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Abstract

Integral means inequalities with coefficients inequalities of certain analytic
functions for the fractional derivatives and the fractional integral are determind
by means of the subordination theorem. Relevant connections with known in-
tegral means with coefficients inequalities of analytic functions are also pointed
out.
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1. Introduction

Let A, denote the class of functions f(z) normalized by

flz)=z+ f_: a2 (neN={1,2,3 ---1) (1.1)
k=n+1

which are analytic in the open unit disk U= {z € C: |z] < 1}.
Let p(z) denote the analytic function in U defined by
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™"
p(2)=z+ Z bejst1 2 (jZn+1Ln€N). (1.2)

8=1

In this paper, we shall discuss the integral means inequalities of f () in A, and
p(z) of the form (1.2) for the fractional derivative and the fractional integral.

In this chapter, we introduce our last work for the integral means inequalities. First,
we need the concept of subordination for our investigation. For analytic functions f(z)
and g(z) in U, we say that the function f(z) is subordinate to g(z) in U if there exists an
analytic function w(z) with w(0) = 0 and |w(2)| < 1 (2 € U) such that f(z) = g(w(2)).
We denote this subordination by f(z) < g{2).

In 1925, Littlewood[2] proved the following subordination theorem, which is re-
quired for our investigation.

Theorem 1.1([2]). If f(2) and g(z) are analytic in U with f(z) < g(z) (z € U),
then for u >0 and z =1e?(0 < r < 1),

2 2
[ irapan < j o) db.

Making use of Theorem 1.1, Silverman|3] proved the following theorem for analytic
and univalent functions with negative coefficients.

Theorem 1.2([3]). Let

== 3t (@020

n==2

be analytic and univalent in U. Then, for z =re(0 <r < 1) and p >0,

/027: lf(f’?w)ludﬂ < ‘/:" lf2 (Teie)]l"d97

where fo(z) =z — 22/2.
We need the following Lemma.
Lemma 1.1([6]). Let Pn(l) denote the polynominal of degree m{m 2 2) of the
form
Pty =™ —pt™ — - — Cm-it: —Cpt —d (t Z0)
where ¢(i = 1,2,---,m) are arbitrary positive constant and d 2 0. Then Pn(t) has

unique solution for t > 0. If we denote the solution by to, Pr{t) < 0 for 0 <t <t
and Ppn(t) > 0 for t > ts.

Owa and Sekine[4] discussed the integral means with coefficients inequalities for the
analytic functions f(z) in A, and p(2) in the case where m=2 and 3.



Recently, Sekine, Owa and Yamakawa[6] proved the integral means inequalities of
the analytic functions f(z) in A, and p{z){(m 2 2). That is, applying Theorem 1.1 by
Littlewood[2] and Lemma 1.1 of [6] above, we obtained the following results.

Theorem 1.3([8]). Let the functions f(z) € A, and p(z)(m 2 2) satisfy

o0 m—1
Z Iak[ g ‘bmj-m+1; - Z Ibsj—-s-i-l[
k=n+1 s=1

with

me1

,bmj'—mﬁ—li > Z [bsj—s+ll =

§2=1

If there exists an analytic function w(z) in U defined by
m ) =] -
D boieeri{w(} 9V = 3 @t =0,
s=1 k=n+1

then for p >0 and z =re?® (0 <r < 1),

874 27
] F(2)de < ] Ip(2)db. (1.3)
4] 0

Further, by applying the Hélder inequality to the right hand side of the inequality
(1.3) in Theorem 1.3, we proved the following integral mean inequality.

Corollary 1.1([6]). If the functions f(z) € A, and p(z)(m 2 2) satisfy the condi-
tions in Theorem 1.3, then for 0< p S 2 and z =re? (0 < 7 < 1),

g=1

&
m Z
< 2r (1 +y [bsj_,+1|2) .

=1

&
2 m K
[ isere < o (1+szsj-sﬂa%w-n)
0

‘We obtained the integral means for the first derivative.
Theorem 1.4([6]). Let the functions f(z) € An and p(z){m 2 2) satisfy

o0 m—~1
> klak] S (mf ~m+ )lbmjomir| = > (55 = 5+ 1)lbsj—srl
k=n+1 _ s=1

with o

(mj — m + 1) brjomia| > D (85 — 8+ Dlbsjotal.

s=1
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If there exists an analytic function w(z) in U defined by

S (57 — 5+ Dbyjoors ({200 = 3 kot =0,

a=1 k=n-+1

then for > 0 and z =re® (0 <r < 1),
2 2
[Cireras [T werae

In the same way with Corollary 1.1, we obtained the integral mean inequality for
f'(z).

