On weak determinacy of infinite binary games

Takako Nemoto（根元 多佳子）
MedYahya Ould MedSalem
Kazuyuki Tanaka（田中 一之）
Mathematical Institute，Tohoku University（東北大学理学研究科）

概 要

In［5］and［6］，we have investigated the logical strength of the determinacy of infinite games in the Baire space up to Δ_{3}^{0} ．In this paper we consider infinite games in the Cantor space．Let Det＊（resp．Det）stand for the determinacy of infinite games in the Cantor space（resp．the Baire space）．In Section 2，we show that Δ_{1}^{0}－Det＊，Σ_{1}^{0}－Det＊and $W K L_{0}$ are pairwise equivalent over RCA_{0} ．In Section 3，we show that $\mathrm{RCA}_{0}+\left(\Sigma_{1}^{0} \wedge \Pi_{1}^{0}\right)$－Det ${ }^{*}$ is equivalent to $A C A_{0}$ ．Then，we deduce that $\mathrm{RCA}_{0}+\Delta_{2}^{0}$－Det ${ }^{*}$ is equivalent to ATR_{0} ．In the last section，we show some more equivalences among stronger assertions without details，which will be thoroughly treated elsewhere．

1 Preliminaries

In this section，we recall some basic definitions and facts about second order arithmetic．The language \mathcal{L}_{2} of second order arithmetic is a two－sorted language with number variables x, y, z, \ldots and unary function variables f, g, h, \ldots ，consisting of constant symbois $0,1,+, \cdot,=,<$ ．We also use set variables X, Y, Z, \ldots ，intending to range over the set of $\{0,1\}$－valued functions，that is，characteristic functions of sets．

The formulae can be classified as follows：
－φ is bounded $\left(\Pi_{0}^{0}\right)$ if it is built up from atomic formulae by using propositional connectives and bounded number quantifiers $(\forall x<t),(\exists x<t)$ ，where t does not contain x ．

- φ is Π_{0}^{1} if it does not contain any function quantifier. Π_{0}^{1} formulae are called arithmetical formulae.
- $\neg \varphi$ is Σ_{n}^{i} if φ is a Π_{n}^{i} formula $(i \in\{0,1\}, n \in \omega)$.
- $\forall x_{1} \ldots \forall x_{k} \varphi$ is Π_{n+1}^{0} if φ is a Σ_{n}^{0} formula $(n \in \omega)$,
- $\forall f_{1} \cdots \forall f_{k} \varphi$ is Π_{n+1}^{1} if φ is a Σ_{n}^{1} formula $(n \in \omega)$.

Using above classification, we can define schemata of comprehension and induction as follows.

Definition 1.1 Assume $n \in \omega$ and $i \in\{0,1\}$. The scheme of Π_{n}^{i} comprehension, denoted Π_{n}^{i} - CA, consists of all the formulae of the form

$$
\exists X \forall x(x \in X \leftrightarrow \varphi(x)),
$$

where $\varphi(x)$ belongs to Π_{n}^{i} and X does not occur freely in $\varphi(x)$. The scheme of Δ_{n}^{i}-comprehension, denoted Δ_{n}^{i}-CA, consists of all the formulae of the form

$$
\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n))
$$

where $\varphi(n)$ is $\Sigma_{n}^{i}, \psi(n)$ is Π_{n}^{i}, and X is not free in $\varphi(n)$. The scheme of Σ_{n}^{i} induction, denote Σ_{n}^{i}-IND, consists of all axioms of the form

$$
(\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n \phi(n)
$$

where $\varphi(n)$ is Σ_{n}^{i}.
Now we define a basic subsystem of second order arithmetic, called RCA ${ }_{0}$.
Definition $1.2 \mathrm{RCA}_{0}$ is the formal system in the language of \mathcal{L}_{2} which consists of discrete order semi-ring axioms for $(\mathbb{N},+, \cdot, 0,1,<)$ plus the schemata of Δ_{1}^{0} comprehension and Σ_{1}^{0} induction.

