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1 Introduction

For the ideal SA/ of strongly measure zero subsets of the real line, the cardinal coefficients
have been studied[1]. But its cofinality had not been studied. In general, it may be larger
than the continuum. Yorioka studied its cofinality(see [2]). One of his results is that the value
of cof (SA) is equal to the dominating number for w1t under the continuum hypothesis. In
the process, he introdused ideals Zs for f € w*. These ideals were used in the proof. We
are interested in the ideals T; themselves. These ideals are subideals of the null ideal A and
include SN. The properties of these ideals depend on f.

In this paper, we discuss the following contents. In section 3, we show a characterization
of cov(Zs) > b. In section 4, we define a forcing notion which has the countable chain condi-
tion. And with the results of section 3 we show that its wo-stage finite support iteration by
bookkeeping method lifts up cov(Z;) from a ground model with the continuum hypothesis. In
section 5, we introduce a sufficient condition not to lift up cov(Zy) for forcing notions which

satisfy axiom A.

2 Definitions and notation

Throughout this paper, we use the standard terminology for forcing of set theory and
cardinal coefficients (see[1]). We regard the set of all reals as the Cantor set 2“. We denote by
M and N the set of all meager subsets of 2 and the set of all null subsets of 2 respectively.

For functions f, g in w* we write “f < ¢” to mean that g dominates f everywhere, that is,
f(n) < g(n) for all n < w. And we let “f <* g” mean that g eventually dominates f, that is,
there exists an n < w such that f(m) < g(m) holds for all m < w larger than n. We denote by
S the set of all non-decreasing functions d in w* which diverges to infinity and d(0) = 0. We
denote by C and D the Cohen forcing notion and the dominating forcing notion respectively]l].
For each ideal (or family if there is not a problem in particular) Z on 2 which contains all

singletons, we denote by add(Z), cov(Z), non{Z) and cof(Z ) the additivity, covering number,
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uniformity and cofinality of Z respectively which means that:

add(Z) =min { [A| | ACIUAZT},

cov(I)=min{ |4 | ACI{ JA =27},

non(Z) =min{ Y] |Y C2°Y ¢ T},
cof(Z)=min{|A| | ACIVBeZT 3Ac A (BC A)}.

W e

We have that add(Z) < cov(Z) < cof(Z) and add(Z) < non(Z) < cof(Z) for each ideal or family
7 on 2¥ which contains all singletons.
We define some notation before we define the ideals Zf and Ky.

Definition 2.1 Let f, g be functions in w®.

1. We define the order “€” on w* by
f< g iff Yk <w 3N <w Vn > N (f(n*) < g(n)),

2. We define the order “«” on w¥ by
g (n) =lo(n)| foraln<w,

3. For g € (2<%)¥, define the subset Y(o) C 29 by
Y{o) = n U {o(m)], where [s]|={z€2¥ |sCa } for each s € 2<¥,

n<wm>n

Define the subsets S(f), T(f) and U(f) of (2<%)* by

8(f)y = {oe(@) |g>f},
() {oe(@) le.=1}.

Definition 2.2 Let f € w¥. Define the families Iy, Jy and Ky on 2% by

T; = {XC2|30eS8(f) X CY(o)},
I = {XC2|3oeT(f) XCY@)}.

The following definiton is not necessary for the definition of ideal Zy. But it is the very

useful.

Definition 2.3 Let f € w®. For each d € S, we define the functions g‘(if ) and h‘(if ) e by
0 (n) = F(n*+?) if n € [d(k), d(k + 1))

for all n < w, respectively. Ifgew” isg= gfij ) for some d € w'¥, then we say “g is generated

by d (and f) for <.



3 cov(Zy) , cov(Js) and bouding number b

In this section, we show that the ideal Z; and the family J; are related to bounding
number b intimately. For each d € S, géf ) > f holds where g,(iJr ) was introdused in chapter 2.
In addition, for each g 3> f there exists a d € 5 by the definitions of g‘(if ) and < such that
o) <* g. Therefore, the following hold.

Lemma 3.1 For each family F C w* such that |F| < b and Vg € F (g > f), there exzists
d eSS such thatVge F (gﬂ(,f) <* g).

