On weak determinacy of infinite binary games

Takako Nemoto (根元 多佳子)

MedYahya Ould MedSalem

Kazuyuki Tanaka (田中一之)

Mathematical Institute, Tohoku University (東北大学理学研究科)

概 要

In [5] and [6], we have investigated the logical strength of the determinacy of infinite games in the Baire space up to Δ_3^0 . In this paper we consider infinite games in the Cantor space. Let Det^{*} (resp. Det) stand for the determinacy of infinite games in the Cantor space (resp. the Baire space). In Section 2, we show that Δ_1^0 -Det^{*}, Σ_1^0 -Det^{*} and WKL₀ are pairwise equivalent over RCA₀. In Section 3, we show that RCA₀ + ($\Sigma_1^0 \wedge \Pi_1^0$)-Det^{*} is equivalent to ACA₀. Then, we deduce that RCA₀ + Δ_2^0 -Det^{*} is equivalent to ATR₀. In the last section, we show some more equivalences among stronger assertions without details, which will be thoroughly treated elsewhere.

1 Preliminaries

In this section, we recall some basic definitions and facts about second order arithmetic. The language \mathcal{L}_2 of second order arithmetic is a two-sorted language with number variables x, y, z, \ldots and unary function variables f, g, h, \ldots , consisting of constant symbols $0, 1, +, \cdot, =, <$. We also use set variables X, Y, Z, \ldots , intending to range over the set of $\{0, 1\}$ -valued functions, that is, characteristic functions of sets.

The formulae can be classified as follows:

• φ is bounded (Π_0^0) if it is built up from atomic formulae by using propositional connectives and bounded number quantifiers ($\forall x < t$), ($\exists x < t$), where t does not contain x.

- φ is Π_0^1 if it does not contain any function quantifier. Π_0^1 formulae are called *arithmetical* formulae.
- $\neg \varphi$ is Σ_n^i if φ is a Π_n^i formula $(i \in \{0, 1\}, n \in \omega)$.
- $\forall x_1 \cdots \forall x_k \varphi$ is Π_{n+1}^0 if φ is a Σ_n^0 formula $(n \in \omega)$,
- $\forall f_1 \cdots \forall f_k \varphi \text{ is } \Pi_{n+1}^1 \text{ if } \varphi \text{ is a } \Sigma_n^1 \text{ formula } (n \in \omega).$

Using above classification, we can define schemata of comprehension and induction as follows.

Definition 1.1 Assume $n \in \omega$ and $i \in \{0, 1\}$. The scheme of $\prod_{n=1}^{i}$ comprehension, denoted $\prod_{n=1}^{i} CA$, consists of all the formulae of the form

$$\exists X \forall x (x \in X \leftrightarrow \varphi(x)),$$

where $\varphi(x)$ belongs to Π_n^i and X does not occur freely in $\varphi(x)$. The scheme of Δ_n^i -comprehension, denoted Δ_n^i -CA, consists of all the formulae of the form

$$\forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n(n \in X \leftrightarrow \varphi(n))$$

where $\varphi(n)$ is $\Sigma_n^i, \psi(n)$ is Π_n^i , and X is not free in $\varphi(n)$. The scheme of Σ_n^i induction, denote Σ_n^i -IND, consists of all axioms of the form

$$(\varphi(0) \land \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n\phi(n)$$

where $\varphi(n)$ is Σ_n^i .

Now we define a basic subsystem of second order arithmetic, called RCA_0 .

Definition 1.2 RCA₀ is the formal system in the language of \mathcal{L}_2 which consists of discrete order semi-ring axioms for $(\mathbb{N}, +, \cdot, 0, 1, <)$ plus the schemata of Δ_1^0 comprehension and Σ_1^0 induction.

The following is a formal version of the normal form theorem for Σ_1^0 relations.

Theorem 1.3 (normal form theorem) Let $\varphi(f)$ be a Σ_1^0 formula. Then we can find a Π_0^0 formula R(s) such that RCA₀ proves

$$\forall f(\varphi(f) \leftrightarrow \exists mR(f[m]))$$

where f[m] is the code for the finite initial segment of f with length m. Note that $\varphi(f)$ may contain free variables other than f.