The following is a formal version of the normal form theorem for Σ_{1}^{0} relations.
Theorem 1.3 (normal form theorem) Let $\varphi(f)$ be $a \Sigma_{1}^{0}$ formula. Then we can find a Π_{0}^{0} formula $R(s)$ such that RCA_{0} proves

$$
\forall f(\varphi(f) \leftrightarrow \exists m R(f[m]))
$$

where $f[m]$ is the code for the finite initial segment of f with length m. Note that $\varphi(f)$ may contain free variables other than f.

Proof. See also Simpson [7, Theorem II.2.7].
We loosely say that a formula is Σ_{n}^{i} (resp. Π_{n}^{i}) if it is equivalent over a base theory (such as RCA_{0}) to a $\psi \in \Sigma_{n}^{i}$ (resp. Π_{n}^{i}).

The next theorem asserts that the universe of functions is closed under the least number operator, i.e., minimization.

Theorem 1.4 (minimization) The following is provable in RCA_{0}. Let $f: \mathbb{N}^{k+1} \rightarrow$ \mathbb{N} be such that for all $\left\langle n_{1}, \ldots n_{k}\right\rangle \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $f\left(m, n_{1}, \ldots n_{k}\right)=1$. Then there exists $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ such that $g\left(n_{1}, \ldots n_{k}\right)$ is the least m such that $f\left(m, n_{1}, \ldots, n_{k}\right)=1$.

Proof. See Simpson [7, Theorem II.3.5].

$2 \mathrm{WKL}_{0}$ and Σ_{1}^{0}-Det*

Let X be either $\{0,1\}$ or \mathbb{N} and let φ be a formula with a distinct variable f ranging over $X^{\mathbb{N}}$. A two-person game G_{φ} (or simply φ) over $X^{\mathbb{N}}$ is defined as follows: player I and player II alternately choose elements from X (starting with I) to form an infinite sequence $f \in X^{\mathbb{N}}$ and I (resp. II) wins iff $\varphi(f)$ (resp. $\neg \varphi(f)$). A strategy of player I (resp. II) is a map $\sigma: X^{\text {even }}=\left\{s \in X^{<\mathbb{N}} \mid s\right.$ has even length $\} \rightarrow X$ (resp. $X^{\text {odd }} \rightarrow X$). We say that φ is determinate if one of the players has a winning strategy, that is, a strategy σ such that the player is guaranteed to win every play f in which he played $f(n)=\sigma([f(n)])$ whenever it was his turn to play.

Given a class of formulae \mathcal{C}, \mathcal{C}-determinacy is the axiom scheme which states that any game in \mathcal{C} is determinate. We use \mathcal{C}-Det* (resp \mathcal{C}-Det) to denote \mathcal{C}-determinacy in the Cantor space (resp. the Baire space).

A set T of finite sequences is a tree if it is closed under initial segment, i.e., $t \in T$ and $s \subseteq t$ implies $s \in T$. A function f is a path of T if each initial segment of f is a sequence of T.

Definition 2.1 $W_{K L}$ is a subsystem of second order arithmetic whose axioms are those of RCA A_{0} plus weak König's lemma which states that every infinite binary tree $T \subseteq 2^{<\mathbb{N}}$ has an infinite path.

Next, we prove the equivalences among WKL L_{0}, Σ_{1}^{0}-Det* and Δ_{1}^{0}-Det*.
Theorem 2.2 $\mathrm{RCA}_{0} \vdash \Delta_{1}^{0}-$ Det $^{*} \rightarrow W K L_{0}$.

Proof. By way of contradiction, we assume $\mathrm{RCA}_{0}+\Delta_{1}^{0}$-Det* and deny weak König's lemma. Let T be an infinite binary tree in which there is no infinite path, i.e., there is no f such that $\forall n f[n] \in T$. We consider the following game:

- Player I plays a sequence t of $2<\mathbb{N}$.
- Player II then answers by playing 0 or 1 .
- Player I plays a new sequence u of $2^{<\mathbb{N}}$.
- Player II then plays a sequence v of $2<\mathbb{N}$.

The winning conditions of the game are given as follows: II wins if one of the following cases holds.

