathrm{D}\mathrm{e}\mathrm{t}^{*}$ and $\Delta_{1}^{0_{-}}\mathrm{D}\mathrm{e}\mathrm{t}^{*}$ .

Theorem 2.2 $\mathrm{R}\mathrm{C}\mathrm{A}_{0}\vdash\Delta_{1}^{0}- \mathrm{D}\mathrm{e}\mathrm{t}^{*}arrow \mathrm{W}\mathrm{K}\mathrm{L}_{\mathrm{Q}}$.
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Proof. By way of contradiction, we assume RCAq $+\Delta_{1}^{0}-\mathrm{D}\mathrm{e}\mathrm{t}^{*}$ and deny weak

Konig’s lemma. Let $T$ be an infinite binary tree in which there is no infinite path,

i.e., there is no $f$ such that $\forall nf[n]\in T$ . We consider the following game:. Player I plays a sequence $\mathrm{f}$ of $2^{<\mathrm{N}}$ .. Player II then answers by playing 0 or 1.. Player I plays a new sequence $u$ of $2^{<\mathrm{N}}$ .. Player II then plays a sequence $v$ of $2^{<\mathrm{N}}$ .

The winning conditions of the game are given as follows: II wins if one of the

following cases holds.

$\bullet t*\langle i\rangle*u\not\in T$ .
$\bullet$ $t$ $*\langle 1-\mathrm{i}\rangle*v\in T$ A $|u|\leq|v|$ .

We shall remark that the game always terminates in finite moves, because $T$ has no

infinite path. This ensures that the game is $\Delta_{1}^{0}$ . On the other hand, we can show

that player I has no winning strategy by considering two cases, in one of which

player II chooses $\mathrm{i}=0$ and in the other he chooses $i=1$ after player I plays $t$ . I can

not win in both of them. Therefore, by $\Delta_{1}^{0_{-}}\mathrm{D}\mathrm{e}\mathrm{t}^{*}$ player II has a winning strategy $\tau$ .

Using $\tau$ , we define $f$ : $\mathrm{N}arrow\{0,1\}$ as follows:. $f(0)=1-\tau(\langle\rangle)$ ,. $f(n+1)=1-\tau(f[n])$ ,

By $\Sigma_{0}^{0}$-induction, we can easily see that $f[n]\in T$ for all $n$ , which contradicts with

our assumption that $T$ has no infinite path. Thus, $\Delta_{1}^{0_{-}}\mathrm{D}\mathrm{e}\mathrm{t}^{*}arrow$ WKL This completes

the proof of the $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}.\square$

Now we turn to prove the reversal.

Theorem 2.3 $\mathrm{W}\mathrm{K}\mathrm{L}_{0}$ $\vdash\Sigma_{1}^{0_{-}}\mathrm{D}\mathrm{e}\mathrm{t}^{*}$ .

Proof. Let $\varphi(f)$ be a $\Sigma_{1}^{\mathrm{Q}}$-formula with $f\in 2^{\mathrm{N}}$ . Then, by the normal form

theorem, $\varphi(f)$ can be written as $\exists nR(f[n])$ , where $R$ is $\Pi_{0}^{0}$ . We define recursive

maps $g$ and gn from $2^{<\mathrm{N}}$ to {0, 1} for each $n\in \mathrm{N}$ as follows:

$g(s)$ $=$ $\{$

1 if Ef $\subseteq sR(t)$

0 if $\forall t\subseteq s\neg R(t)$

$g_{n}(s)$ $=$ $\int_{(}g(s)\max\{g_{n}(s*\langle 0\rangle),g_{n}(s*\langle 1\rangle)\}\min\{g_{n}(s*\langle 0\rangle),g_{\mathit{7}\mathrm{L}}(s*\langle 1\rangle)\}$

$\mathrm{i}\mathrm{f}|s|<n\mathrm{a}\mathrm{n}\mathrm{d}|s|\mathrm{i}\mathrm{s}o\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{f}|s|<n\mathrm{a}\mathrm{n}\mathrm{d}|s|\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}$

if $|s|\geq n$
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Intuitively, for $n\in \mathrm{N}$ , $g_{n}(\langle\rangle)=1$ means “player I can win the game by stage $n_{\}}$

”

and $g_{n}(\langle\rangle)=0$ means “player I cannot win by stage $n.$
”

Claim. The following assertions hold.

