<table>
<thead>
<tr>
<th>Title</th>
<th>On weak determinacy of infinite binary games (Study of definability in nonstandard models of arithmetic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nemoto, Takako; MedSalem, MedYahya Ould; Tanaka, Kazuyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1469: 17-26</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/48093</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On weak determinacy of infinite binary games

Takako Nemoto (根元 多佳子)
MedYahya Ould MedSalem
Kazuyuki Tanaka (田中 一之)
Mathematical Institute, Tohoku University (東北大学理学研究科)

概要

In [5] and [6], we have investigated the logical strength of the determinacy of
infinite games in the Baire space up to Δ^0_3. In this paper we consider infinite games
in the Cantor space. Let Det^* (resp. Det) stand for the determinacy of infinite games
in the Cantor space (resp. the Baire space). In Section 2, we show that
$\Delta^0_1\text{-Det}^*$, $\Sigma^0_2\text{-Det}^*$ and WKL_0 are pairwise equivalent over RCA_0. In Section 3, we
show that $\text{RCA}_0 + (\Sigma^0_1 \land \Pi^0_1)\text{-Det}^*$ is equivalent to ACA_0. Then, we deduce that
$\text{RCA}_0 + \Delta^0_2\text{-Det}^*$ is equivalent to ATR_0. In the last section, we show some more
 equivalences among stronger assertions without details, which will be thoroughly
treated elsewhere.

1 Preliminaries

In this section, we recall some basic definitions and facts about second order
arithmetic. The language \mathcal{L}_2 of second order arithmetic is a two-sorted language
with number variables x, y, z, \ldots and unary function variables f, g, h, \ldots, consisting
of constant symbols $0, 1, +, -, =, <$. We also use set variables X, Y, Z, \ldots, intending
to range over the set of $\{0, 1\}$-valued functions, that is, characteristic functions of
 sets.

The formulae can be classified as follows:

- φ is bounded (Π^0_2) if it is built up from atomic formulae by using propositional
connectives and bounded number quantifiers $(\forall x < t), (\exists x < t)$, where t does
not contain x.
• φ is Π_0^1 if it does not contain any function quantifier. Π_0^1 formulae are called *arithmetical* formulae.

• $\neg \varphi$ is Σ_i^n if φ is a Π_i^n formula ($i \in \{0, 1\}, n \in \omega$).

• $\forall x_1 \cdots \forall x_k \varphi$ is Π_0^{n+1} if φ is a Σ_0^n formula ($n \in \omega$).

• $\forall f_1 \cdots \forall f_k \varphi$ is Π_1^{n+1} if φ is a Σ_1^n formula ($n \in \omega$).

Using above classification, we can define schemata of comprehension and induction as follows.

Definition 1.1 Assume $n \in \omega$ and $i \in \{0, 1\}$. The scheme of Π_i^n *comprehension*, denoted Π_i^n-CA, consists of all the formulae of the form

$$\exists X \forall x (x \in X \leftrightarrow \varphi(x)),$$

where $\varphi(x)$ belongs to Π_i^n and X does not occur freely in $\varphi(x)$. The scheme of Δ_i^n-comprehension, denoted Δ_i^n-CA, consists of all the formulae of the form

$$\forall n (\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n (n \in X \leftrightarrow \varphi(n))$$

where $\varphi(n)$ is Σ_i^n, $\psi(n)$ is Π_i^n, and X is not free in $\varphi(n)$. The scheme of Σ_i^n induction, denote Σ_i^n-IND, consists of all axioms of the form

$$(\varphi(0) \land \forall n(\varphi(n) \rightarrow \varphi(n+1))) \rightarrow \forall n \varphi(n)$$

where $\varphi(n)$ is Σ_i^n.

Now we define a basic subsystem of second order arithmetic, called RCA$_0$.

Definition 1.2 RCA$_0$ is the formal system in the language of \mathcal{L}_2 which consists of discrete order semi-ring axioms for $(\mathbb{N}, +, \cdot, 0, 1, <)$ plus the schemata of Δ_0^i comprehension and Σ_0^i induction.