Proof of Lemma3.1  Let F C w“ satisfy Vg € F (g > f) and |F| < b. For each g € F,
there exists dy € S such that gg ) < g. Since | F| < b, the family { dy | g € F} is bounded family
inw®. So there exists d € S which dominates for all functionsin {dy [g€ F}. O(Lemma3.1)

Lemma 3.2 There exists a family F C w* such that |F| = b and Vg € F (9 > [) and
Yh>> fRge F (h £* g).

Proof of Lemma3.2  Take a unbounded family B C S. Then a family { gg‘f ) |de B} is
as desired.
O{Lemma3.2)

For alld € S, cov(Z;) < cov(Jggf)) holds by Zy = gf Ty = dgjggn. By this, if cov(Zy) is
g
larger than b, then cov(Jg( 1) is larger than b for all d € S. The inverse holds.
d

Theorem 3.1 cov(Z;)} > b iff cov(.jfg(f)) >b foralldeS.
d

Proof of Theorem3.1 —: As above.

&=: Assume cov(Z) < b. There exists a family F such that |F| = cov(Zy) < b and UF = 2.
For each X € F, there exists ox such that X C Y{ox). By Lemma3.1, there exists d € S such
that VX € F gfif) <* goy. For each X € F, define 7x € T(ggf)) by 7x(n) = ox(n) [g,(if)(n).
Then a family { Y{rx) | X € F} C jggf) covers 2. O(Theorem3.1)

However, it is easily proved that cov(Zs) > b is independent from ZFC. cov(Zy) = wy and
b = ¢ hold in a generic model which is obtained by a forcing notion satisfying Laver property
from a ground model with the continuum hypothesis. Also cov(Zy) = b = w; holds in a generic
model which is obtained by the Cohen forcing notion of any weight from a ground model with

continuum hypethesis.

4 The forcing notion P(d) for d € S and cov(Z;) and non(Zy)

In this section, we discuss the covering number and the uniformity of ideal Zs in the model
obtained by a certain itaration of the forcing notion P(d). We define the forcing notion P(d)
ford €S.
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Definition 4.1 Let d € S. Define the forcing notion P(d) by
<w
p@) = { (o F) € 29 x [16)] ™ 1l = 10D |,

(s, F)< (¢, F')
<> 1.sD5§F>OF
2.Yo € F' V¥n e |[F|\|F'| [s][f(n), fin+1)) #o(n+)I[f(n), f(rn+1))].

Lemma 4.1 For all d € S, the forcing notion P(d) is o-linked. So it has the countable chain

condition.

Proof of Lemmad.l1  Since g,(if )(n +1) - gfif )(n) > n for all n < w, holds that V(s, F) €
<
P@VF € [T(e{)] 3¢ By < (s, F) (H=FUF).
Let N<wand g = g((if). For each t € 29M) 4 ¢ HnE{N,2N) [29("“)‘9(")] SN, define a
subset By of P{d) by
Biy={(s, F)eP(d) |s =t = ({a(n+1){[g(n), g(n+1)) lo € F} |n e [|F|, 2|F])) }.
Clearly P(d) = U< U { By, y 1 te29Wy g nevam [29(n+1)-9(m)] =N } We show that
forall N < w, t € 29N and o € Hne[N,2 N) [29(”+1)"9(“)]SN, any two distinct conditions in
B, ,; are compatible. Let (s, F), (s, F') be in B,y and (s, F) # (s/, F’). By the definition
Of Bt,'d)a
s=¢=t|F|=|F|=N
{({o(n+1Dllgn), g(n+1)) |o € F} [nelF|, 2{F))
= {{o(n+1)g(n), g(n+1)) l ce F'} ] ne []F"[, 2{F"l)> = 1.
There exists (v, H) < (s, F) such that H = FU F'. Clealy |F'| < |H| < 2N. To prove
(u, H) < (&', F'), let o € F' and n € [H{\|F'|. Since (u, H) < (s, F), ul{g(n), g{n+ 1)) 5
7(n + 1)[[g(n), g(n + 1)) for all r € F, that is, ul[g(n), g(n + 1)) & ¥(n).