(1) If $g_{n}(\langle\rangle)=1$ for some $n$ , then I has a winning strategy.

(2) If $9\mathrm{n}(\mathrm{Q})=0$ for every $n$ , then II has a winning strategy.

For (1), fix $n$ such that $g_{n}(\langle))=1$ . Define $\sigma$ : $2^{\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}}arrow\{0,1\}$ by

$\sigma(s)=\{$
0 if $g_{n}\langle s*\langle 0\rangle)=1$

1otherwise.

We can verify that a is a winning strategy for player $\mathrm{I}$ , which completes the proof

of the first assertion of the claim.

For (2), suppose that for any $n$ , $g_{n}(\langle\rangle)=0$ and show that player II has a winning

strategy. The idea of the proof is as follows, Consider an infinite binary tree which

consists of the moves at which player II can prevent player I from winning the game.

A path through such a tree will serve a winning strategy for $\mathrm{I}\mathrm{I}$ . To realize this idea,

we will need some coding arguments to construct the tree.

To begin with, fix a lexicographical enumeration $e$ of non-empty sequences of
$2^{<\mathrm{N}}$ . For instance, $e(\langle 0\rangle)=0$ , $e(\langle 1\rangle)=1$ , $\mathrm{g}\mathrm{n}(\mathrm{Q})0\rangle)=2$ , and so on. Using $e$ , we can

regard any $s\in 2^{<\mathrm{N}}$ as a partial strategy (i.e., a finite segment of the strategy) for

player II $(\mathrm{c}\mathrm{f}, [1])$ . We define $T_{s}$ to be the tree consisting of all partial plays in which

player II follows $s$ . More precisely, $T_{s}$ is defined as follows:

$t\in T_{s}rightarrow\forall k(2k+1<|t| arrow t(2k+1)=s(e(\langle t\langle 0), \cdots, t(2k)\rangle)))$ .

Finally we define $T$ , a set of all moves which avoid the winning of player $\mathrm{I}$ , as follows:

$s\in Trightarrow\forall t\in T_{s}g_{h(s)}(t)=0$ ,

where A : $2^{<\mathrm{N}}arrow \mathrm{N}$ is defined by $h(s)= \max\{|t| : t\in T_{S}\}$ . Clearly $T$ is recursive,

therefore it exists in RCAo. On the other hand, the assumption Vn $g_{n}(\langle\rangle)=0$ implies

that $T$ is infinite. Thus, $T$ has a infinite path $f$ by weak K\"onig’s lemma.

Now we define $\tau$ : $2^{\mathrm{o}\mathrm{d}\mathrm{d}}arrow \mathrm{N}$ as:

$\tau^{-}(s)=f(e(\langle s(0)\ldots s(|s|-2)\rangle))$ ,

and then we can verify that $\tau$ is a winning strategy for player $\mathrm{I}\mathrm{I}$, which completes

the proof $\square$
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3 $\mathrm{A}\mathrm{T}\mathrm{R}_{0}$ and $\triangle_{2}^{0}-\mathrm{D}\mathrm{e}\mathrm{t}^{*}$

In this section we aim to show that RCAo $+\Delta_{2}^{0}- \mathrm{D}\mathrm{e}\mathrm{t}^{*}$ and ATRo are equivalent.

We first give the definitions of ACAq and ATRO.