- $t *\langle i\rangle * u \notin T$.
- $t *\langle 1-i\rangle * v \in T \wedge|u| \leq|v|$.

We shall remark that the game always terminates in finite moves, because T has no infinite path. This ensures that the game is Δ_{1}^{0}. On the other hand, we can show that player I has no winning strategy by considering two cases, in one of which player II chooses $i=0$ and in the other he chooses $i=1$ after player I plays t. I can not win in both of them. Therefore, by Δ_{1}^{0}-Det* player II has a winning strategy τ. Using τ, we define $f: \mathbb{N} \rightarrow\{0,1\}$ as follows:

- $f(0)=1-\tau(\langle \rangle)$,
- $f(n+1)=1-\tau(f[n])$,

By Σ_{0}^{0}-induction, we can easily see that $f[n] \in T$ for all n, which contradicts with our assumption that T has no infinite path. Thus, Δ_{1}^{0}-Det* \rightarrow WKL. This completes the proof of the theorem. \square

Now, we turn to prove the reversal.
Theorem 2.3 WKL $L_{0}+\Sigma_{1}^{0}$-Det*.
Proof. Let $\varphi(f)$ be a Σ_{1}^{0}-formula with $f \in 2^{\mathbb{N}}$. Then, by the normal form theorem, $\varphi(f)$ can be written as $\exists n R(f[n])$, where R is Π_{0}^{0}. We define recursive maps g and g_{n} from $2^{<\mathbb{N}}$ to $\{0,1\}$ for each $n \in \mathbb{N}$ as follows:

$$
\begin{aligned}
g(s) & = \begin{cases}1 & \text { if } \exists t \subseteq s R(t) \\
0 & \text { if } \forall t \subseteq s \neg R(t)\end{cases} \\
g_{n}(s) & = \begin{cases}g(s) & \text { if }|s| \geq n \\
\max \left\{g_{n}(s *\langle 0\rangle), g_{n}(s *\langle 1\rangle)\right\} & \text { if }|s|<n \text { and }|s| \text { is even } \\
\min \left\{g_{n}(s *\langle 0\rangle), g_{n}(s *\langle 1\rangle)\right\} & \text { if }|s|<n \text { and }|s| \text { is odd }\end{cases}
\end{aligned}
$$

Intuitively, for $n \in \mathbb{N}, g_{n}(\langle \rangle)=1$ means "player I can win the game by stage n," and $g_{n}(\langle \rangle)=0$ means "player I cannot win by stage n."

Claim. The following assertions hold.
(1) If $g_{n}(\langle \rangle)=1$ for some n, then I has a winning strategy.
(2) If $g_{n}(\langle \rangle)=0$ for every n, then II has a winning strategy.

For (1), fix n such that $g_{n}(\langle \rangle)=1$. Define $\sigma: 2^{\text {even }} \rightarrow\{0,1\}$ by

$$
\sigma(s)= \begin{cases}0 & \text { if } g_{n}(s *\langle 0\rangle)=1 \\ 1 & \text { otherwise }\end{cases}
$$

We can verify that σ is a winning strategy for player I, which completes the proof of the first assertion of the claim.

For (2), suppose that for any $n, g_{n}(\langle \rangle)=0$ and show that player II has a winning strategy. The idea of the proof is as follows. Consider an infinite binary tree which consists of the moves at which player II can prevent player I from winning the game. A path through such a tree will serve a winning strategy for II. To realize this idea, we will need some coding arguments to construct the tree.

To begin with, fix a lexicographical enumeration e of non-empty sequences of $2^{<\mathbb{N}}$. For instance, $e(\langle 0\rangle)=0, e(\langle 1\rangle)=1, e(\langle 0,0\rangle)=2$, and so on. Using e, we can regard any $s \in 2^{<\mathbb{N}}$ as a partial strategy (i.e., a finite segment of the strategy) for player II (cf. $[1]$). We define T_{s} to be the tree consisting of all partial plays in which player II follows s. More precisely, T_{s} is defined as follows:

$$
t \in T_{s} \leftrightarrow \forall k(2 k+1<|t| \rightarrow t(2 k+1)=s(e(\langle t(0), \cdots, t(2 k)\rangle))) .
$$

