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P2="t and other variations
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1 Introduction of P, variations

P,.,. has been introduced by W. Hugh Woodin who says that in [11], Prga
forces the canonical model of the negation of the Continuum Hypothesis CH
over L(R) with some large cardinal assumptions, e.g. ADEY® or there are
infinitely many Woodin cardinals with the measurable cardinal above. Under
suitable large cardinal assumptions (in this paper, I abbreviate this to LC),
P, ... generically adds, over L(R), a directed system of countable transitive
models of ZFC (or its fragments) whose limit restricted to H (wg) (in this
extension) is the whole H(w;), and Py, forces that the nonstationary ideal
NS, on w is saturated. One of the important facts on P, is absoluteness
of TI,-sentences for the structure '

(H({.U2), e, NSwl, R)

for some set R of reals in L(R) as follows:
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If a IIy-sentence for the structure (H(w;),€,NS,,,R) is Qzrc-
consistent (e.g. forceable by set-forcing over ZFC), then it is true
in (H(ws), €, NS,,, R) in the extension with P, over L(R) with
LC.

(Under LC (e.g. there exist proper class many Woodin cardinals), every set
of reals in L(R) is universally Baire, and weakly homogeneously Suslin (see
e.g. [5]). R is considered as an interpretation of its universally Baire set of
reals in each universe. For more historical and technical remarks on Py,
see [11, 7, 1].)

In [11], Woodin studied not only Pp,, but also conditional variations
of P for e.g. Suslin trees and the Borel Conjecture. Ppq. variations
have been studied by several set theorists: Feng-Woodin, Larson, Larson—
Todoréevié, Shelah-Zapletal and Yorioka [3, 4, 6, 8, 10, 12]. In [10], many
variations of P,,,, for Yo-statements in the structure H(ws) on cardinal in-
variants of the reals have been investigated. We should notice that all of
them are derived from ¢. For example, the P, variation, say P32, for
the statement that the dominating number 9 in w* is N; has been studied.
It has been proved in [10, §2] that the extension with P27* over L(R) under
LC satisfies ZFC, the continuum c¢ is Ny, NS, is saturated, 0 = ®; holds, and
maximality with respect to Il,-statements in (H(ws), €, NS,,, R) for some
set R of reals in L(R), that is, under LC, the extension with P32t over L(R)
satisfies the following property, called II,-compactness in [10]:

If 9 is a I1,-sentence for the structure (H(wy), €, NS,,, R) and the
statement (H (ws), €, NS,,, B) E“0 = XN A¢p” is Qzpc-consistent,
then it is true in (H(wq), €, NS,,, R).

So this model can be considered as the canonical model of 9 = ¥;. In
[10], there are many examples and counterexamples of II,-compact state-
ments. One non-Il,-compact statement, which does not appear in [10], is
that the additivity add(M) of the meager ideal is ¥;: By Miller-Truss’s
characterization of add(M), add(M) is the minimum of the bounding num-
ber b and the covering number cov(M) of the meager ideal. However both
“By = add(M) < b” and “N; = add(M) < cov(M)” are consistent with
ZFC, and both “cov(M) > X;” and “b > R, ” are Il,-statements in the struc-
ture (H(w;), €, NS,,). (The statement that the additivity of the null ideal
is N1 is not IIr-compact either. It is known that add(N) = min{add*(N), b}.
See [2, Theorem 2.7.13.] or [9].)
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In this paper, we work in ZFC except for the definition of B¢, and the
proof of Theorem Schemes because when we force by P%,.., we always con-
sider L(R) as the ground model which never satisfies the Axiom of Choice
(by our assumption). Ppe, can be defined by various ways. One of them
is defined by use of iterable pairs. Suppose a suitable large cardinal prop-
erty, M is a countable transitive model of ZFC and I is a member of M
which is a uniform normal ideal on w;™ in M. We can take a direct system
(My,Gg,jy65:8 <7 <8 <w), called an iteration of (M,I) (of length w),
such that

o My =M,

e Ggis an Mg-generic filter of the forcing notion (P (wi™#) /jos(I )"
(or (P (wi™e) \jo,ﬁ(l))Mﬁ) for every (3 € wy,

® j, is the identity on M, for every v € wy + 1,

e Mgy, is (the transitive collapse of) the generic ultrapower of Mz by G
(if it is wellfounded, otherwise we stop the construction), and jy 441 is
the ultrapower embedding induced by G, for every v € wi, and

o if @ € w; + 1 is a limit ordinal, then M, is (the transitive collapse
of) the direct limit of the system (M., jy 67 < J < @) and j,q is the
induced embedding for every v € a.