Proof. See also Simpson [7, Theorem II.2.7]. \Box

We loosely say that a formula is Σ_n^i (resp. Π_n^i) if it is equivalent over a base theory (such as RCA_0) to a $\psi \in \Sigma_n^i$ (resp. Π_n^i).

The next theorem asserts that the universe of functions is closed under the *least* number operator, i.e., minimization.

Theorem 1.4 (minimization) The following is provable in RCA_0 . Let $f : \mathbb{N}^{k+1} \to \mathbb{N}$ be such that for all $\langle n_1, ..., n_k \rangle \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $f(m, n_1, ..., n_k) = 1$. Then there exists $g : \mathbb{N}^k \to \mathbb{N}$ such that $g(n_1, ..., n_k)$ is the least m such that $f(m, n_1, ..., n_k) = 1$.

Proof. See Simpson [7, Theorem II.3.5]. \Box

2 WKL₀ and Σ_1^0 -Det^{*}

Let X be either $\{0,1\}$ or N and let φ be a formula with a distinct variable franging over $X^{\mathbb{N}}$. A two-person game G_{φ} (or simply φ) over $X^{\mathbb{N}}$ is defined as follows: player I and player II alternately choose elements from X (starting with I) to form an infinite sequence $f \in X^{\mathbb{N}}$ and I (resp. II) wins iff $\varphi(f)$ (resp. $\neg \varphi(f)$). A strategy of player I (resp. II) is a map $\sigma : X^{\text{even}} = \{s \in X^{<\mathbb{N}} | s \text{ has even length}\} \to X$ (resp. $X^{\text{odd}} \to X$). We say that φ is determinate if one of the players has a winning strategy, that is, a strategy σ such that the player is guaranteed to win every play f in which he played $f(n) = \sigma([f(n)])$ whenever it was his turn to play.

Given a class of formulae C, C-determinacy is the axiom scheme which states that any game in C is determinate. We use C-Det^{*} (resp C-Det) to denote C-determinacy in the Cantor space (resp. the Baire space).

A set T of finite sequences is a *tree* if it is closed under initial segment, i.e., $t \in T$ and $s \subseteq t$ implies $s \in T$. A function f is a *path* of T if each initial segment of f is a sequence of T.

Definition 2.1 WKL₀ is a subsystem of second order arithmetic whose axioms are those of RCA₀ plus weak König's lemma which states that every infinite binary tree $T \subseteq 2^{<\mathbb{N}}$ has an infinite path.

Next, we prove the equivalences among WKL₀, Σ_1^0 -Det^{*} and Δ_1^0 -Det^{*}.

Theorem 2.2 $\mathsf{RCA}_0 \vdash \Delta_1^0 \operatorname{-Det}^* \to \mathsf{WKL}_0$.

Proof. By way of contradiction, we assume $\text{RCA}_0 + \Delta_1^0$ -Det^{*} and deny weak König's lemma. Let T be an infinite binary tree in which there is no infinite path, i.e., there is no f such that $\forall n f[n] \in T$. We consider the following game:

- Player I plays a sequence t of $2^{<\mathbb{N}}$.
- Player II then answers by playing 0 or 1.
- Player I plays a new sequence u of $2^{<\mathbb{N}}$.
- Player II then plays a sequence v of $2^{<\mathbb{N}}$.

The winning conditions of the game are given as follows: II wins if one of the following cases holds.

- $t * \langle i \rangle * u \notin T$.
- $t * \langle 1 i \rangle * v \in T \land |u| \le |v|$.

We shall remark that the game always terminates in finite moves, because T has no infinite path. This ensures that the game is Δ_1^0 . On the other hand, we can show that player I has no winning strategy by considering two cases, in one of which player II chooses i = 0 and in the other he chooses i = 1 after player I plays t. I can not win in both of them. Therefore, by Δ_1^0 -Det^{*} player II has a winning strategy τ . Using τ , we define $f : \mathbb{N} \to \{0, 1\}$ as follows:

- $f(0) = 1 \tau(\langle \rangle),$
- $f(n+1) = 1 \tau(f[n]),$

By Σ_0^0 -induction, we can easily see that $f[n] \in T$ for all n, which contradicts with our assumption that T has no infinite path. Thus, Δ_1^0 -Det^{*} \rightarrow WKL. This completes the proof of the theorem.