Corollary 1.2([6]). If the functions f(2) € A, and p(z)(m 2 2) satisfy the
conditions in Theorem 1.4, then for 0 < p <2 and z=re? (0 <1 < 1),

74 m %
/2 [f'(2)|#d0 < 2mr* (1 + Z(Sj — s+ 1)glbsj*s+1]21‘2’(""1_})
0

s=1

< or (1 + E(sj -5+ 1)2|bsj-—s+l'2)

s=1

B
2

2. Integral Means for Fractional Calculus

We shall recall the following defiuitions of fractional calculus—that is, fractional
integral and fractional derivative—by Owal3] (see also Srivastava and Owa[9]).

Definition 2.1([8]). The fractional integral of order A is defined, for a function
f(2), by

D;Af (2) = )\)] (z f(g))l..)‘ (A>0),

where the function f(z) is analytic in a szmply—connected Tegwn of the complex z-
plane containing the origin and the multiplicity of (z — ¢ ) is removed by requiring
log (z — ¢) to be real when z — ¢ > 0.

Definition 2.2([3]). The fractional derivative of order X is defined, for a function
f(2), by .

D} (2) = ~d¢ (0SA<1),

)\) aiz/ (z_g)

where the function f (z) is constrained, and the multiplicity of (2 — O)™ is removed,
as in Definition 2.1 above.



Definition 2.3([3]). Under the hypotheses of Definition 2.2, the fractional deriva-
tive of order n + X is defined, for a function f(z), by

DM () = ;li“;—pgf(z) (O<A<1L neNy:=NU{o}).

By virtue of the Definitions 2.1, 2.2 and 2.3, we have

ax_ Dk+1) Jras)
D%z MF(k+/\+1) (keN, A>0), (2.1)
D}7* = LEED s (keN, 0 X<1) (2.2)

A I W
and
DEAk = a? Ll I'k+1) )

T dn T T{k—g-A+1)
(geNy, keN, 0SS A<l ¢gSkforA=0). (2.3)

Applying the formulas of the fractional derivatives and fractional integral above,
Kim and Choi[l], Sckine, Tsurumi and Srivastaval7], and Owa ct al.[5] investigated
some interesting properties for integral means of analytic functions for fractional cal-
culus.

First, we have the following integral means for the fractional derivative.

Theorem 2.1 .

Let f(z) € A, and p(2)(m 2 2) be given by (1.1). Suppose that

3 I'(k+1)
kg,;l C(E+1-—q—X) lay|
T2-g-v) T (m(G —1)+2)
s IT'(2-g- M) X{ Tm(G —1)+2—-q—v)| bt 41]

Ps(f-1)+2)
Z i[‘ _1)+2 q— y)“bs(j~1)+1§}

with
S TG-1)+2) e
Z L(s(f—-1)+2—q—v)| s(ji—1)+1

=]
< F(m(j —1)+2) i1
C(m(j-1)+2—g~v)|"™"
(geNg, 08X\, v<l; g1, forw=0, j2n+1; neN). (24)
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If there ezists an analytic function w(z) in U defined by

TR

_ s D@-g= PG+ i (a5)
k___zn; Thti—g—n = '

then for z =re®(0 <r < 1) and 4> 0,
02 —qg-v) /2” _ M
q+A “ v—A "gtv,
/ |DIFAf (2)|" o ‘-———-——-————-—P(z Y |22 Dgtp (2)|" db.

Proof. By means of the fractional derivative formula (2.3), we find from (1.1) that

¢ ZimaA = I(2—-g¢—-ATk+1)
DI (@) =gy A)GAQEQI Moy ™ )'

Also, by using the fractional derivative formula (2.3) for (1.2), we obtain

l—q—v

o+v I'(2— Q—V)I‘(S(J-l)+2} $(im
Dz+ p(l) F(Q q— 1} (1 + Z F( (,7 - l) T 92— q- V) 5(9—1)+lz Y l)) .