(See [11, Definition 3.5. or Definition 4.1.] or (7, 1.2 Definition].) A pair
(M, I) as above is called iterable if all M,, v € w;, are wellfounded regardless
of the choice of generic filters G5. Woodin proved that if I is precipitous,
then (M, I) is iterable (see [11, Lemma 3.10. and Lemma 4.5.]).

In many cases, we define the Pp,,, variation ]P’ﬁm: for a ¥,-sentence ¢ in
the structure (H(w;), €, NS,,,) which is derived from . For example, ? = R;
holds, and there exists a coherent Suslin tree, etc. In [10], variations of Prmee
are defined by use of stationary tower forcing ([5]). In this paper, we adopt
a definition in [7, §10.2], however all of proofs in this paper can be applied

to any type of P¢_, variations.

Definition of P2 ([7, §10.2]) Let ¢ be a Xp-statement for the structure
(H(w,),€,NS,,), and say that ¢ forms JuVv do(u,v). Conditions of the
forcing notion P . are defined by recursion on their ranks as follows. A
triple (M, I),a,X) is a condition of Ppaq if
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1. (M, I) is an iterable pair,
2. a € H(w)™ and (H(ws), €, )™ =Y ¢o(a,v) 7, and

3. X is a member of M and a set (possibly empty) of pairs ({(N,J), b, V), 7)
such that

d ((N: J),b,,)/) € szax n H(WI)M:
e j is in M and an iteration of (N,J) of length w,™ such that
§() =105 (P (™)), j(b) = a and §(¥) € X, and

e X forms a function, i.e. for members (p,j) and (o,j’) in X, if
p=p', then j=j'

For conditions {(M,I),a,X) and {(N,J),b,Y) in P%,,., we define
(M, I),a,X) <pg ((N,J),b,Y)
if there exists j such that ({(N,J),b,Y),j) € X.

We have to note that the statement that a pair (M, I) is iterable is IT}
about a real coding (M, I), so is absolute (see e.g. [7, 1.3 Remark and 1.10
Remark]). Therefore the statement that a triple (M, ), a, X) is a condition
of P¢_ is also II}, and so is absolute. Since L(R) has every real, it also

max
has every countable transitive model. And since a condition of P¢__ can be

coded by a real, (mm)’“‘m =P¢ . If ¢ is trivial (e.g. “0 =07, or the
statement that there exists the empty set), then P?__ can be considered the
standard Ppg,. (However P2 . and P, are slightly different, see [11, §5.4,
in particular Theorem 5.40.].)

To analyze the extension by P, we need some game theoretic lemmata.
(On definitions of games G{, G2 and G2, I refer [7, §3 and §10.2].)
We define the game G¥ as follows. Suppose that (M, I),a, X) is a condi-

tion of P? ., J is a normal uniform ideal on w;. Players I and II collaborate

to build an iteration (M, Gg, jy s 8 < v < 8 < wy) of (M, I) with the follow-
ing rule: In each round o, II chooses a set A in the set P (wlM“)M‘” \ Jo.a({),
and then I chooses an (Ma, (P (wiMe) \ Jou(I ))M“)—generic filter G, with

A € G,. (To just simplify notation, we force by P(w;)\ I instead of P(w;)/I
in this paper.) After all w; many rounds have been played, I wins if
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o (H(w),€,J) E“Vv bo(Jown (@), v) .

(We should note that player IT has a strategy such that after all w; rounds
have been played whenever player II plays according to this strategy,

o jow (I) = J N M, holds.

See [11, Lemma 4.36.], [7, 2.8 Lemma, [1, Lemma 1.8].)