Definition 3.1 The system $\mathrm{A}\mathrm{C}\mathrm{A}_{0}$ consists of the discrete order semi-ring axioms

for $(\mathrm{N}_{:}+, \cdot, 0, 1, <)$ plus the schemes of $\Sigma_{1}^{0}$ induction and arithmetical comprehen-

axiom,

Since comprehension axioms admit &ee variables, $\Pi_{1}^{0}$ comprehension is already as

strong as arithmetical comprehension.

Lemma 3.2 The following are pairwise equivalent over RCAq,

(1) arithmetical comprehension;

(2) $\Pi_{1}^{0}$ comprehension.

Proof. See Simpson [7, Lemma III.1.3]. $\square$

Definition 3.3 ATRo consists of RCAo augmented by the following axiom, called

arithmetical transfinite recursion: For any set $X\subset \mathrm{N}$ and for any well-ordering

relation $\prec$ , there exists a set $H\subset \mathrm{N}$ such that. if $b$ is the $\prec$-ieast element, then $(H)_{b}=X$ ,. if $b$ is the immediate successor of $a$ w.r.t. $\prec$ , then $\forall n(n\in(H)_{b}rightarrow\psi(n, (H)_{a}))$ ,. if $b$ is a limit, then $\forall a\forall n((n, a)\in(H)_{b}rightarrow(a\prec b\Lambda n\in(H)_{a}))$ ,

where $\psi$ is a $\Pi_{0}^{1}$-formula and $(H)_{a}=\{x : (x, a)\in H\}$ , where $(x, b)$ denotes the code

of the pair $\langle x, a\rangle$ .

ATRO is obviously stronger than $\mathrm{A}\mathrm{C}\mathrm{A}_{0}$ , but it is contained in $\Pi_{1}^{1}- \mathrm{C}\mathrm{A}0$ .

Lemma 3.4 The following are pairwise equivalent over $\mathrm{R}\mathrm{C}\mathrm{A}_{0}$ :

$\Delta_{1}^{0_{-}}\mathrm{D}\mathrm{e}\mathrm{t}_{f}\Sigma_{1}^{\mathrm{Q}_{-}}\mathrm{D}\mathrm{e}\mathrm{t}$ and $\mathrm{A}\mathrm{T}\mathrm{R}_{0}$ .

Proof. See [7] or [8].

The class $\Sigma_{1}^{0}$ A $\Pi_{1}^{0}$ is defined as follows, $\varphi$ is $\Sigma_{1}^{0}$ A $\mathrm{I}\mathrm{I}_{1}^{0}$ if and only if $\varphi$ is of the form
$\psi_{0}$ A $\neg\psi_{1}$ , where $\psi_{0}$ and $\psi_{1}$ are $\Sigma_{1}^{0}$ . The following theorems characterize ( $\Sigma_{1}^{0}$ A $\Pi_{1}^{0}$ )

determinacy in the Cantor space.

Theorem 3.5 ACAO proves ( $\Sigma_{1}^{0}$ A $\Pi_{1}^{0}$ ) $- \mathrm{D}\mathrm{e}\mathrm{t}^{*}$ .

Proof. Let $\varphi$ be of the form $\exists nR_{0}(f[n])$ A $\forall nR_{1}(f[n])$ . We define the functions

g, $g_{n}$ , $g’$ , and $g_{n}^{f}$ from $2^{<\mathrm{N}}$ to {0, 1} as follows:
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. $g(s)=\{$
1 if Ef $\subseteq sR\mathrm{o}(t)$

0if $\forall t\subseteq s\neg R_{0}(t)$

. $g_{n}(s)=$

$g(s)$ $\mathrm{i}\mathrm{f}|s|\geq n$

$\max\{g_{n}(s*\langle 0\rangle),g_{n}(s *\langle 1\rangle)\}$ if $|s|$ $<n$ and $|s|$ is even
$\min\{g_{n}(s*\langle 0\rangle),g_{n}(s*\langle 1\rangle)\}$ if $|s|<n$ and $|s|$ is odd