Now, we turn to prove the reversal.

Theorem 2.3 WKL₀ $\vdash \Sigma_1^0$ -Det^{*}.

Proof. Let $\varphi(f)$ be a Σ_1^0 -formula with $f \in 2^{\mathbb{N}}$. Then, by the normal form theorem, $\varphi(f)$ can be written as $\exists nR(f[n])$, where R is Π_0^0 . We define recursive maps g and g_n from $2^{\leq \mathbb{N}}$ to $\{0, 1\}$ for each $n \in \mathbb{N}$ as follows:

$$g(s) = \begin{cases} 1 & \text{if } \exists t \subseteq s R(t) \\ 0 & \text{if } \forall t \subseteq s \neg R(t) \end{cases}$$

$$g_n(s) = \begin{cases} g(s) & \text{if } |s| \ge n \\ \max\{g_n(s * \langle 0 \rangle), g_n(s * \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is even} \\ \min\{g_n(s * \langle 0 \rangle), g_n(s * \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is odd} \end{cases}$$

Intuitively, for $n \in \mathbb{N}$, $g_n(\langle \rangle) = 1$ means "player I can win the game by stage n," and $g_n(\langle \rangle) = 0$ means "player I cannot win by stage n."

Claim. The following assertions hold.

- (1) If $g_n(\langle \rangle) = 1$ for some n, then I has a winning strategy.
- (2) If $g_n(\langle \rangle) = 0$ for every *n*, then II has a winning strategy.

For (1), fix n such that $g_n(\langle \rangle) = 1$. Define $\sigma : 2^{\text{even}} \to \{0, 1\}$ by

$$\sigma(s) = \begin{cases} 0 & \text{if } g_n(s * \langle 0 \rangle) = 1 \\ 1 & \text{otherwise.} \end{cases}$$

We can verify that σ is a winning strategy for player I, which completes the proof of the first assertion of the claim.

For (2), suppose that for any n, $g_n(\langle \rangle) = 0$ and show that player II has a winning strategy. The idea of the proof is as follows. Consider an infinite binary tree which consists of the moves at which player II can prevent player I from winning the game. A path through such a tree will serve a winning strategy for II. To realize this idea, we will need some coding arguments to construct the tree.

To begin with, fix a lexicographical enumeration e of non-empty sequences of $2^{\leq \mathbb{N}}$. For instance, $e(\langle 0 \rangle)=0$, $e(\langle 1 \rangle)=1$, $e(\langle 0, 0 \rangle)=2$, and so on. Using e, we can regard any $s \in 2^{\leq \mathbb{N}}$ as a partial strategy (i.e., a finite segment of the strategy) for player II (cf. [1]). We define T_s to be the tree consisting of all partial plays in which player II follows s. More precisely, T_s is defined as follows:

$$t \in T_s \leftrightarrow \forall k(2k+1 < |t| \rightarrow t(2k+1) = s(e(\langle t(0), \cdots, t(2k) \rangle))).$$

Finally we define T, a set of all moves which avoid the winning of player I, as follows:

$$s \in T \leftrightarrow \forall t \in T_s g_{h(s)}(t) = 0,$$

where $h: 2^{\langle \mathbb{N} \rangle} \to \mathbb{N}$ is defined by $h(s) = \max\{|t| : t \in T_s\}$. Clearly T is recursive, therefore it exists in RCA₀. On the other hand, the assumption $\forall n g_n(\langle \rangle) = 0$ implies that T is infinite. Thus, T has a infinite path f by weak König's lemma.

Now, we define $\tau: 2^{\text{odd}} \to \mathbb{N}$ as:

$$\tau(s) = f(e(\langle s(0) \dots s(|s|-2) \rangle)),$$

and then we can verify that τ is a winning strategy for player II, which completes the proof. \Box

3 ATR₀ and Δ_2^0 -Det^{*}

In this section we aim to show that $RCA_0 + \Delta_2^0$ -Det^{*} and ATR_0 are equivalent. We first give the definitions of ACA_0 and ATR_0 .

Definition 3.1 The system ACA₀ consists of the discrete order semi-ring axioms for $(\mathbb{N}, +, \cdot, 0, 1, <)$ plus the schemes of Σ_1^0 induction and arithmetical comprehension.