To show o-closedness of P? __ and define the strategic iteration lemma
for ¢, we need to define an iterable limit sequence and two games G¢ and
G¢. (On this paragraph, see [11, Chapter 4.1 and Lemma 4.43.), [7, 83
and [1, §2].) Let (p;;¢ € w) is a decreasing sequence of P? . and write p; :=
(M;, ), a3, X5). Let jiger o (Mi, ;) — (M}, I}) be an iteration witnessing
that piv1 <ps  Pi (and if p;41 = p;, then let j;;4; be the identity map)
and let {j;#;¢ < i’ < w} be the commuting family of embeddings generated
by {ji,i—ﬁ—l;i € CU}. We write j@',w;(Mi,Ii) — (NZ,J,,) for each 7 € w. Let
a = U, @ and X = U, - In most cases, a forms a witness of ¢
in every N;. (At least, every application in any present published paper,
including this paper, on P¢ . and its variations is in this case.) Then we can

show that

for each i € w, (Ny, J;) is an iterable pair,

for each i € w, N; € Niq and w ™ = w ™,

for each 7 € w, ']z'+1 N N@ == Jz',
a € H(ws)M and for each i € w, (H{ws), €, JYN =4Vbgo(a, b) 7.

We call {{(N;, Ji); 4 € w) ,a, X) a limit sequence if it is constructed as above.
For a limit sequence (((N;, J;);i € w),a, X), when an ultrafilter G on the set

UP (wlNi)Ni ~N Jz

1EwW

satisfies that for every regressive function f on wi™i in U,e, Niy fis con-
stant on some condition in @, we call it a |J {N;;¢ € w}-normal ultrafilter for
({((N;, J;); 1 € w) , a, X). Then we form the ultrapower of (s, Jy); @ € w) ,a, X)
formed from G and all functions f : w1 — N; in e, Ni- (More precisely,
see [11, Definition 4.15.].) Using this ultrapower, we define the iteration
of the sequence ({(N;, J;);i € w),a,X), and the iterability of the sequence
({(N;, Ji);i € wy ,a,X) as in the iterable pair. We note that for a limit se-
quence {({(Ny, J;);i € w) ,a, X) constructed as above,
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o {{(N;, J;);i € w),a,X) is iterable.

We define the game G¢ as follows. Suppose that (((N;, Ji); ¢ € w), a, X)
is a limit sequence, J is a normal uniform ideal on w;. Players I and II
collaborate to build an iteration of ({(V;, J;); i € w) ,a, X) consisting of limit
sequences (((Ng,J?);1 € w),a*, X%), | J{N?;i € w}-normal ultrafilters G,
for ({(Ng&,J%);i € w),a* X?*) and a commuting family of embeddings ja,s
for & < 8 < w; with the following rule: In each round o, IT chooses a set A
in the set |J {’P (wle)N‘g \J&ie w}, and then I chooses a | J{N?;1 € w}-
normal ultrafilter G, for ({(Nf, J?);i € w),a®, X) with A € G,. After all
wy many rounds have been played, I wins if

o (H(wa),€,J) F“VYv dofou (a),v)

(We should note that II has a strategy such that after all w; rounds have
been played whenever player 11 plays according to this strategy,

o J = JN N/ holds for every i € w.

We can prove o-closedness of P?  using strategies for both players I and II.
See [11, Lemma 4.43.], [7, 3.4 Lemma and 3.5 Lemma, [1, Lemma 2.5].)

We define the game G2, as follows. Let po is a condition of P%,, .. Players
I and IT collaborate to build a decreasing w;-chain (p,; @ € wy) of conditions
with the following rule: In each round o, if o is a successor ordinal, II
chooses a condition p, below p,—1. If @ is a limit ordinal, then IT chooses a
cofinal w-sequence of & and, letting ({(NZ, J?);¢ € w), al, X) be the induced
limit sequence, IT chooses a set A, in the set {’P (wi ™ )Ng \J& i€ w},
and then I chooses a condition po = ((My, In), @a, Xa) below every ps such
that for some iteration k of ({((Nf#, J#);i € w),al, XY, k[X] C X, and
wi™ € k(A,). After all w; rounds have been played, I wins if, letting
Jap (o < B < wi) be the induced commuting family of embeddings on the
sequence (py; a € w;),

¢ <H(w2)a Ezjﬁ,m (IO» l:“ Vv ¢0(j0,w1 (a), ’U) ",

(In [10], the strategic iteration lemma for ¢ is the following lemma scheme:
(ZFC+<) Player I has a winning strategy in G, .