The following is a formal version of the *normal form theorem* for Σ_0^1 relations.

Theorem 1.3 (normal form theorem) Let $\varphi(f)$ be a Σ_0^1 formula. Then we can find a Π_0^1 formula $R(s)$ such that RCA$_0$ proves

$$\forall f(\varphi(f) \leftrightarrow \exists m R(f[m]))$$

where $f[m]$ is the code for the finite initial segment of f with length m. Note that $\varphi(f)$ may contain free variables other than f.
Proof. See also Simpson [7, Theorem II.2.7]. □

We loosely say that a formula is Σ^i_n (resp. Π^i_n) if it is equivalent over a base theory (such as RCA_0) to a $\psi \in \Sigma^i_n$ (resp. Π^i_n).

The next theorem asserts that the universe of functions is closed under the least number operator, i.e., minimization.

Theorem 1.4 (minimization) The following is provable in RCA_0. Let $f : \mathbb{N}^{k+1} \to \mathbb{N}$ be such that for all $(n_1, \ldots, n_k) \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $f(m, n_1, \ldots, n_k) = 1$. Then there exists $g : \mathbb{N}^k \to \mathbb{N}$ such that $g(n_1, \ldots, n_k)$ is the least m such that $f(m, n_1, \ldots, n_k) = 1$.

Proof. See Simpson [7, Theorem II.3.5]. □

2 \text{WKL}_0 and Σ_1^0-Det*

Let X be either $\{0, 1\}$ or \mathbb{N} and let φ be a formula with a distinct variable f ranging over $X^\mathbb{N}$. A two-person game G_φ (or simply φ) over $X^\mathbb{N}$ is defined as follows:

player I and player II alternately choose elements from X (starting with I) to form an infinite sequence $f \in X^\mathbb{N}$ and I (resp. II) wins iff $\varphi(f)$ (resp. $\neg\varphi(f)$). A strategy of player I (resp. II) is a map $\sigma : X^{\text{even}} = \{s \in X^{<\mathbb{N}} \mid s \text{ has even length}\} \to X$ (resp. $X^{\text{odd}} \to X$). We say that φ is determinate if one of the players has a winning strategy, that is, a strategy σ such that the player is guaranteed to win every play f in which he played $f(n) = \sigma([f(n)])$ whenever it was his turn to play.

Given a class of formulae C, C-determinacy is the axiom scheme which states that any game in C is determinate. We use C-Det^* (resp C-Det) to denote C-determinacy in the Cantor space (resp. the Baire space).

A set T of finite sequences is a tree if it is closed under initial segment, i.e., $t \in T$ and $s \subseteq t$ implies $s \in T$. A function f is a path of T if each initial segment of f is a sequence of T.

Definition 2.1 WKL_0 is a subsystem of second order arithmetic whose axioms are those of RCA_0 plus weak König's lemma which states that every infinite binary tree $T \subseteq \mathbb{2}^{\lt \mathbb{N}}$ has an infinite path.

Next, we prove the equivalences among WKL_0, Σ_1^0-Det^* and Δ_1^0-Det^*.

Theorem 2.2 $\text{RCA}_0 \vdash \Delta_1^0$-$\text{Det}^* \rightarrow \text{WKL}_0$.
Proof. By way of contradiction, we assume $\text{RCA}_0 + \Delta^0_1\text{-Det}^*$ and deny weak König's lemma. Let T be an infinite binary tree in which there is no infinite path, i.e., there is no f such that $\forall n f[n] \in T$. We consider the following game:

- Player I plays a sequence t of $2^{<\mathbb{N}}$.
- Player II then answers by playing 0 or 1.
- Player I plays a new sequence u of $2^{<\mathbb{N}}$.
- Player II then plays a sequence v of $2^{<\mathbb{N}}$.

The winning conditions of the game are given as follows: II wins if one of the following cases holds.

- $t \ast (i) \ast u \not\in T$.
- $t \ast (1 - i) \ast v \in T$ if $|u| \leq |v|$.