. $g’(s)=\{$
1 if $\forall t\subseteq sR1(t))$

0 if $\exists t\subseteq s$ $\neg R_{1}(t))$

. $g_{n}’(s)=\{$

$g’(s)$ if $|s|$ $\geq n$

$\max\{g_{n}’(s*\{0\}),\mathrm{g}\mathrm{n}(\mathrm{s}*(1))\}$ if $|s|<n$ and $|s|$ is even
$nin\{g_{n}^{/}(s *\langle 0\rangle),g_{n}’(s*(1))\}$ if $|s|<n$ and $|s|$ is odd

Following a similar argument of the one used in the proof of Theorem 2.2, we can

prove

Claim: if there exists $n$ such that $g_{n}(\langle\rangle)\cdot g_{m}’(\langle\rangle)=1$ for all $m>n$ then I has a

winning strategy, otherwise player II has a winning strategy.

This complete the proof of the theorem. $\square$

Theorem 3.6 $\mathrm{R}\mathrm{C}\mathrm{A}0\vdash(\Sigma_{1}^{0}\wedge\Pi_{1}^{0})- \mathrm{D}\mathrm{e}\mathrm{t}^{*}arrow \mathrm{A}\mathrm{C}\mathrm{A}0$

Proof. Let $\varphi(n)$ be a $\Sigma_{1}^{0}$-formula, We need to construct a set $X$ such that for

any $n\in \mathrm{N}$, $\varphi(n)rightarrow n\in X$ . To construct $X$ , consider the following game: player I

asks II about $n$ by playing 0 consecutively $n$ times and playing 1 after that (if he

plays 0 for ever, he loses). II ends the game by answering 0 or 1.

Now, suppose that player I plays $n\mathrm{O}’\mathrm{s}$ and a 1 consecutively. Player II wins if

one of the following cases holds,

$\bullet$ II answers 1 and $\varphi(n)$ .. II answers 0 and $\neg\varphi(n)$ .

Clearly, I has no wining strategy. By ( $\Sigma_{1}^{0}$ A $\Pi_{1}^{0}$ ) $- \mathrm{D}\mathrm{e}\mathrm{t}^{*}$ , let $\tau$ be a winning strategy of

player $\mathrm{I}\mathrm{I}$ . We defined a set $X$ by:

$n\in Xrightarrow\tau(0^{n}1)=1$ .

The set $X$ exists by $\mathrm{I}\mathrm{I}_{0}^{0}$ comprehension. Moreover, we can verify that $\forall n$ , $\varphi(n)rightarrow$

$n\in X$ , which completes the proof. $\square$

Let $\prec$ be a recursive $\mathrm{w}\mathrm{e}\mathrm{U}$-ordering on N. We define a recursive well-ordering $\prec*$

on $\mathrm{N}\mathrm{x}$ $\{0,1\}$ as follow$\mathrm{s}$ :

$(x, \mathrm{i})\prec^{*}(y,j)$ iff $x\prec y\vee$ ($x=y$ A $\mathrm{i}<j$ ).
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Let $X$ be either $\mathrm{N}$ or {0, 1}. We say that a formula $\varphi(n, \mathrm{i}, f)$ with distinct free

variable $f$ ranging over $X^{\mathrm{N}}$ is decreasing along $\prec*$ if and only if

$\forall n\forall \mathrm{i}\forall m\forall j$ $(((m,j)\prec^{*}(n, \mathrm{i})\Lambda\varphi(n,\mathrm{i}, f))$ $arrow\varphi(m,j, f))$ ,

for all $f$ .
The following lemma will play a key role to characterize $\Delta_{2}^{0}- \mathrm{D}\mathrm{e}\mathrm{t}^{*}$ .