Thus we have

F'2-q-v)
r—-g- )s)

P (2-g—-v)(s(—1)+1 .
(1+Z =G =D+, Gy )

u-)\ Dq+ ( Z)

T TE2-q—N T(—1)+2-q-v)

For z = re®® and 0 < r < 1, we must show that

I

m
de

14 3 TR-a- NG

CES ey

]
g (u>0).

k=nt1
['(2—q-v)l(s(j "1)+2) -
< 2 (G~1)
/ 1+ I s-D+2-g—v) R

By applying Theorem 1.1, it would suffice to show that

Fr2—-¢-Ark+1)
1+ ot
kzﬂ Th+log—n)

<14y P(ﬁ(sg = grfz(] ;1) +>2) bog-11207Y. (26)

s=1



Let us define the function w(z) by

= I(2—g—ANI(k+1)
D D o i R

k=nt1

=14 Z r(?‘( é - ’;)IISZ(J ql) +)2)b G-1y41 {w(z)}s(j—-l) . (27)

Thus, it follows that

oy F IO, e o

Therefore, if there exists an analytic functions w(z) which satisfies the equality (2.5),
we have an analytic function w(z) in U such that w(0) = 0.

Further, we prove that the analytic function w(z) satisfies {w(2)| < 1(z € U) for
(2.5). From the equality (2.7), we know that

R P

T@2—g-A)Tk+1) —
3 TETog- N %

02 —q— ATk +1)
z ]F(k-l*—l q_/\)!‘ iak] (28)

s=1

k=n+1

k=nt1

for z € U, so that
iri(l%(-’;n%].——yil)r-}(-wé(i; }_):;1 2) ibm(ﬁ—l)-i'l { %{’&U(z) }m(j-—l} t
- i F(Iz’ (;(3t - 132(52(]—:11_) :—)2) byg-1y+1 {w(z)

r2-q- A)ir(k+1)
- Z Tk +1—g— M) jae] <

}5(1'—1)

g=1

k=n+1
for z € U. _
Putting ¢ = jw(z) =1 (t 2 0), we define the polynomial Q(¢) of degree m by
(t) — lr(g —q— V)[F(m(J - 1) +2)
IT(m(j ~ 1) +2 - ¢ — )]

Q2 —g-v)T(si— 1) +2)
*Z TG —1)+2-q—v)]

{bimgg—1)41[E™

ba(i-1y41it®

_ 3 Pe-g - NNkED,

W P(k+1—g—N)]
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By means of Lemma 1.1, if @(1) 2 0, we have ¢ < 1 for Q(t) < 0. Hence for {w(z)| <
1 (z € U), we need the following inequality

F2-g—v)Il(m{—-1)+2)

-1 .
T2-g—w)|(s(-1)+2)
- Z IT'(s(j — D +2—q—v) lbs(:i—l)H[
T'2-qg-NI(k+1)
kz;rl Thiiog—y 20
that is,
s Ik +1)
2 Trr1—g W@

k=n+1

A

L'2-q- V)fx L(m{j—1)+2) b [
T2 -gq~A) (I‘(m(j—l)-;-g_q__l,)l m{j—1)+1

T(s{j —1) +2)
B 2; T(sG-1)+2—¢q—v) ib“("“l)“]}

Therefore the subordination in (2.6) holds true, and this evidently completes the
proof of Theorem 2.1.

In case of m = 1, see Owa et al.[5], and Owa and Skine[4] for m = 2 and 3.

Remark 2.1.

If g=0and A = v =0 in Theorem 2.1, we have Theorem 1.3. Also, when ¢ = 1
and A = v = 0 in Theorem 2.1, Theorem 2.1 coincides with Theorem 1.4.

Putting » = X in Theorem 2.1, we have the integral means for the fractional deriva-
tive of order ¢+ A.

Corollary 2.1,  Let f(z) € A, and p(z)(m 2 2) be given by (1.1). Supposed that

Lk+1)
k;1|r E+1—g— ,\)[l %

Lm 1) +2) 2 T(sG-1)+2)
g 111(?71'0 _ 1) +9— q- A)il M(J—l)'f-ll Z Ir(b j _ 1) T q— A)l ]bs(;}—l)—klf

with

s = 1) +2) I (m(j ~1) +2)
Z TGEG—D+2—q- N [ba(i-ty41] < TmG -1 F2—q- A)[Ibm(j“”“t

=1
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(geNy), 05 A< ¢S nt+l for A=0, j Z n+l; neN).
If there exists an analytic function w(z) in U defined by

3 P(S(J~1)+2) s(3~ . F{k-{-l) -1
zr G-D*2-g-n 0" IO k§1f(k+1-—q N a2 =0,

then for z=re®(0<r < 1) and p >0,

27 2
/ |DEFAf ()M do £ / |DTp (2)]" de. (2.9
0 i

Applying the Hoélder inequality to the right hand side of the ineguality (2.9) in
Corollary 2.1, we obtain the following integral mean inequality.