We shall remark that the game always terminates in finite moves, because T has no infinite path. This ensures that the game is Δ^0_1. On the other hand, we can show that player I has no winning strategy by considering two cases, in one of which player II chooses $i = 0$ and in the other he chooses $i = 1$ after player I plays t. I cannot win in both of them. Therefore, by $\Delta^0_1\text{-Det}^*$ player II has a winning strategy τ. Using τ, we define $f : \mathbb{N} \rightarrow \{0, 1\}$ as follows:

- $f(0) = 1 - \tau(())$,
- $f(n + 1) = 1 - \tau(f[n])$,

By Σ^0_1-induction, we can easily see that $f[n] \in T$ for all n, which contradicts with our assumption that T has no infinite path. Thus, $\Delta^0_1\text{-Det}^* \rightarrow \text{WKL}$. This completes the proof of the theorem. \square

Now, we turn to prove the reversal.

Theorem 2.3 $\text{WKL}_0 \vdash \Sigma^0_1\text{-Det}^*$.

Proof. Let $\varphi(f)$ be a Σ^0_1-formula with $f \in 2^{\mathbb{N}}$. Then, by the normal form theorem, $\varphi(f)$ can be written as $\exists n R(f[n])$, where R is Π^0_3. We define recursive maps g and g_n from $2^{<\mathbb{N}} \rightarrow \{0, 1\}$ for each $n \in \mathbb{N}$ as follows:

\[
g(s) = \begin{cases}
1 & \text{if } \exists t \subseteq s \ R(t) \\
0 & \text{if } \forall t \subseteq s \neg R(t)
\end{cases}
\]

\[
g_n(s) = \begin{cases}
g(s) & \text{if } |s| \geq n \\
\text{max}\{g_n(s \ast (0)), g_n(s \ast (1))\} & \text{if } |s| < n \text{ and } |s| \text{ is even} \\
\text{min}\{g_n(s \ast (0)), g_n(s \ast (1))\} & \text{if } |s| < n \text{ and } |s| \text{ is odd}
\end{cases}
\]
Intuitively, for \(n \in \mathbb{N} \), \(g_n(\langle \rangle) = 1 \) means "player I can win the game by stage \(n \)," and \(g_n(\langle \rangle) = 0 \) means "player I cannot win by stage \(n \)."

Claim. The following assertions hold.

1. If \(g_n(\langle \rangle) = 1 \) for some \(n \), then I has a winning strategy.
2. If \(g_n(\langle \rangle) = 0 \) for every \(n \), then II has a winning strategy.

For (1), fix \(n \) such that \(g_n(\langle \rangle) = 1 \). Define \(\sigma : 2^{\text{even}} \to \{0, 1\} \) by

\[
\sigma(s) = \begin{cases}
0 & \text{if } g_n((s \ast \langle 0 \rangle)) = 1 \\
1 & \text{otherwise.}
\end{cases}
\]

We can verify that \(\sigma \) is a winning strategy for player I, which completes the proof of the first assertion of the claim.

For (2), suppose that for any \(n \), \(g_n(\langle \rangle) = 0 \) and show that player II has a winning strategy. The idea of the proof is as follows. Consider an infinite binary tree which consists of the moves at which player II can prevent player I from winning the game. A path through such a tree will serve a winning strategy for II. To realize this idea, we will need some coding arguments to construct the tree.

To begin with, fix a lexicographical enumeration \(e \) of non-empty sequences of \(2^{\text{even}} \). For instance, \(e((0)) = 0 \), \(e((1)) = 1 \), \(e((0, 0)) = 2 \), and so on. Using \(e \), we can regard any \(s \in 2^{\text{even}} \) as a partial strategy (i.e., a finite segment of the strategy) for player II (cf. [1]). We define \(T_s \) to be the tree consisting of all partial plays in which player II follows \(s \). More precisely, \(T_s \) is defined as follows:

\[
t \in T_s \iff \forall k(2k + 1 < |t| \rightarrow t(2k + 1) = s(e(\langle t(0), \ldots, t(2k) \rangle))).
\]

Finally we define \(T \), a set of all moves which avoid the winning of player I, as follows:

\[
s \in T \iff \forall t \in T_s \, g_{h(s)}(t) = 0,
\]

where \(h : 2^{\text{even}} \to \mathbb{N} \) is defined by \(h(s) = \max\{|t| : t \in T_s\} \). Clearly \(T \) is recursive, therefore it exists in \(\text{RCA}_0 \). On the other hand, the assumption \(\forall n \, g_n(\langle \rangle) = 0 \) implies that \(T \) is infinite. Thus, \(T \) has a infinite path \(f \) by weak König's lemma.