Lemma 3.7 It is provable in RCAo that a formula $\psi$ is $\Delta_{2}^{0}$ if and only if:

$\psi(f)rightarrow\exists x$( $\varphi$($x$ , 0, $f$) A $\neg\varphi(x,$ $1$ , $f)$ ),

where $\varphi$ is $\Pi_{1}^{0}$ and it is decreasing along some recursive well-ordering relation $\prec*$ .

Proof. See [8] for the proof. $\square$

Theorem 3.8 ATRo is equivalent to $\mathrm{R}\mathrm{C}\mathrm{A}_{0}$ $+\Delta_{2}^{0}- \mathrm{D}\mathrm{e}\mathrm{t}^{*}$ ,

Proof. The proof is a modification of the proof of Theorem 6.1 in [8]. By

Theorem 3.6 and Lemma 3.7, $\Delta_{2}^{0}-\mathrm{D}\mathrm{e}\mathrm{t}^{*}$ is just a transfinite iteration of arithmetical

comprehension, which is the same as ATRo $\square$

4 Further classes of games
In this section, we sum marize oim results about the determinacy of Boolean

combinations of $\Sigma_{2}^{0}$-games. The detailed treatment of these results will appear in

our forthcoming paper.

We start by formalizing the inductive definition of a class of operators.

Definition 4.1 Given a a class of for rmulas C, the aiom C-ID asserts that for any

operator $\Gamma\in(?$ , there exists W $\subset \mathrm{N}$ x N such that

1. W is a pre-wellordering on its field F,

2. Vx $\in FW_{x}=\Gamma(W_{<x})\cup W_{<x}$ ,

3. $\Gamma(F)\subset F$ .

For a class of formulas $\mathrm{C}$ , $\Gamma$ is a monotone $\mathrm{C}$-operator if and only if $\Gamma\in \mathrm{C}$ and
$\Gamma$ satisfies $\Gamma(X)\subset\Gamma(Y)$ whenever $X\subset Y$ . The class of monotone $\mathrm{C}$-operators is

denoted by mon-C. We also use C-M1 to denote [mon-C]-ID. We refer the reader to

our papers [9], [5] for more information on this formalization.

Theorem 4.2 The following assertions hold over RCAo

(1) $\Sigma_{2^{-}}^{\mathrm{Q}}\mathrm{M}1arrow\Sigma_{2}^{0_{-}}\mathrm{D}\mathrm{e}\mathrm{t}^{*}$ .
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(2) $\Sigma_{2}^{0_{-}}\mathrm{D}\mathrm{e}\mathrm{t}^{*}arrow\Sigma_{2^{-}}^{0}\mathrm{I}\mathrm{D}$ .

Proof. The idea of the proof is similar to the one used in [9] and [5]. We just

mention that since the game is played over the Cantor space, rather than the Baire

space, we can replace the $\Sigma_{1}^{1}$-operator in [9] and [5] by a $\Sigma_{2^{-}}^{0}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}.\square$

Now, we turn to investigate the strength of $\Sigma_{2}^{0_{-}}\mathrm{I}\mathrm{D}$ . The folowing lemma provides

an alternative definition of $\mathrm{I}\mathrm{I}_{1^{-}}^{1}\mathrm{C}\mathrm{A}_{0}$ .

Lemma 4.3 The following assertions hold over RCAq,

(1) $\Pi_{1^{-}}^{1}\mathrm{C}\mathrm{A}$ $rightarrow$ ( $\Sigma_{1}^{0}$ A $\Pi_{1}^{0}$ ) $- \mathrm{D}\mathrm{e}\mathrm{t}$ .

(2) $\Pi_{1}^{0_{-}}\mathrm{M}\mathrm{I}arrow\Pi_{1^{-}}^{1}\mathrm{C}\mathrm{A}$ .

Proof. The proof of the assertion (1) can be found either in [8] or in [7]. The

assertion (2) is a straightforward formalization of Hinman’s proof [4]. $\square$

Theorem 4.4 $\Pi_{1}^{1_{-}}\mathrm{C}\mathrm{A}\vdash\Pi_{1^{-}}^{1}\mathrm{M}1$.