Finally we define T, a set of all moves which avoid the winning of player I, as follows:

$$
s \in T \leftrightarrow \forall t \in T_{s} g_{h(s)}(t)=0
$$

where $h: 2^{<\mathbb{N}} \rightarrow \mathbb{N}$ is defined by $h(s)=\max \left\{|t|: t \in T_{s}\right\}$. Clearly T is recursive, therefore it exists in RCA_{0}. On the other hand, the assumption $\forall n g_{n}(\langle \rangle)=0$ implies that T is infinite. Thus, T has a infinite path f by weak König's lemma.

Now, we define $\tau: 2^{\text {odd }} \rightarrow \mathbb{N}$ as:

$$
\tau(s)=f(e(\langle s(0) \ldots s(|s|-2)\rangle))
$$

and then we can verify that τ is a winning strategy for player II, which completes the proof.

3 ATR ${ }_{0}$ and Δ_{2}^{0}-Det ${ }^{*}$

In this section we aim to show that $\mathrm{RCA}_{0}+\Delta_{2}^{0}$-Det* and ATR_{0} are equivalent. We first give the definitions of $A C A_{0}$ and $A T R_{0}$.

Definition 3.1 The system ACA_{0} consists of the discrete order semi-ring axioms for ($\mathbb{N},+, \cdot, 0,1,<$) plus the schemes of Σ_{1}^{0} induction and arithmetical comprehension.

Since comprehension axioms admit free variables, Π_{1}^{0} comprehension is already as strong as arithmetical comprehension.

Lemma 3.2 The following are pairwise equivalent over RCA_{0}.
(1) arithmetical comprehension;
(2) Π_{1}^{0} comprehension.

Proof. See Simpson [7, Lemma III.1.3].
Definition 3.3 ATR 0_{0} consists of RCA_{0} augmented by the following axiom, called arithmeticat transfinite recursion: For any set $X \subset \mathbb{N}$ and for any well-ordering relation \prec, there exists a set $H \subset \mathbb{N}$ such that

- if b is the \prec-least element, then $(H)_{b}=X$,
- if b is the immediate successor of a w.r.t. \prec, then $\forall n\left(n \in(H)_{b} \leftrightarrow \psi\left(n,(H)_{a}\right)\right)$,
- if b is a limit, then $\forall \forall \forall n\left((n, a) \in(H)_{b} \leftrightarrow\left(a \prec b \wedge n \in(H)_{a}\right)\right)$,
where ψ is a Π_{0}^{1}-formula and $(H)_{a}=\{x:(x, a) \in H\}$, where (x, b) denotes the code of the pair $\langle x, a\rangle$.

ATR $_{0}$ is obviously stronger than $A C A_{0}$, but it is contained in $\Pi_{1}^{1}-C A_{0}$.
Lemma 3.4 The following are pairwise equivalent over RCA_{0} :

$$
\Delta_{1}^{0} \text {-Det, } \Sigma_{1}^{0} \text {-Det and } \mathrm{ATR}_{0} \text {. }
$$

Proof. See [7] or [8].
The class $\Sigma_{1}^{0} \wedge \Pi_{1}^{0}$ is defined as follows. φ is $\Sigma_{1}^{0} \wedge \Pi_{1}^{0}$ if and only if φ is of the form $\psi_{0} \wedge \neg \psi_{1}$, where ψ_{0} and ψ_{1} are Σ_{1}^{0}. The following theorems characterize ($\Sigma_{1}^{0} \wedge \Pi_{1}^{0}$) determinacy in the Cantor space.