This is related to [7, 5.2 Theorem].)
The following theorem is a basic theorem of P¢_ .
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Theorem Scheme 1 ([11, Chapter 4], [1, §§3-5], [7, §§5-7], [10, §1]) (ZFC+LC)
Let ¢ be a Ty-sentence in the structure (H(ws), €, NS,,). Assume that the

following three statements

(1) player I has a winning strategy in gf,
(w) player I has a winning strategy in ge,
(w1) player I has a winning strategy in ggfl,

are all Qzec-consistent. Let G be a (L(R),P?,. )-generic filter. Then in
L(R)[G)], ZFC holds, ¢ = Ry, NS, is saturated and (H(wz), €, NS,,) F“¢”
holds.

In the above theorem scheme, the phrase that (1), (w) and (w;) are all
Qzpc-consistent are usually considered as the slightly stronger following state-

ment:

(ZFC+<) Both (1), {w) and (w;) hold.

One of important conclusions of P%, . extensions is [T-maximality. To
show this, we need a more technical lemma. For a sentence @ in the language
of set theory, the iteration lemma for ¢ from ® is defined as follows:

Lemma Scheme; The Iteration Lemma for ¢ from ® (ZFC+®) If
o (M,I) is an iterable pair,
o a € H(w)™ and (H(ws), €, 1) E=“Vbgo(a,b) ”
e J is a normal uniform ideal on wiy, and
o (H(wa), €, J) F“9 7,

then there exists an iteration j : (M,I) — (M*,I*) of length wy such that
o "=JNM* and
o (H(w),€,J) E“Vvdo(i(a)v)”.
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Of course, the case that ® contradicts ¢ does not make sense. In [10}, the
simple iteration lemma for ¢ is the iteration lemma for ¢ from ¢, and the
optimal iteration lemma for ¢ is the iteration lemma for ¢ from any trivial
statement. We note that if (under ZFC) player I has a winning strategy in
gf , then the optimal iteration lemma for ¢ holds. We should notice that for
some Ly-sentence ¢ in the structure (H(ws), €, NS,,), the simple iteration
lemma for ¢ fails. For example, the simple iteration lemma for CH, and for
the statement that the almost disjointness number is ®; fail (see [10, §1.3]

and [11, Lemma 5.29.]).

Theorem Scheme 2 ([11, Chapter 4], [1, §§3-5], [7, §§5-7], [10, §1]) (ZFC+LC)
Let ¢ be a Lo-sentence in the structure (H(wq),€,NS,,) and ® a sentence
in the language of set theory such that the iteration lemma for ¢ from ®
holds. Assume that both (w) and (w;) are Qzec-consistent. Let G be a
(L(R),P¢ . )-generic filter. Then in L(R)[G], ZFC holds, ¢ = Ry, NS,
is saturated and (H(wgz),€,NS,,) =“¢ 7 holds, and for any Il;-sentence
Y in the structure {H(w,),€,NS,,, R) for some set R of reals in L(R), if
the statement ® + (H(wp), €, NS, ,R) E“@ N1 " is Qzrc-consistent, then
(H(ws),€,NS,,, R) =“¢ " holds.

Therefore under the assumption in Theorem Scheme 1, if the optimal
iteration lemma for ¢ holds, then ¢ is IIy-compact in the extension by P?, .
over L(R). We have some examples of ¥o-statements for which the optimal
iteration lemma fails, e.g. for the existence of a Suslin tree. (See [10, §1.3].)
However we should notice that even if the opitimal iteration lemma for ¢ fail,
we cannot conclude that ¢ cannot be Ilo-compact.

In this note, we prove the optimal iteration lemma for'd = N;. This
proof is prototypical for any other P, variations of r = N; where 1 is a
cardinal invariant which is the smallest size of the cofinality of some ordered
structure, or some ideal on the reals. The point whether we can adopt the
proof for 9 = N; to the optimal iteration lemma for § = N; is whether we
have a Suslin ccc Amoeba forcing for this structure and we can show the
subgenericity lemma (i.e. a variation of Proposition 2.3).
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2 The optimal iteration lemma for 0 = N;

We don’t prove the optimal iteration lemma for 9 = N; usually. We find an
equivalent statement of d = N; and we show the optimal iteration lemma for

it.
Definition 2.1 ([10, Lemma 2.6.]). Let I be a normal uniform ideal on w;.
A sequence (fe; € € wi) of functions in w* is an I-good scale if

e it is a scale, i.e. o well-ordered with respect to the eventually dom-
nance, and

o for every f € w”, the set {§ € wy; f¢ dominates f everywhere (f < f¢)}
18 I-positive.

