$\mathbb{P}_{max}^{\mathfrak{d}=\aleph_1}$ and other variations

Teruyuki Yorioka* 依岡 輝幸

Department of Computer and Systems Engineering, Kobe University,

Rokkodai, Nada-ku, Kobe, 657-8501, Japan 神戸市灘区六甲台町 神戸大学工学部情報知能工学科

1 Introduction of \mathbb{P}_{max} variations

 \mathbb{P}_{max} has been introduced by W. Hugh Woodin who says that in [11], \mathbb{P}_{max} forces the canonical model of the negation of the Continuum Hypothesis CH over $L(\mathbb{R})$ with some large cardinal assumptions, e.g. $AD^{L(\mathbb{R})}$, or there are infinitely many Woodin cardinals with the measurable cardinal above. Under suitable large cardinal assumptions (in this paper, I abbreviate this to LC), \mathbb{P}_{max} generically adds, over $L(\mathbb{R})$, a directed system of countable transitive models of ZFC (or its fragments) whose limit restricted to $H(\omega_2)$ (in this extension) is the whole $H(\omega_2)$, and \mathbb{P}_{max} forces that the nonstationary ideal NS_{ω_1} on ω_1 is saturated. One of the important facts on \mathbb{P}_{max} is absoluteness of Π_2 -sentences for the structure

$$\langle H(\omega_2), \in, NS_{\omega_1}, R \rangle$$

for some set R of reals in $L(\mathbb{R})$ as follows:

^{*}Supported by JSPS Research Fellowship for Young Scientists and Grant-in-Aid for JSPS Fellow, No. 16-3977, Ministry of Education, Culture, Sports, Science and Technology.

If a Π_2 -sentence for the structure $\langle H(\omega_2), \in, NS_{\omega_1}, R \rangle$ is Ω_{ZFC} consistent (e.g. forceable by set-forcing over ZFC), then it is true
in $\langle H(\omega_2), \in, NS_{\omega_1}, R \rangle$ in the extension with \mathbb{P}_{max} over $L(\mathbb{R})$ with
LC.

(Under LC (e.g. there exist proper class many Woodin cardinals), every set of reals in $L(\mathbb{R})$ is universally Baire, and weakly homogeneously Suslin (see e.g. [5]). R is considered as an interpretation of its universally Baire set of reals in each universe. For more historical and technical remarks on \mathbb{P}_{max} , see [11, 7, 1].)

In [11], Woodin studied not only \mathbb{P}_{max} but also conditional variations of \mathbb{P}_{max} for e.g. Suslin trees and the Borel Conjecture. \mathbb{P}_{max} variations have been studied by several set theorists: Feng-Woodin, Larson, Larson-Todorčević, Shelah-Zapletal and Yorioka [3, 4, 6, 8, 10, 12]. In [10], many variations of \mathbb{P}_{max} for Σ_2 -statements in the structure $H(\omega_2)$ on cardinal invariants of the reals have been investigated. We should notice that all of them are derived from \diamondsuit . For example, the \mathbb{P}_{max} variation, say $\mathbb{P}_{max}^{\mathfrak{d}=\aleph_1}$, for the statement that the dominating number \mathfrak{d} in ω^{ω} is \aleph_1 has been studied. It has been proved in [10, $\S 2$] that the extension with $\mathbb{P}_{max}^{\mathfrak{d}=\aleph_1}$ over $L(\mathbb{R})$ under LC satisfies ZFC, the continuum \mathfrak{c} is \aleph_2 , NS_{ω_1} is saturated, $\mathfrak{d} = \aleph_1$ holds, and maximality with respect to Π_2 -statements in $\langle H(\omega_2), \in, NS_{\omega_1}, R \rangle$ for some set R of reals in $L(\mathbb{R})$, that is, under LC, the extension with $\mathbb{P}_{max}^{\mathfrak{d}=\aleph_1}$ over $L(\mathbb{R})$ satisfies the following property, called Π_2 -compactness in [10]:

If ψ is a Π_2 -sentence for the structure $\langle H(\omega_2), \in, NS_{\omega_1}, R \rangle$ and the statement $\langle H(\omega_2), \in, NS_{\omega_1}, R \rangle \models "\mathfrak{d} = \aleph_1 \wedge \psi$ " is Ω_{ZFC} -consistent, then it is true in $\langle H(\omega_2), \in, NS_{\omega_1}, R \rangle$.