But a(n + 1)1{g(n), g(n+ 1)) € ¢(n).
Therefore ul{g(n), g(n+ 1)) # o(n+1)f[g(n), g(n+1)). O(Lemmad.1)

Foreachd€ S, o € T(géf )) and n < w, define the subsets D,, E, C P(d) as follows:

D,
En

{(s, FeP(d) jo € F },
{(s, F)eB(d) ||F|=2n}.

Lemma 4.2 Foralls €S, o € T(géf }) and n < w, the subsets D, and E, are dense open
sets in P(d). ‘

- Proof of Lemma4.2 LetoceT (ggf}), n < w and (s, F) € P(d). Take F' C T(gy )) such

that ¢ € F' and |F| > n. There exists (¢, H) < (s, F) suth that H = FU F’. Since o € H
and [H{ > n, (i, HY € Dy and (¢, H) € E,. O(Lemmad.2)



We are interested in the generic model of P(d). Let d € S and G be the canonical generic
P(d)-name. Define P(d)-name ag by

) b = U{s l 3IF (s, F) ec’:} € 2.
Lemma 4.3 For alld €S, rp(g) Yo € T(g{) NV (a5 & Y(0)).

Proof of Lemmad.3 Letd€S, o€ T(ggf )) and (s, F) € P(d). By Lemmad.2, there exists
(s', F') € (s, F) such that o € F'. To prove that (&', F') Irpg) o(n) & ag for all n > |F'|,
let n > |F'|. By Lemmad.2, there exists (s”, F”) < (¢, F') such that [F"| > n. Then
(8", F"} Irp(gy “ 8" C dés”f[gfif){n - 1), gz(if)(n)) # a(n)f[g‘(lf)(n -1}, g((if)(n)) . Therefore
(8", F") Irpggy o(n) & - D(Lemmad.3)

Lemma 4.4 Foralld €S, "']p(d) ¥NVe .79(;).
d

Proof of Lemmad4.4  This is directly followed from the fact that P(d) adds Cohen reals in
H 294 (™) O(Lemmad.4)
n<w

To define a finite support iteration of P(d), let & be an uncountable reguler cardinal and =
be a bijection from x onto & X x such that if 7{a} = (§, v) then 8 < a for all @ < . Let mp
and 71 be the first and second coordinate of the value of  respectively.

Assume the continuum hypothesis. We define P, by s-stage finite support iteration
< P, Qo la< n> as follows:

Assume that P and the Ps-names dg for £ < k withikg « ( d? 1€ < ;-z> be an enumeration of 5”
A
are defined for all 3 < a in a~stage. Define lFg Qg ~ P (d""(") *=D.

my (o)
Theorem 4.1 {CH) IFp_c=b=rAVYdeS cov(Jg(g)) =¢.
d
Therefore, it holds that IFp, cov(Zf) = ¢ by theoremd.1.

Proof of Theorem4.l  Clearly c = b = & in V[Gy]. Let d € S, A < ¢ and a family
{Xsld<A}cC Jg‘(!;) in V[G,]. There exists & < s such that X is coded by o5 € T(ggf)) for
each 6 < ) in V[Gg). By Lemmad.3, {Y(o5) |6 < A} does not cover 2¢ in V[Ga+1]. Hence
{ X5 | § < A} does not cover 2 in V[G,]. O(Theorem4.1)

Theorem 4.2 (CH) Irp,, non(Zs) =«

Proof of Theoremd.2  Clearly by Lemmad.4. O(Theorem4.2)
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5 Property E and cov(Zy) = w;

In this section, we introduce a certain property for forcing notions which satisfy axiom A.
A forcing notion with this property does not add a real which is not covered by all elements
of 8(f) in ground model. This property is preserved in an iterated forcing. So the countable
support iteration of forcing notions with this property does not lift up cov(Zy). For example,

the infinitely equal forcing notion EE satisfies this property.