Proposition 2.2. Assume that I is a normal uniform ideal on wy. 0 = Ny
holds iff there exists an I-good scale.

Proof. Suppose that 9 = X; holds, and let (g¢; € € wy) be a scale, ie.
e if £ <y in wy, then g¢ <* g,, and
e for any h € w®, there exists £ € w; such that A <* ge.

Let
(Xsa;8 €W & o € wy)

be a sequence of pairwise disjoint I-positive subsets of wy.
By recursion on £ € wi, we construct fz € w* such that

e f¢ <*-dominates g, and f, for all n < &, and
o if £ is in some X o, then f¢ C-dominates the function s™(ga I [|s] ,00)).

Then we note that (fi;& € wi) is a scale. So what we need to check is I-

goodness.
Let f € w®. Then since {g¢; € € wy) is scale, we can find a € w; so that

f is <*-dominated by go. Let n € w be such that f(i) < go{?) foreveryi 2 n
and let s := f[n. Then

{6 cw; fF<ge) 2 XKoo

that is, the set {£ € wy; f < ge} is I-positive.
The other direction is trivial.
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We have a Suslin ccc Amoeba forcing for the structure (w,<*), the
Hechler forcing D := w<¥ x w*. For p = (sP, fP) and ¢ = (s%, f9), p <p ¢ if
s? D 5%, f9 < fP and for every ¢ € [|s7],]|s?]), sP(¢) > f4(i). For a condition
p € D, we define

body(p) := s*"fP [[|sP}, o0) ,
and let D! f := {p € D;body(p) < f}.

Proposition 2.3. Suppose that M is a model of a large enough fragment
of ZFC. (ZFC —Powerset + 3P (2¥) is sufficient.) Suppose that f eventually
dominates all functions in w* N M, and D € M is such that D is dense in

D in M. Then DN (D] f) is dense in (D[ f)N M.

Proof. Let pg = {(so, fo) € (D] f) N M. Working in M, we choose p; =
(34, ;) € D (NM) by induction on ¢ € w such that

® Pit1 € D: and

e p;ir1 <p (body(po) [|si|, fi}. (We must note that (body(po) |si|, f) is
a condition in I (NM) which extends po.)

Then we define g € w” such that

g(?’) — { So(?:) ifi < IS()]

Sp+1{t) If |sg] <1 < |sg41| forsome k € w -

Since (p;;i € w) is in M, g is also in M. Thus g <* f holds, hence for large
enough k € w, g[[|sx],o0) < fl[|sk|,00). Then for a fixed such a k, pr; is
in DN (D] f). O

Corollary 2.4. Suppose that P is a forcing notion and ¢ is a P-name such
that

1. Ikp“ g € w” & g eventually dominates all functions in w* NV ", (where
V is the ground model) and

2. for every condition v € SLOC, ||body(7) < g, is non-zero.

Then D 1s completely embeddable into Q := ro(P) * (D [ g) N'V) such that
Fo* foni=Upea 8 < § 7.
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Proof. We show that the embedding ¢ from D into Q, defined by

i(r) = (1body(7) < gllror) 7

for each r € D, is a complete embedding.
To prove this, we show that for any dense subset D in I (in the ground

model), the set {i(r);r € D} is predense in Q. Let (p,q) € Q, i.e.,
plrpége DIg)NV 7, ie. p <p ||body(d) < dl,om -
Since, by the previous proposition,
IFp“ DN (Dg) is dense in Dg)NV 7",
we can find p’ <p p and ¢’ <p g such that ¢ € D and
plkpqg € DN(DIG) .
Then
(&) < ([Ibody(d) < gll, o) »a') = ().

Assume that i is not a complete embedding, i.e. there exists (p,§) in Q
such that the set

D := {r € D;i(r) and (p,q) are incompatible in Q}

is dense in . Then the set {i(r);r € D} is predense in Q. However then,
there exists 7 € D so that i(r) and (p,q) are incompatible in Q, which is a
contradiction. |

Lemma 2.5. Suppose that M 1is a countable model of (a large enough frag-
ment of ) ZFC, P and g satisfy the hypothesis of Corollary 241 M, pePNM
and f € w*. (We may not assume f € M.) Then there exists a (M,P)-
generic filter G containing p such that f is <*-dominated by glG].