Theorem 3.5 ACA proves $\left(\Sigma_{1}^{0} \wedge \Pi_{1}^{0}\right)$-Det .
Proof. Let φ be of the form $\exists n R_{0}(f[n]) \wedge \forall n R_{1}(f[n])$. We define the functions g, g_{n}, g^{\prime}, and g_{n}^{\prime} from $2^{<\mathbb{N}}$ to $\{0,1\}$ as follows:

- $g(s)= \begin{cases}1 & \text { if } \exists t \subseteq s R_{0}(t) \\ 0 & \text { if } \forall t \subseteq s \neg R_{0}(t)\end{cases}$
- $g_{n}(s)= \begin{cases}g(s) & \text { if }|s| \geq n \\ \max \left\{g_{n}(s *\langle 0\rangle), g_{n}(s *\langle 1\rangle)\right\} & \text { if }|s|<n \text { and }|s| \text { is even } \\ \min \left\{g_{n}(s *\langle 0\rangle), g_{n}(s *\langle 1\rangle)\right\} & \text { if }|s|<n \text { and }|s| \text { is odd }\end{cases}$
- $g^{\prime}(s)= \begin{cases}1 & \left.\text { if } \forall t \subseteq s R_{1}(t)\right) \\ 0 & \left.\text { if } \exists t \subseteq s \neg R_{1}(t)\right)\end{cases}$
- $g_{n}^{\prime}(s)= \begin{cases}g^{\prime}(s) & \text { if }|s| \geq n \\ \max \left\{g_{n}^{\prime}(s *\langle 0\rangle), g_{n}^{\prime}(s *\langle 1\rangle)\right\} & \text { if }|s|<n \text { and }|s| \text { is even } \\ \min \left\{g_{n}^{\prime}(s *\langle 0\rangle), g_{n}^{\prime}(s *\langle 1\rangle)\right\} & \text { if }|s|<n \text { and }|s| \text { is odd }\end{cases}$

Following a similar argument of the one used in the proof of Theorem 2.2, we can prove

Claim: if there exists n such that $g_{n}(\langle \rangle) \cdot g_{m}^{\prime}(\langle \rangle)=1$ for all $m>n$ then I has a winning strategy, otherwise player II has a winning strategy.

This complete the proof of the theorem.
Theorem 3.6 RCA ${ }_{0} \vdash\left(\Sigma_{1}^{0} \wedge \Pi_{1}^{0}\right)$-Det ${ }^{*} \rightarrow \mathrm{ACA}_{0}$
Proof. Let $\varphi(n)$ be a Σ_{1}^{0}-formula. We need to construct a set X such that for any $n \in \mathbb{N}, \varphi(n) \leftrightarrow n \in X$. To construct X, consider the following game: player I asks II about n by playing 0 consecutively n times and playing 1 after that (if he plays 0 for ever, he loses). II ends the game by answering 0 or 1 .

Now, suppose that player I plays $n 0^{\prime} s$ and a 1 consecutively. Player II wins if one of the following cases holds.

- II answers 1 and $\varphi(n)$.
- II answers 0 and $\neg \varphi(n)$.

Clearly, I has no wining strategy. By $\left(\Sigma_{1}^{0} \wedge \Pi_{1}^{0}\right)$ - Det^{*}, let τ be a winning strategy of player II. We defined a set X by:

$$
n \in X \leftrightarrow \tau\left(0^{n} 1\right)=1
$$

The set X exists by Π_{0}^{0} comprehension. Moreover, we can verify that $\forall n, \varphi(n) \leftrightarrow$ $n \in X$, which completes the proof.

Let \prec be a recursive well-ordering on \mathbb{N}. We define a recursive well-ordering \prec^{*} on $\mathbb{N} \times\{0,1\}$ as follows:

$$
(x, i) \prec^{*}(y, j) \text { iff } x \prec y \vee(x=y \wedge i<j) .
$$

Let X be either \mathbb{N} or $\{0,1\}$. We say that a formula $\varphi(n, i, f)$ with distinct free variable f ranging over $X^{\mathbb{N}}$ is decreasing along \prec^{*} if and only if

$$
\forall n \forall i \forall m \forall j\left(\left((m, j) \prec^{*}(n, i) \wedge \varphi(n, i, f)\right) \rightarrow \varphi(m, j, f)\right)
$$

for all f.
The following lemma will play a key role to characterize Δ_{2}^{0}-Det*.
Lemma 3.7 It is provable in RCA_{0} that a formula ψ is Δ_{2}^{0} if and only if:

$$
\psi(f) \leftrightarrow \exists x(\varphi(x, 0, f) \wedge \neg \varphi(x, \mathbf{1}, f))
$$

where φ is Π_{1}^{0} and it is decreasing along some recursive well-ordering relation \prec^{*}.
Proof. See [8] for the proof.
Theorem 3.8 ATR_{0} is equivalent to $\mathrm{RCA}_{0}+\Delta_{2}^{0}$-Det*.
Proof. The proof is a modification of the proof of Theorem 6.1 in [8]. By Theorem 3.6 and Lemma 3.7, Δ_{2}^{0}-Det* is just a transfinite iteration of arithmetical comprehension, which is the same as $A T R_{0}$.

4 Further classes of games

In this section, we summarize our results about the determinacy of Boolean combinations of Σ_{2}^{0}-games. The detailed treatment of these results will appear in our forthcoming paper.

We start by formalizing the inductive definition of a class of operators.
Definition 4.1 Given a a class of formulas \mathcal{C}, the axiom \mathcal{C}-ID asserts that for any operator $\Gamma \in \mathcal{C}$, there exists $W \subset \mathbb{N} \times \mathbb{N}$ such that

1. W is a pre-wellordering on its field F,
2. $\forall x \in F \quad W_{x}=\Gamma\left(W_{<x}\right) \cup W_{<x}$,
3. $\Gamma(F) \subset F$.

For a class of formulas \mathcal{C}, Γ is a monotone \mathcal{C}-operator if and only if $\Gamma \in \mathcal{C}$ and Γ satisfies $\Gamma(X) \subset \Gamma(Y)$ whenever $X \subset Y$. The class of monotone \mathcal{C}-operators is denoted by mon-C. We also use $\mathcal{C}-\mathrm{MI}$ to denote $[$ mon-C $]-I D$. We refer the reader to our papers [9], [5] for more information on this formalization.

Theorem 4.2 The following assertions hold over RCA_{0}.
(1) $\Sigma_{2}^{0}-\mathrm{Ml} \rightarrow \Sigma_{2}^{0}$-Det ${ }^{*}$.
(2) Σ_{2}^{0} Det $^{*} \rightarrow \Sigma_{2}^{0}$ ID.

Proof. The idea of the proof is similar to the one used in [9] and [5]. We just mention that since the game is played over the Cantor space, rather than the Baire space, we can replace the Σ_{1}^{1}-operator in [9] and [5] by a Σ_{2}^{0}-operator. \square

Now, we turn to investigate the strength of Σ_{2}^{0} ID. The following lemma provides an alternative definition of $\Pi_{1}^{1}-\mathrm{CA}_{0}$.

Lemma 4.3 The following assertions hold over RCA_{0}.
(1) $\Pi_{1}^{1}-\mathrm{CA} \leftrightarrow\left(\Sigma_{1}^{0} \wedge \Pi_{1}^{0}\right)$-Det.
(2) $\Pi_{1}^{0}-\mathrm{Ml} \rightarrow \Pi_{1}^{1}-\mathrm{CA}$.

Proof. The proof of the assertion (1) can be found either in [8] or in [7]. The assertion (2) is a straightforward formalization of Hinman's proof [4].

Theorem $4.4 \Pi_{1}^{1}-C A \vdash \Pi_{1}^{1}-M I$.
Proof. Let Γ be a monotone Π_{1}^{1}-operator. Using the strategy of a certain ($\Sigma_{1}^{0} \wedge$ Π_{1}^{0})-game, we can construct W which satisfys conditions (1), (2) and (3) of Definition 4.1. This completes the proof by the assertion (1) of Lemma 4.3. \square

Finally, we give the following corollary.
Corollary 4.5 The following are equivalent over RCA_{0} :

$$
\Sigma_{2}^{0}-\text { Det }^{*}, \Pi_{1}^{1}-\mathrm{CA}_{0}, \Pi_{1}^{0}-\mathrm{MI}, \Sigma_{2}^{0}-\mathrm{ID} \text { and } \Pi_{1}^{1}-\mathrm{Ml}
$$