Corollary 2.2. If the functions f(z) € A, and p(z)(m 2 2) satisfy the conditions
in Corollary 2.1, then for 0 < p < 2 and
z=re?(0<r<l),

/27r |DTH f(2)|" do
0

&
oy i—a—Nu T2-g¢g-AT(s-1)+2) 25(j~1
. r““““"‘r<2-q-/\>w( Z IR ET R ))

S — T@-g-NIGG-1+2),  )°
< TE-q- NP (”Z RO P Ry zbwﬂl)

(geN, 0SA<1; g8 1 forA=0;j2n+1 neN).
Proof. Since, '

2
/ | DI p(2)do
g

=/02”

Making use of the inequality of Holder for 0 < p < 2, we obtain that

fo " [DIPAp(2)|#do < ( fo - ( “)%ﬁ d@) N
) { [ ( . Z TR-g-NMEG-1+2, g

”

ds.

zl—-q—A ¢

A s{j—1)
T2—g¢g—A)

M'2-qg—-M{s(j ~1)+2)
HZ TG T2-q-X) o’

zl-q~A

F2-~¢-X

wofe

si—~D+2—g~A) bug-1y412

¥l
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fud '3
z

(=g=X)2u e
_ r_m / dﬂ)
(ir(z—qw\}lz“"l"ﬂ 0

P2—-g-—AM(s(j —1)+2)
1+Z TG -1)+2—g-)) b33

x(/

2 &
de)
= ( 2rr g )?—;—&
IL(2—g- )% .
= [I‘(2 —-q~- )\)]F(s(j - 1) + 2) 2s(—1 ’
” {% (1 D Ph ey ey LT | ))}

oqp(i-a-N D2 ~—g—A)T(s(j ~1)+2) 2 20051
m ( Z }F(s(j —1)+2-gq~ Y] 3bs(j—1)+1[ r2 ))

2m (1 N Z IP@—g— NG -1)+2) ibs(j.—lmgz) 4
g=1

o

STE-q= NP TG —1)+2~g— N

It is easy to show the case of y = 2. This comples the proof of Corollary 2.2.

Remark 2.2.
If we put ¢ = 0 and A = 0 in Corollary 2.2, we have Corollary 1.1. Also, when
g =1 and A = 0 in Corollary 2.2, Corollary 2.2 coincides with Corollary 1.2.

Lastly, by means of the fractional formulas (2.1), (2.2) and (2.3), replacing A by
XA > 0), v by —v{v > 0), and ¢ by —g{g € Ny) in Theorem 2.1, we have the
following integral means inequality for the fractional integral.

Theorem 2.2.  Let f(2) € A, and p(z)(m 2 2) be given by (1.1). Supposed that

= I(k+1)
2 NCESErESIL

k=n+1
< I‘(2+q+u)x{ T(m{j — 1) +2)

= F(Z + g+ ,\) I"(m(j - 1) +2+q+ V) |bm(j-1)+1|

= TG —1)+2)

Z T(s(j—1)+2+g+ u)l ”U‘”Hl}

8=1

with

O T(s(i—1)+2) T(m{j-1)+2)
Z F(S(] - 1) 4+ 2 + q+ ”) !bs(j—I)*H] < F(m(] — 1) T 2 T p T V)lbm(j_l)Jrl]

(geNg, 0< A v<1).
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If there exists an analytic function w(z) in U defined by

m r s ,
> (i‘;;(g i 31;(820+ qiz j)Z) -t {w()} 0

s=1

o i": F(2+q+A)r(k+1)a e
Th+1+q+X) ©

={,
k=n+1

then for z=re®(0<r < 1) and u > 0,

/27r }D;(9+}‘)_f (z)’p-da < lI‘(2+q+ V)
4]

2
| rhAp—{gty) B
< lfor| [ i s@pas.
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