Now, we define \(\tau : 2^{\text{odd}} \to \mathbb{N} \) as:

\[
\tau(s) = f(e((s(0)) \ldots e(|s| - 2)))).
\]

and then we can verify that \(\tau \) is a winning strategy for player II, which completes the proof. \(\square \)
3 ATR$_0$ and Δ^0_2-Det*

In this section we aim to show that RCA$_0 + \Delta^0_2$-Det* and ATR$_0$ are equivalent. We first give the definitions of ACA$_0$ and ATR$_0$.

Definition 3.1 The system ACA$_0$ consists of the discrete order semi-ring axioms for $(\mathbb{N}, +, \cdot, 0, 1, <)$ plus the schemes of Σ^0_1 induction and arithmetical comprehension.

Since comprehension axioms admit free variables, Π^0_1 comprehension is already as strong as arithmetical comprehension.

Lemma 3.2 The following are pairwise equivalent over RCA$_0$.

1. arithmetical comprehension;
2. Π^0_1 comprehension.

Proof. See Simpson [7, Lemma III.1.3]. □

Definition 3.3 ATR$_0$ consists of RCA$_0$ augmented by the following axiom, called *arithmetical transfinite recursion*: For any set $X \subset \mathbb{N}$ and for any well-ordering relation \prec, there exists a set $H \subset \mathbb{N}$ such that

- if b is the \prec-least element, then $(H)_b = X$,
- if b is the immediate successor of a w.r.t. \prec, then $\forall n \in (H)_b \leftrightarrow \psi(n, (H)_a))$,
- if b is a limit, then $\forall a \forall n ((n, a) \in (H)_b \rightarrow (a \prec b \land n \in (H)_a))$,

where ψ is a Π^0_1-formula and $(H)_a = \{x : (x, a) \in H\}$, where (x, b) denotes the code of the pair (x, a).

ATR$_0$ is obviously stronger than ACA$_0$, but it is contained in Π^1_1-CA$_0$.

Lemma 3.4 The following are pairwise equivalent over RCA$_0$:

Δ^0_1-Det, Σ^0_1-Det and ATR$_0$.

Proof. See [7] or [8].

The class $\Sigma^0_1 \land \Pi^0_1$ is defined as follows. φ is $\Sigma^0_1 \land \Pi^0_1$ if and only if φ is of the form $\psi_0 \land \neg \psi_1$, where ψ_0 and ψ_1 are Σ^0_1. The following theorems characterize $(\Sigma^0_1 \land \Pi^0_1)$ determinacy in the Cantor space.

Theorem 3.5 ACA$_0$ proves $(\Sigma^0_1 \land \Pi^0_1)$-Det*.

Proof. Let φ be of the form $\exists n R_0(f[n]) \land \forall n R_1(f[n])$. We define the functions g, g_n, g', g'_n from $2^{<\mathbb{N}}$ to $\{0, 1\}$ as follows:
$g(s) = \begin{cases}
1 & \text{if } \exists t \subseteq s R_0(t) \\
0 & \text{if } \forall t \subseteq s \neg R_0(t)
\end{cases}$

$g_n(s) =$

$\begin{cases}
g(s) & \text{if } |s| \geq n \\
\max\{g_n(s \cdot \langle 0 \rangle), g_n(s \cdot \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is even} \\
\min\{g_n(s \cdot \langle 0 \rangle), g_n(s \cdot \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is odd}
\end{cases}$

$g'(s) = \begin{cases}
1 & \text{if } \forall t \subseteq s R_1(t) \\
0 & \text{if } \exists t \subseteq s \neg R_1(t)
\end{cases}$

$g'_n(s) =$

$\begin{cases}
g'(s) & \text{if } |s| \geq n \\
\max\{g'_n(s \cdot \langle 0 \rangle), g'_n(s \cdot \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is even} \\
\min\{g'_n(s \cdot \langle 0 \rangle), g'_n(s \cdot \langle 1 \rangle)\} & \text{if } |s| < n \text{ and } |s| \text{ is odd}
\end{cases}$

Following a similar argument of the one used in the proof of Theorem 2.2, we can prove

Claim: if there exists an such that $g_n(\langle \rangle) \cdot g'_n(\langle \rangle) = 1$ for all $m > n$ then I has a winning strategy, otherwise player II has a winning strategy.