So this model can be considered as the canonical model of $\mathfrak{d}=\aleph_1$. In [10], there are many examples and counterexamples of Π_2 -compact statements. One non- Π_2 -compact statement, which does not appear in [10], is that the additivity $\operatorname{add}(\mathcal{M})$ of the meager ideal is \aleph_1 : By Miller-Truss's characterization of $\operatorname{add}(\mathcal{M})$, $\operatorname{add}(\mathcal{M})$ is the minimum of the bounding number \mathfrak{b} and the covering number $\operatorname{cov}(\mathcal{M})$ of the meager ideal. However both " $\aleph_1 = \operatorname{add}(\mathcal{M}) < \mathfrak{b}$ " and " $\aleph_1 = \operatorname{add}(\mathcal{M}) < \operatorname{cov}(\mathcal{M})$ " are consistent with ZFC, and both " $\operatorname{cov}(\mathcal{M}) > \aleph_1$ " and " $\mathfrak{b} > \aleph_1$ " are Π_2 -statements in the structure $\langle H(\omega_2), \in, NS_{\omega_1} \rangle$. (The statement that the additivity of the null ideal is \aleph_1 is not Π_2 -compact either. It is known that $\operatorname{add}(\mathcal{N}) = \min\{\operatorname{add}^*(\mathcal{N}), \mathfrak{b}\}$. See [2, Theorem 2.7.13.] or [9].)

In this paper, we work in ZFC except for the definition of \mathbb{P}_{max}^{ϕ} and the proof of Theorem Schemes because when we force by \mathbb{P}_{max}^{ϕ} , we always consider $L(\mathbb{R})$ as the ground model which never satisfies the Axiom of Choice (by our assumption). \mathbb{P}_{max} can be defined by various ways. One of them is defined by use of *iterable pairs*. Suppose a suitable large cardinal property, M is a countable transitive model of ZFC and I is a member of M which is a uniform normal ideal on ω_1^M in M. We can take a direct system $\langle M_{\gamma}, G_{\beta}, j_{\gamma,\delta}; \beta < \gamma \leq \delta \leq \omega_1 \rangle$, called an *iteration* of (M, I) (of length ω_1), such that

- $M_0 = M$,
- G_{β} is an M_{β} -generic filter of the forcing notion $(\mathcal{P}(\omega_1^{M_{\beta}})/j_{0,\beta}(I))^{M_{\beta}}$ (or $(\mathcal{P}(\omega_1^{M_{\beta}}) \setminus j_{0,\beta}(I))^{M_{\beta}}$) for every $\beta \in \omega_1$,
- $j_{\gamma,\gamma}$ is the identity on M_{γ} for every $\gamma \in \omega_1 + 1$,
- $M_{\beta+1}$ is (the transitive collapse of) the generic ultrapower of M_{β} by G_{β} (if it is wellfounded, otherwise we stop the construction), and $j_{\gamma,\gamma+1}$ is the ultrapower embedding induced by G_{γ} for every $\gamma \in \omega_1$, and
- if $\alpha \in \omega_1 + 1$ is a limit ordinal, then M_{α} is (the transitive collapse of) the direct limit of the system $\langle M_{\gamma}, j_{\gamma,\delta}; \gamma \leq \delta < \alpha \rangle$ and $j_{\gamma,\alpha}$ is the induced embedding for every $\gamma \in \alpha$.