Proof. It is straightforward from Theorems 4.2 and 4.4.ㅁ
Next, we turn to the games which can be written as Boolean combinations of $\Sigma_{2^{-}}^{0}$ formulas. We first recall the following definitions from [6]. The class $\left(\Sigma_{2}^{0}\right)_{k}$ of formulas is defined as follows. For $k=1,\left(\Sigma_{2}^{0}\right)_{1}=\Sigma_{2}^{0}$. For $k>1, \psi \in\left(\Sigma_{2}^{0}\right)_{k}$ iff it can be written as $\psi_{1} \wedge \psi_{2}$, where $\neg \psi_{1} \in\left(\Sigma_{2}^{0}\right)_{k-1}$ and $\psi_{2} \in \Sigma_{2}^{0}$. It can be shown that for any formula ψ in the class of Boolean combinations of Σ_{2}^{0}-formulas, there is a $k \in \omega$ such that $\psi \in\left(\Sigma_{2}^{0}\right)_{k}$, or more strictly, ψ is equivalent to a formula in $\left(\Sigma_{2}^{0}\right)_{k}$.

Theorem 4.6 Assume $0<k<\omega$. Then, $\left(\Sigma_{2}^{0}\right)_{k+1}$-Det* $\leftrightarrow\left(\Sigma_{2}^{0}\right)_{k}$-Det.
Proof. $\quad(\rightarrow)$. Let ψ be a $\left(\Sigma_{2}^{0}\right)_{k}$-formula and G_{ψ} the infinite game over $\mathbb{N}^{\mathbb{N}}$ associated with ψ. We explain how to turn G_{ψ} to a $\left(\Sigma_{2}^{0}\right)_{k+1}$-game over $2^{\mathbb{N}}$, which will be denoted G_{ψ}^{*}. The idea is the following: In G_{ψ}^{*}, I starts by playing $n_{0} 0$'s, then plays 1 . Then, II plays n_{1} I's and plays 0 and so on. We need to avoid some trivial situation. For instance, player I must not play 0's consecutively for ever. He must
stop after playing finitely may 0 ＇s to give II a chance to play．This will make G_{ψ}^{*} a $\left(\Sigma_{2}^{0}\right)_{k+1}$－game and hence determinate by our assumption．On the other hand the player who wins G_{ψ}^{*} can win G_{ψ} ，which completes the proof of the first direction．

The direction (\leftarrow) can be proved by using the inductive definition of a combination of $k \Sigma_{1}^{1}$－operators，which is equivalent to $\left(\Sigma_{2}^{0}\right)_{k}$－Det by［6］．

参考文献

［1］D．Cenzer and J．Remmel Recursively presented games，Mathematical Social Sciences 24 （1992），pp．117－139．
［2］H．M．Friedman，Higher set theory and mathematical practice，Annals of Math－ ematical Logic 2 （1971），pp．325－357．
［3］L．A．Harrignton and A．S．Kechris，A basis result for Σ_{3}^{0} sets of reals with an application to minimal covers Proc．of A．M．S 53 （1975）pp．445－448．
［4］P．G．Hinman，Recursion－theoretic hierarchies，Springer（1978）．
［5］M．O．Medsalem and K．Tanaka，Δ_{3}^{0}－determinacy，comprehension and induc－ tion，to appear．
［6］M．O．Medsalem and K．Tanaka，Weak determinacy and iterations of inductive definitions，to appear．
［7］S．G．Simpson，Subsystems of Second Order Arithmetic，Springer（1999）．
［8］K．Tanaka，Weak axioms of determinacy and subsystems of analysis $1: \Delta_{2}^{0}$－ games，Zeitschrift für mathematische Logik und Grundlagen der Mathematik 36 （1990），pp．481－491．
［9］K．Tanaka，Weak axioms of determinacy and subsystems of analysis II：Σ_{2}^{0}－ games，Annals of Pure and Applied Logic 52 （1991），pp．181－193．
［10］P．Welch，Weak systems of determinacy and arithmetical quasi－inductive defi－ nitions，Preprint．