Since comprehension axioms admit free variables, Π_1^0 comprehension is already as strong as arithmetical comprehension.

Lemma 3.2 The following are pairwise equivalent over RCA_0 .

- (1) arithmetical comprehension;
- (2) Π_1^0 comprehension.

Proof. See Simpson [7, Lemma III.1.3]. \Box

Definition 3.3 ATR₀ consists of RCA₀ augmented by the following axiom, called arithmetical transfinite recursion: For any set $X \subset \mathbb{N}$ and for any well-ordering relation \prec , there exists a set $H \subset \mathbb{N}$ such that

- if b is the \prec -least element, then $(H)_b = X$,
- if b is the immediate successor of a w.r.t. \prec , then $\forall n(n \in (H)_b \leftrightarrow \psi(n, (H)_a))$,
- if b is a limit, then $\forall a \forall n((n,a) \in (H)_b \leftrightarrow (a \prec b \land n \in (H)_a))$,

where ψ is a Π_0^1 -formula and $(H)_a = \{x : (x, a) \in H\}$, where (x, b) denotes the code of the pair $\langle x, a \rangle$.

ATR₀ is obviously stronger than ACA₀, but it is contained in Π_1^1 -CA₀.

Lemma 3.4 The following are pairwise equivalent over RCA₀:

 Δ_1^0 -Det, Σ_1^0 -Det and ATR₀.

Proof. See [7] or [8].

The class $\Sigma_1^0 \wedge \Pi_1^0$ is defined as follows. φ is $\Sigma_1^0 \wedge \Pi_1^0$ if and only if φ is of the form $\psi_0 \wedge \neg \psi_1$, where ψ_0 and ψ_1 are Σ_1^0 . The following theorems characterize $(\Sigma_1^0 \wedge \Pi_1^0)$ determinacy in the Cantor space.

Theorem 3.5 ACA₀ proves $(\Sigma_1^0 \land \Pi_1^0)$ -Det^{*}.

Proof. Let φ be of the form $\exists n R_0(f[n]) \land \forall n R_1(f[n])$. We define the functions g, g_n, g' , and g'_n from $2^{\leq \mathbb{N}}$ to $\{0, 1\}$ as follows:

•
$$g(s) = \begin{cases} 1 & \text{if } \exists t \subseteq s \, R_0(t) \\ 0 & \text{if } \forall t \subseteq s \neg R_0(t) \end{cases}$$

• $g_n(s) = \begin{cases} g(s) & \text{if } |s| \ge n \\ \max\{g_n(s * \langle 0 \rangle), g_n(s * \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is even} \\ \min\{g_n(s * \langle 0 \rangle), g_n(s * \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is odd} \end{cases}$
• $g'(s) = \begin{cases} 1 & \text{if } \forall t \subseteq s \, R_1(t)) \\ 0 & \text{if } \exists t \subseteq s \neg R_1(t)) \end{cases}$
• $g'_n(s) = \begin{cases} g'(s) & \text{if } |s| \ge n \\ \max\{g'_n(s * \langle 0 \rangle), g'_n(s * \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is even} \\ \min\{g'_n(s * \langle 0 \rangle), g'_n(s * \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is even} \end{cases}$

Following a similar argument of the one used in the proof of Theorem 2.2, we can prove

Claim: if there exists n such that $g_n(\langle \rangle) \cdot g'_m(\langle \rangle) = 1$ for all m > n then I has a winning strategy, otherwise player II has a winning strategy.

This complete the proof of the theorem. \Box

Theorem 3.6 $\mathsf{RCA}_0 \vdash (\Sigma_1^0 \land \Pi_1^0) \operatorname{-Det}^* \to \mathsf{ACA}_0$

Proof. Let $\varphi(n)$ be a Σ_1^0 -formula. We need to construct a set X such that for any $n \in \mathbb{N}$, $\varphi(n) \leftrightarrow n \in X$. To construct X, consider the following game: player I asks II about n by playing 0 consecutively n times and playing 1 after that (if he plays 0 for ever, he loses). II ends the game by answering 0 or 1.

Now, suppose that player I plays n 0's and a 1 consecutively. Player II wins if one of the following cases holds.