This complete the proof of the theorem. □

Theorem 3.6 RCA₀ ⊢ (Σ₁⁰ ∩ Π₁⁰)-Det* → ACA₀

Proof. Let $\varphi(n)$ be a $\Sigma₁⁰$-formula. We need to construct a set X such that for any $n \in \mathbb{N}$, $\varphi(n) \iff n \in X$. To construct X, consider the following game: player I asks II about n by playing 0 consecutively n times and playing 1 after that (if he plays 0 for ever, he loses). II ends the game by answering 0 or 1.

Now, suppose that player I plays n 0's and a 1 consecutively. Player II wins if one of the following cases holds.

- II answers 1 and $\varphi(n)$.
- II answers 0 and $\neg \varphi(n)$.

Clearly, I has no winning strategy. By $(\Sigma₁⁰ ∩ Π₁⁰)$-Det*, let τ be a winning strategy of player II. We defined a set X by:

$$n \in X \iff \tau(0^n1) = 1.$$

The set X exists by $\Pi₁⁰$ comprehension. Moreover, we can verify that $\forall n, \varphi(n) \iff n \in X$, which completes the proof. □

Let $<$ be a recursive well-ordering on \mathbb{N}. We define a recursive well-ordering \prec^* on $\mathbb{N} \times \{0, 1\}$ as follows:

$$(x, i) \prec^* (y, j) \text{ iff } x < y \vee (x = y \land i < j).$$
Let X be either \mathbb{N} or $\{0, 1\}$. We say that a formula $\varphi(n, i, f)$ with distinct free variable f ranging over $X^\mathbb{N}$ is *decreasing along \prec^* if and only if*

$$\forall n \forall i \forall m \forall j (((m, j) \prec^* (n, i) \land \varphi(n, i, f)) \rightarrow \varphi(m, j, f)),$$

for all f.

The following lemma will play a key role to characterize Δ^0_2-Det*.

Lemma 3.7 It is provable in RCA$_0$ that a formula ψ is Δ^0_2 if and only if:

$$\psi(f) \rightarrow \exists x ((\varphi(x, 0, f) \land \neg \varphi(x, 1, f))),$$

where φ is Π^0_1 and it is decreasing along some recursive well-ordering relation \prec^*.

Proof. See [8] for the proof. \square

Theorem 3.8 ATR$_0$ is equivalent to RCA$_0$ + Δ^0_2-Det*.

Proof. The proof is a modification of the proof of Theorem 6.1 in [8]. By Theorem 3.6 and Lemma 3.7, Δ^0_2-Det* is just a transfinite iteration of arithmetical comprehension, which is the same as ATR$_0$. \square

4 Further classes of games

In this section, we summarize our results about the determinacy of Boolean combinations of Σ^0_2-games. The detailed treatment of these results will appear in our forthcoming paper.

We start by formalizing the inductive definition of a class of operators.

Definition 4.1 Given a a class of formulas \mathcal{C}, the axiom \mathcal{C}-ID asserts that for any operator $\Gamma \in \mathcal{C}$, there exists $W \subset \mathbb{N} \times \mathbb{N}$ such that

1. W is a pre-wellordering on its field F,
2. $\forall x \in F \ W_x = \Gamma(W_{<x}) \cup W_{<x}$,
3. $\Gamma(F) \subset F$.