(See [11, Definition 3.5. or Definition 4.1.] or [7, 1.2 Definition].) A pair (M, I) as above is called iterable if all M_{γ} , $\gamma \in \omega_1$, are wellfounded regardless of the choice of generic filters G_{β} . Woodin proved that if I is precipitous, then (M, I) is iterable (see [11, Lemma 3.10, and Lemma 4.5.]).

In many cases, we define the \mathbb{P}_{max} variation \mathbb{P}_{max}^{ϕ} for a Σ_2 -sentence ϕ in the structure $\langle H(\omega_2), \in, NS_{\omega_1} \rangle$ which is derived from \diamondsuit . For example, $\mathfrak{d} = \aleph_1$ holds, and there exists a coherent Suslin tree, etc. In [10], variations of \mathbb{P}_{max} are defined by use of stationary tower forcing ([5]). In this paper, we adopt a definition in [7, §10.2], however all of proofs in this paper can be applied to any type of \mathbb{P}_{max}^{ϕ} variations.

Definition of \mathbb{P}^{ϕ}_{max} ([7, §10.2]) Let ϕ be a Σ_2 -statement for the structure $\langle H(\omega_2), \in, NS_{\omega_1} \rangle$, and say that ϕ forms $\exists u \, \forall v \, \phi_0(u, v)$. Conditions of the forcing notion \mathbb{P}^{ϕ}_{max} are defined by recursion on their ranks as follows. A triple $\langle (M, I), a, \mathcal{X} \rangle$ is a condition of \mathbb{P}_{max} if

- 1. (M, I) is an iterable pair,
- 2. $a \in H(\omega_2)^M$ and $\langle H(\omega_2), \in, I \rangle^M \models \text{``} \forall v \, \phi_0(a, v) \text{''}, and$
- 3. \mathcal{X} is a member of M and a set (possibly empty) of pairs $\langle \langle (N, J), b, \mathcal{Y} \rangle$, $j \rangle$ such that
 - $\langle (N,J), b, \mathcal{Y} \rangle \in \mathbb{P}_{max}^{\phi} \cap H(\omega_1)^M$,
 - j is in M and an iteration of (N, J) of length ω_1^M such that $j(J) = I \cap j\left(\mathcal{P}\left(\omega_1^N\right)^N\right)$, j(b) = a and $j(\mathcal{Y}) \subseteq \mathcal{X}$, and
 - \mathcal{X} forms a function, i.e. for members $\langle p, j \rangle$ and $\langle p', j' \rangle$ in \mathcal{X} , if p = p', then j = j'.

For conditions $\langle (M,I), a, \mathcal{X} \rangle$ and $\langle (N,J), b, \mathcal{Y} \rangle$ in \mathbb{P}_{max}^{ϕ} , we define

$$\langle (M,I),a,\mathcal{X} \rangle <_{\mathbb{P}_{max}^{\phi}} \langle (N,J),b,\mathcal{Y} \rangle$$

if there exists j such that $\langle \langle (N, J), b, \mathcal{Y} \rangle, j \rangle \in \mathcal{X}$.

We have to note that the statement that a pair (M, I) is iterable is Π_2^1 about a real coding (M, I), so is absolute (see e.g. [7, 1.3 Remark and 1.10 Remark]). Therefore the statement that a triple $\langle (M, I), a, \mathcal{X} \rangle$ is a condition of \mathbb{P}_{max}^{ϕ} is also Π_2^1 , and so is absolute. Since $L(\mathbb{R})$ has every real, it also has every countable transitive model. And since a condition of \mathbb{P}_{max}^{ϕ} can be coded by a real, $(\mathbb{P}_{max}^{\phi})^{L(\mathbb{R})} = \mathbb{P}_{max}^{\phi}$. If ϕ is trivial (e.g. "0 = 0", or the statement that there exists the empty set), then \mathbb{P}_{max}^{ϕ} can be considered the standard \mathbb{P}_{max} . (However \mathbb{P}_{max}^{ϕ} and \mathbb{P}_{max} are slightly different, see [11, §5.4, in particular Theorem 5.40.].)