- II answers 1 and $\varphi(n)$.
- II answers 0 and $\neg \varphi(n)$.

Clearly, I has no wining strategy. By $(\Sigma_1^0 \wedge \Pi_1^0)$ -Det^{*}, let τ be a winning strategy of player II. We defined a set X by:

$$n \in X \leftrightarrow \tau(0^n 1) = 1.$$

The set X exists by Π_0^0 comprehension. Moreover, we can verify that $\forall n, \varphi(n) \leftrightarrow n \in X$, which completes the proof. \Box

Let \prec be a recursive well-ordering on N. We define a recursive well-ordering \prec^* on N \times {0,1} as follows:

$$(x,i) \prec^* (y,j)$$
 iff $x \prec y \lor (x = y \land i < j)$.

Let X be either N or $\{0,1\}$. We say that a formula $\varphi(n,i,f)$ with distinct free variable f ranging over $X^{\mathbb{N}}$ is decreasing along \prec^* if and only if

$$\forall n \forall i \forall m \forall j (((m, j) \prec^* (n, i) \land \varphi(n, i, f)) \to \varphi(m, j, f)),$$

for all f.

The following lemma will play a key role to characterize Δ_2^0 -Det^{*}.

Lemma 3.7 It is provable in RCA₀ that a formula ψ is Δ_2^0 if and only if:

$$\psi(f) \leftrightarrow \exists x(\varphi(x,0,f) \land \neg \varphi(x,1,f)),$$

where φ is Π_1^0 and it is decreasing along some recursive well-ordering relation \prec^* .

Proof. See [8] for the proof. \Box

Theorem 3.8 ATR₀ is equivalent to $RCA_0 + \Delta_2^0$ -Det^{*}.

Proof. The proof is a modification of the proof of Theorem 6.1 in [8]. By Theorem 3.6 and Lemma 3.7, Δ_2^0 -Det^{*} is just a transfinite iteration of arithmetical comprehension, which is the same as ATR₀. \Box

4 Further classes of games

In this section, we summarize our results about the determinacy of Boolean combinations of Σ_2^0 -games. The detailed treatment of these results will appear in our forthcoming paper.

We start by formalizing the inductive definition of a class of operators.

Definition 4.1 Given a a class of formulas C, the axiom C-ID asserts that for any operator $\Gamma \in C$, there exists $W \subset \mathbb{N} \times \mathbb{N}$ such that

1. W is a pre-wellordering on its field F,

- 2. $\forall x \in F \quad W_x = \Gamma(W_{\leq x}) \cup W_{\leq x},$
- 3. $\Gamma(F) \subset F$.

For a class of formulas \mathcal{C} , Γ is a monotone \mathcal{C} -operator if and only if $\Gamma \in \mathcal{C}$ and Γ satisfies $\Gamma(X) \subset \Gamma(Y)$ whenever $X \subset Y$. The class of monotone \mathcal{C} -operators is denoted by mon- \mathcal{C} . We also use \mathcal{C} -Mł to denote [mon- \mathcal{C}]-ID. We refer the reader to our papers [9], [5] for more information on this formalization.

Theorem 4.2 The following assertions hold over RCA_0 . (1) Σ_2^0 -MI $\rightarrow \Sigma_2^0$ -Det^{*}. (2) Σ_2^0 -Det^{*} $\rightarrow \Sigma_2^0$ -ID.

Proof. The idea of the proof is similar to the one used in [9] and [5]. We just mention that since the game is played over the Cantor space, rather than the Baire space, we can replace the Σ_1^1 -operator in [9] and [5] by a Σ_2^0 -operator. \Box

Now, we turn to investigate the strength of Σ_2^0 -ID. The following lemma provides an alternative definition of Π_1^1 -CA₀.

Lemma 4.3 The following assertions hold over RCA_0 .

- (1) Π_1^1 -CA $\leftrightarrow (\Sigma_1^0 \wedge \Pi_1^0)$ -Det.
- (2) Π_1^0 -MI $\to \Pi_1^1$ -CA.

Proof. The proof of the assertion (1) can be found either in [8] or in [7]. The assertion (2) is a straightforward formalization of Hinman's proof [4]. \Box

Theorem 4.4 Π_1^1 -CA $\vdash \Pi_1^1$ -MI.