Proof. Let $\Gamma$ be a monotone $\Pi_{1}^{1}$ -operator. Using the strategy of a certain ( $\Sigma_{1}^{0}$ A

$\Pi_{1}^{0})$ -game, we can construct $W$ which satisfys conditions (1), (2) and (3) of Definition

4.1. This completes the proof by the assertion (1) of Lemma 4.3. $\square$

Finally, we give the following corollary.

Corollary 4.5 The following are equivalent over RCAo:

$\Sigma_{2}^{0_{-\mathrm{D}\mathrm{e}\mathrm{t}^{*},\Pi_{1^{-}}^{1}\mathrm{C}\mathrm{A}_{0},\Pi_{1}^{0_{-\mathrm{M}\mathrm{I},\Sigma_{2}^{0_{-}}1\mathrm{D}}}}}$ and $\Pi_{1}^{1_{-}}\mathrm{M}\mathfrak{l}$ .

Proof. It is straightforward from Theorems 42 and 4.4.

Next, we tum to the games which can be written as Boolean combinations of $\Sigma_{2}^{0_{-}}$

formulas. We first recall the following definitions from [6]. The class $(\Sigma_{2}^{0})_{k}$ of

formulas is defined as follows. For $k=1_{\}}(\Sigma_{2}^{0})_{1}=\Sigma_{2}^{0}$ . For $k>1,\psi\in\langle\Sigma_{2}^{0})_{k}$ rff it

can be written as $\psi_{1}$ A $\psi_{2}$ , where $\neg\psi_{1}\in(\Sigma_{2}^{0})_{k-1}$ and $\psi_{2}\in\Sigma_{2}^{0}$ . It can be shown that

for any formula $\psi$ in the class of Boolean combinations of $\Sigma_{2}^{0}$-formulas, there is a

$k\in\omega$ such that $\psi\in(\Sigma_{2}^{0})_{k}$ , or more strictly, $\psi$ is equivalent to a formula in $(\Sigma_{2}^{0})_{k-}$

Theorem 4.6 Assume $0<k<\omega$ . Then, $(\Sigma_{2}^{0})_{k+1}- \mathrm{D}\mathrm{e}\mathrm{t}^{*}rightarrow(\Sigma^{0}2)_{k}- \mathrm{D}\mathrm{e}\mathrm{t}$ .

Proof. $(arrow)$ . Let $\psi$ be a $(\Sigma_{2}^{0})_{k}$ formula and $G\psi$ the infinite game over $\mathrm{N}^{\mathrm{N}}$ aso

ciated with $\psi$ . We explain how to turn $G\psi$ to a $(\Sigma_{2}^{0})_{k+1}$ game over $2^{\mathrm{N}}$ , which will

be denoted $G_{\psi}^{*}$ . The idea is the following: In $G_{\psi}^{*}$ , I starts by playing $n_{0}\mathrm{O}\mathrm{J}\mathrm{s}$ , then

plays 1. Then, II plays $n_{1}$ I’s and plays 0 and so on. We need to avoid some trivial

situation. For instance, player I must not play $\mathrm{O}’ \mathrm{s}$ consecutively for ever. He must
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stop after playing finitely may OJs to give II a chance to play. This will make $G_{\psi}^{*}$

$\mathrm{a}$ $(\Sigma^{0}2)_{k+1}$ -game and hence determinate by our assumption. On the other hand the
player who wins $G_{\psi}^{*}$ can wwiann $G\psi$ , which completes the proof of the first direction.

The direction $(arrow)$ can be proved by using the inductive definition of a combination
of $k\Sigma_{1}^{1}$-operators, which is equivalent to $(\Sigma_{2}^{0})_{k}-\mathrm{D}\mathrm{e}\mathrm{t}$ by [6]. $\square$
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