Proof. We fix a complete embedding from ro(D) into Q := ro(P)x((Dg)NV)
as in the previous corollary, and let p’ be a projection of p via this embedding.

Let N be a countable model of a large enough fragment of ZFC containing
M U {S}. Since N is a countable model, there exists a (/V,D)-generic filter
F' containing p’. We let F':= F'N M. Since D is a Suslin ccc forcing notion,
all maximal antichains on D belonging to M are still maximal in N. Thus F
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is (M, D)-generic and f <* fr. We take a (M, Q)-generic filter H extending
F (via the fixed embedding) with p € H and let G := ro(P) N H. We note
that G is (M, ro(lP))-generic. Then |

f <" fr C g[H] = 4[G].
]

Theorem 2.6 (The optimal iteration lemma for the existence of a good
scale). (ZFC) If

e (M,I) is an iterable pair,
o a € H(w)M and H(wy)™ =“a is an I-good scale ”,
e J is a normal uniform ideal on wy, and
o cof(N) =Ny,
then there exists an iteration j : (M,I) — (M*,I*) of length wy such that
o I"=JNM* and
e j(a) is a J-good scale.
| Proof. Suppose that (M, I) is an iterable pair, i.e.
e M is a countable transitive model of ZFC, and
M »

e [ € M and M =“I is a normal uniform ideal on w;

Let (fe; € € wi™) be in M such that
M = (fg;g € w1M> is an I-good scale 7,

and (g¢;€ € wy) be a (J-good) scale. (We don’t need J-goodness of the se-
quence (gg; € € wy).) Let (Xna;n € w & a € wy) be a sequence of J-positive
subsets of w; which are pairwise disjoint.

We build an iteration (M,,Gg,jys; 8 <77 <8 <w;) of (M, 1) of length
wq such that

e for each a € wi, we fix a sequence (Y, o;n € w) of all jy,(I)-positive
subsets of w;Me -
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o ifa<ly in wy, n € w and wM € X, ,, then Joqy (Yna) € Gy, and

o for every a € wy, go <* f“‘ (= ;}llMa), where for each o < wy, we

write
Joa ((fe;f € wiM)) = (f&;€ € w M=),

(We note that f e < finw; +1and § € wiMe then fg‘" = ff)
This can be done by the following claim:

Claim Assume that we have constructed (My,Gg, jy5;8<7v <0 < a) and

Z € (P (wiMe) \300,(1')) . Then there is a (P (w ™) \joa(I)) -generic
filter G, with Z € G, such that o <* fj‘l Vet

Proof of Claim. We have to notice that

e in a generic extension of M, with (P (wi™=) \ joo({ )) fELT f"‘
holds, hence f"‘+1 <*-dominates all slaloms in & N M,, and

e for each p € DN M,, the set

{€ € wi™;body(p) < f¢'}

i8 jo o (I)-positive.

(We note that fa“a is in M,,; which is a subuniverse of M,[G] and it is
not changed by the transitive collapse and the relation <* is absolute.) So
by Lemma 2.5, we can find a desired G,. -1

By the construction (and the standard argument, e.g. [11, Lemma 4.36.]

or [7, 2.8 Lemma)), jouw, (I) = J N My, and jou, ((fe;€ € wi™)) is a scale.
What we need to check is J-goodness of the scale.
To see J-goodness, take any p € ID. Then there is a € w1 such that

body(p) <* ga, so we can find n € w such that body(p) <" f"‘ .Letge S
be such that g := (body(p) [n) ’\f"‘ [ [n,00). We note that g isin My.1.

Since
M ¢ <f§;§ € w1M> is an I-good scale 7,

by elementarity of jg o+1

Myys B¢ joar1 ({fe; € € wi™)) is an joa41(1)-good scale ”
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Therefore the set
{¢ € wMortsg < fET}

belongs to M1 and is jg o+1(Z)-positive. Since jou, (1) = J N M,, and

Jariw ({E €wnMett;g < fEM1}) = {Eew;g< [}
C {¢ € wy;body(p) < f*},

the set {£ € wi;body(p) < f¢*} is J-positive. 0

We can show the strategic iteration lemma for the existence of a good
scale using arguments of the previous proof and [10, Lemma 2.8.]. So we can
conclude Shelah—-Zapletal’s theorem that 9 = X, is II;-compact.
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