Proof. Let Γ be a monotone Π_1^1 -operator. Using the strategy of a certain $(\Sigma_1^0 \land \Pi_1^0)$ -game, we can construct W which satisfy conditions (1), (2) and (3) of Definition 4.1. This completes the proof by the assertion (1) of Lemma 4.3.

Finally, we give the following corollary.

Corollary 4.5 The following are equivalent over RCA₀:

 Σ_2^0 -Det^{*}, Π_1^1 -CA₀, Π_1^0 -MI, Σ_2^0 -ID and Π_1^1 -MI.

Proof. It is straightforward from Theorems 4.2 and $4.4.\Box$

Next, we turn to the games which can be written as Boolean combinations of Σ_2^0 -formulas. We first recall the following definitions from [6]. The class $(\Sigma_2^0)_k$ of formulas is defined as follows. For k = 1, $(\Sigma_2^0)_1 = \Sigma_2^0$. For $k > 1, \psi \in (\Sigma_2^0)_k$ iff it can be written as $\psi_1 \wedge \psi_2$, where $\neg \psi_1 \in (\Sigma_2^0)_{k-1}$ and $\psi_2 \in \Sigma_2^0$. It can be shown that for any formula ψ in the class of Boolean combinations of Σ_2^0 -formulas, there is a $k \in \omega$ such that $\psi \in (\Sigma_2^0)_k$, or more strictly, ψ is equivalent to a formula in $(\Sigma_2^0)_k$.

Theorem 4.6 Assume $0 < k < \omega$. Then, $(\Sigma_2^0)_{k+1}$ -Det^{*} $\leftrightarrow (\Sigma_2^0)_k$ -Det.

Proof. (\rightarrow) . Let ψ be a $(\Sigma_2^0)_k$ -formula and G_{ψ} the infinite game over $\mathbb{N}^{\mathbb{N}}$ associated with ψ . We explain how to turn G_{ψ} to a $(\Sigma_2^0)_{k+1}$ -game over $2^{\mathbb{N}}$, which will be denoted G_{ψ}^* . The idea is the following: In G_{ψ}^* , I starts by playing n_0 0's, then plays 1. Then, II plays n_1 1's and plays 0 and so on. We need to avoid some trivial situation. For instance, player I must not play 0's consecutively for ever. He must

stop after playing finitely may 0's to give II a chance to play. This will make G_{ψ}^* a $(\Sigma_2^0)_{k+1}$ -game and hence determinate by our assumption. On the other hand the player who wins G_{ψ}^* can win G_{ψ} , which completes the proof of the first direction.

The direction (\leftarrow) can be proved by using the inductive definition of a combination of $k \Sigma_1^1$ -operators, which is equivalent to $(\Sigma_2^0)_k$ -Det by [6]. \Box

参考文献

- D. Cenzer and J. Remmel Recursively presented games, Mathematical Social Sciences 24 (1992), pp. 117-139.
- [2] H.M. Friedman, Higher set theory and mathematical practice, Annals of Mathematical Logic 2 (1971), pp. 325-357.
- [3] L.A. Harrighton and A.S. Kechris, A basis result for Σ_3^0 sets of reals with an application to minimal covers Proc. of A.M.S 53 (1975) pp. 445-448.
- [4] P.G. Hinman, Recursion-theoretic hierarchies, Springer (1978).
- [5] M.O. Medsalem and K. Tanaka, Δ_3^0 -determinacy, comprehension and induction, to appear.
- [6] M.O. Medsalem and K. Tanaka, Weak determinacy and iterations of inductive definitions, to appear.
- [7] S.G. Simpson, Subsystems of Second Order Arithmetic, Springer (1999).
- [8] K. Tanaka, Weak axioms of determinacy and subsystems of analysis I: Δ₂⁰games, Zeitschrift f
 ür mathematische Logik und Grundlagen der Mathematik 36 (1990), pp. 481-491.
- [9] K. Tanaka, Weak axioms of determinacy and subsystems of analysis Π: Σ₂⁰games, Annals of Pure and Applied Logic 52 (1991), pp. 181-193.
- [10] P. Welch, Weak systems of determinacy and arithmetical quasi-inductive definitions, Preprint.