Definition 5.1 Let forcing notion P satisfy aziom A by the fusion orders { <, [n<w). P
has property E if there exists @ € wF*Y such that

(1) forallpe Pandn<w, ifplkpa €V then
there exist ¢ <, p and @ finite set B such that |B| < o(p,n) and glp & € B,
(2) for allp,qg € P and n < w, if ¢ <,, p then ¢(g,n) = p(p,n).

Lemma 5.1 Suppose that the axiom A forcing notion P has property E.
Thenlkp “2° CU{Y(r) |7 € T(g) NV} for all strictly increasing function g € w*”. There-
fore, Ibp “2 C | J{Y(r) |7 e S(/)NV}".

Proof of Lemma5.1 Let p € P satisfy p Ibp & € 2% and g € w¥ be strictly increas-
ing. By induction on j < w, define three sequences (p; € P |j <w), (m; <w |j <w) and
{4; |7 <w) as follows:

(i) p=p,
(#) pj+1 < pj,
(1) my; = Zcp(p,-,i),
i<j
(iv) Aj C 290miteleid)),
W) 145 < o(p;, ),
(‘Ui) Pi+1 II—P z rg(mj + ‘P(pjsj)) € Aj,

for all § < w. For each j < w, let { 3{ [ < o(pj, ])} be a enumration of A;. There exists
g € P such that Vj <w ¢ <; p;.

We define o € (2<%)* by for each n < w, o(n) = sf lg(n) where n = m; + 1. To prove
that ¢ IFp & € Y(0), let n < w. There exists j < w such that m; 2 n. Since g Fp
&[(mj + (pj, 5)) € A;, there exist ¢’ < gand ! < p(p;, 7) such that ¢ Ip & (mj + ¢(p;, 5)) =
s‘f > o(my+1). T(Lemma5.1)

Let 6 < wsg. Let Ps = < Py, Qa la<d > be a é-stage countable support iteration such that
(o is defined by the forcing notion with property E for all @ < 8. For n < w and F € [8]<~,
p € Py is (n, F)-good if there exists & € w¥ such that ply Fy G4(p(¥)sn) < h{y) forally e F
where ¢ is P,-name for the function ¢ appeared in the definition of property E for Q'q,.



Lemma 5.2 Let § < wy. For alln < w and F € [8]<, the set {p€ Ps |pis (n, F)-good }
is {n, F)-dense open in Ps.

Proof of Lemma5.2 Since the property E implies the strongly w“-bounding, we can prove

easily by induction on § < ws. O(Lemma5.2)

By the lemma above, we may suppose only the condition that is (n, F)-good. For each
n<w, F € [6]< and p with (n, F)-good, define hpn,r € w¥ by

(a) plv Iy B4 (p(7),n) < hpn,r(y) forall y € F,
(b) if ¢ < 5 p then hgpn p(7) < hpnp(y) forally € F.

Lemma 5.3 Let § < wy. There exists g5 € wh xwx(8 syuch that

(1) for all n < w, F € [8]* and p with (n, F)-good, if plks a € V then
there exist ¢ <n r p and a finite set B such that |B| < @5(p,n, F) and gl-5 a € B,
(2) fO’I‘ all P, g€ P5; n<wand F € [5]<w’ Zf‘l Sn,FP then [ﬁ&(q7n$F) < ﬁJ(psn3F}'

Proof of Lemma5.3  We prove by induction on & < wy. For each n <w, F € [§]*“ and p
with (n, F)-good, we define ¢5(p, n, F) as follows:
Case 1 : § is limit ordinal.

Let o = max(F)+1. Then F C a. By induction hypothesis, there exists @5 € whaxwx(el™
such that (1) and (2). So we define @s(p,n, F) by ga(pla,n, F).

We show that (1) and (2). (1): Let p € Ps, n < w and F € [§]*” satisfy p ks 6 € V.
Suppose a = max(F) + 1. Since pla Ik, “be Vie PyflFasa= b for some P,-name b and
f, there exist 7 <, r pla, finite set B and g € Pys such that {B| < Galpla,n, Fy = gs{p,n, F)
andrlF, “be BAf=g". Let g=7Ug. Theng<p,rpandqlrsa€B.