For a class of formulas \mathcal{C}, Γ is a monotone \mathcal{C}-operator if and only if $\Gamma \in \mathcal{C}$ and Γ satisfies $\Gamma(X) \subset \Gamma(Y)$ whenever $X \subset Y$. The class of monotone \mathcal{C}-operators is denoted by mon-\mathcal{C}. We also use \mathcal{C}-ML to denote [mon-\mathcal{C}]-ID. We refer the reader to our papers [9], [5] for more information on this formalization.

Theorem 4.2 The following assertions hold over RCA$_0$.

1. Σ^0_2-$\text{ML} \rightarrow \Sigma^0_2$-Det*.

(2) Σ^0_2-Det* \rightarrow Σ^0_2-ID.

Proof. The idea of the proof is similar to the one used in [9] and [5]. We just mention that since the game is played over the Cantor space, rather than the Baire space, we can replace the Σ^1_1-operator in [9] and [5] by a Σ^0_2-operator. □

Now, we turn to investigate the strength of Σ^0_2-ID. The following lemma provides an alternative definition of Π^1_1-CA$^\omega$.

Lemma 4.3 The following assertions hold over RCA$^\omega$.

(1) Π^1_1-CA \leftrightarrow $(\Sigma^0_1 \land \Pi^0_1)$-Det.

(2) Π^0_1-MI \rightarrow Π^1_1-CA.

Proof. The proof of the assertion (1) can be found either in [8] or in [7]. The assertion (2) is a straightforward formalization of Hinman's proof [4]. □

Theorem 4.4 Π^1_1-CA \vdash Π^1_1-MI.

Proof. Let Γ be a monotone Π^1_1-operator. Using the strategy of a certain $(\Sigma^0_1 \land \Pi^0_1)$-game, we can construct W which satisfies conditions (1), (2) and (3) of Definition 4.1. This completes the proof by the assertion (1) of Lemma 4.3. □

Finally, we give the following corollary.

Corollary 4.5 The following are equivalent over RCA$^\omega$:

Σ^0_2-Det*, Π^1_1-CA$^\omega$, Π^0_1-MI, Σ^0_2-ID and Π^1_1-MI.

Proof. It is straightforward from Theorems 4.2 and 4.4. □

Next, we turn to the games which can be written as Boolean combinations of Σ^0_2-formulas. We first recall the following definitions from [6]. The class $(\Sigma^0_2)_k$ of formulas is defined as follows. For $k = 1$, $(\Sigma^0_2)_1 = \Sigma^0_2$. For $k > 1$, $\psi \in (\Sigma^0_2)_k$ if it can be written as $\psi_1 \land \psi_2$, where $\neg \psi_1 \in (\Sigma^0_2)_{k-1}$ and $\psi_2 \in \Sigma^0_2$. It can be shown that for any formula ψ in the class of Boolean combinations of Σ^0_2-formulas, there is a $k \in \omega$ such that $\psi \in (\Sigma^0_2)_k$, or more strictly, ψ is equivalent to a formula in $(\Sigma^0_2)_k$.

Theorem 4.6 Assume $0 < k < \omega$. Then, $(\Sigma^0_2)_{k+1}$-Det$^* \leftrightarrow (\Sigma^0_2)_k$-Det.

Proof. (\rightarrow). Let ψ be a $(\Sigma^0_2)_k$-formula and G^*_ψ the infinite game over \mathbb{N}^ω associated with ψ. We explain how to turn G^*_ψ to a $(\Sigma^0_2)_{k+1}$-game over $2^{\mathbb{N}}$, which will be denoted G^*_ψ. The idea is the following: In G^*_ψ, I starts by playing n_0 0's, then plays 1. Then, II plays n_1 1's and plays 0 and so on. We need to avoid some trivial situation. For instance, player I must not play 0's consecutively for ever. He must
stop after playing finitely may 0's to give II a chance to play. This will make G^*_{ψ} a $(\Sigma^0_k)_{k+1}$-game and hence determinate by our assumption. On the other hand the player who wins G^*_{ψ} can win G_{ψ}, which completes the proof of the first direction.

The direction (→) can be proved by using the inductive definition of a combination of $k \Sigma^1_1$-operators, which is equivalent to $(\Sigma^0_k)_{k+1}$-Det by [6]. □

参考文献