(2 Letpge Ps,n<wand F € [8]<“ satisfy ¢ <n,r ¢. Suppose a = max(F) + 1. Then
since gla <nr pla,

@6((13'”’ F) = (ﬁa(ﬂa,"l,F)
Sﬁa(pTa7n$ F)
¢s(p,n, F)

IA

Case2: d=v+1.
In the case of F C vy, we define in the same way as the case of that d is limit ordinal.
Suppose v € F.

By induction hypothesis, there exists ¢ such that for all p’ € Py, n’ < w and F e [y, if
ply Ik, & € V, there exist 7 < rny p’ and B such that |B] < éy(plv,n,FNy)andri-y a € B.
So we define F5(p,n, F') by &y(piv,n, F 0 ) - hpn,r(7)-

We show that (1) and (2). (1): Let n < w, F € [§]< and p with (n, F)-good. In
tha case of F C v, we can show in the same way as the case of that ¢ is limit ordinal.
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Assume v € F. Also there exist P,-names ¢ and B such that p[v by “¢ <n p(7) A BcC
VA IB < Gylplvhn) Ag kg € B». By pis (n, F)-good, plv is (n, FNv)-good and
ply Iy 1'3{ < Gy(p(7),n) < hpn (7). Let <5j lj<h, ,n,p(fy)> be a sequence of Py-names for
a enumeration of B. That is plvy Iy {l}j 7 < hp,n’p} =BcCV. By induction on j < by F,
we construct two sequences (1 | § < hpn ) and { Bj | j < hpn r) such that (let 7y = p[7)

(@) rj LpFry -1 for all j < b A.F (1)
(8) 1Bl < &y(rj-1,n FNy) < Gy Py, F N7) for § < by,
(c) 4y b; € Bj for all § < hpp F

Let ¢ = 74, , piy)-1 Y {(7: @)} and B=U{ B; |j < hpn,r(7)}. Clearly g¢lks @ € B and

Bl < > Bl

J<hpn,P

Z (P:,'(pf’)/,ﬂ,Fn')’)

j<hp,n,.F‘
‘ﬁv(pr‘ﬁny Fn 7) : hp,n,F('Y)

Gs(pm, F).

(2): Let n < w, F € [§]<“ and p, q satisfy (n, F)-good and g < r p. In the case of F C v,

IA

we can show in the same way as the case of that § is limit ordinal. Suppose v € F. Then

it

Polglr,n, F Q) - hgnr(7)
95’)'(?{71 7, F n 7) ' hp,n,F(’T)
‘ﬁ&(p» n>F)‘

és(g,n, F)

IA

O(Lemma5.3)

Theorem 5.1 fp, 2¥ C U{Y(r) |7 € T(g) NV}, for all strictly increasing function g €
w". therefore, -p,, 2¥ CU{Y(7) [T € S(f)nV}

Proof of Theorem5.1 By Lemmab.3, we can show in the same way as Lemma5.1.
O(Theorem5.1)

Corollary 5.4 (CH) Irp,, “cov(Zf) = cov(Jy) = wy” for all strictly increasing function
g €W,
6 The diagram of cardinal coefficients of Z;

In this section, we give the resuls for the cardinal coefficients of ideal Z5 of the forcing
notions that we studied. Let x be a uncountable regular cardinal. We express the parts which

we do not yet understand in ‘?°.



forcing notions {add |cov|non|cof | b | D | ¢
O(f)«x clc|clclclclk

P. Tlelc|lc|?7]?k

Cs wilwi | ¢l elw] elk
Esz Wi | W1 ¢ C (W1 |W1|Wo
Suwy wi lwy | w | wy | w|wg |we

O(f)x: the k-stage finite support iteration of the forcing notion O(f) introduced by T.Yorioka,
P, : the x-stage finite support iteration of the forcing notion P(d) by bookkeeping method,
C,. : the Cohen forcing notion which adds & many Cohen reals,
EE,, : the wy-stage countable support iteration of the infinitely equal forcing notion,

{the infinitely equal forcing notion has property E),

Su, : the we-stage countable support iteration of the Sacks forcing notion.
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