To analyze the extension by \mathbb{P}_{max}^{ϕ} , we need some game theoretic lemmata. (On definitions of games \mathcal{G}_{1}^{ϕ} , $\mathcal{G}_{\omega}^{\phi}$ and $\mathcal{G}_{\omega_{1}}^{\phi}$, I refer [7, §3 and §10.2].)

We define the game \mathcal{G}_1^{ϕ} as follows. Suppose that $\langle (M,I), a, \mathcal{X} \rangle$ is a condition of \mathbb{P}_{max}^{ϕ} , J is a normal uniform ideal on ω_1 . Players \mathbf{I} and \mathbf{II} collaborate to build an iteration $\langle M_{\gamma}, G_{\beta}, j_{\gamma,\delta}; \beta < \gamma \leq \delta \leq \omega_1 \rangle$ of (M,I) with the following rule: In each round α , \mathbf{II} chooses a set A in the set $\mathcal{P}\left(\omega_1^{M_{\alpha}}\right)^{M_{\alpha}} \setminus j_{0,\alpha}(I)$, and then \mathbf{I} chooses an $\left(M_{\alpha}, \left(\mathcal{P}\left(\omega_1^{M_{\alpha}}\right) \setminus j_{0,\alpha}(I)\right)^{M_{\alpha}}\right)$ -generic filter G_{α} with $A \in G_{\alpha}$. (To just simplify notation, we force by $\mathcal{P}(\omega_1) \setminus I$ instead of $\mathcal{P}(\omega_1)/I$ in this paper.) After all ω_1 many rounds have been played, \mathbf{I} wins if

• $\langle H(\omega_2), \in, J \rangle \models "\forall v \, \phi_0(j_{0,\omega_1}(a), v) ".$

(We should note that player II has a strategy such that after all ω_1 rounds have been played whenever player II plays according to this strategy,

• $j_{0,\omega_1}(I) = J \cap M_{\omega_1}$ holds.

See [11, Lemma 4.36.], [7, 2.8 Lemma], [1, Lemma 1.8].)

To show σ -closedness of \mathbb{P}_{max}^{ϕ} and define the strategic iteration lemma for ϕ , we need to define an iterable limit sequence and two games $\mathcal{G}_{\omega}^{\phi}$ and $\mathcal{G}_{\omega_1}^{\phi}$. (On this paragraph, see [11, Chapter 4.1 and Lemma 4.43.], [7, §3] and [1, §2].) Let $\langle p_i; i \in \omega \rangle$ is a decreasing sequence of \mathbb{P}_{max}^{ϕ} and write $p_i := \langle (M_i, I_i), a_i, \mathcal{X}_i \rangle$. Let $j_{i,i+1} : (M_i, I_i) \to (M_i^*, I_i^*)$ be an iteration witnessing that $p_{i+1} <_{\mathbb{P}_{max}^{\phi}} p_i$ (and if $p_{i+1} = p_i$, then let $j_{i,i+1}$ be the identity map) and let $\{j_{i,i'}; i \leq i' \leq \omega\}$ be the commuting family of embeddings generated by $\{j_{i,i+1}; i \in \omega\}$. We write $j_{i,\omega}; (M_i, I_i) \to (N_i, J_i)$ for each $i \in \omega$. Let $a := \bigcup_{i \in \omega} a_i$ and $\mathcal{X} := \bigcup_{i \in \omega} \mathcal{X}_i$. In most cases, a forms a witness of ϕ in every N_i . (At least, every application in any present published paper, including this paper, on \mathbb{P}_{max}^{ϕ} and its variations is in this case.) Then we can show that

- for each $i \in \omega$, (N_i, J_i) is an iterable pair,
- for each $i \in \omega$, $N_i \in N_{i+1}$ and $\omega_1^{N_i} = \omega_1^{N_0}$,
- for each $i \in \omega$, $J_{i+1} \cap N_i = J_i$,
- $a \in H(\omega_2)^{N_0}$ and for each $i \in \omega$, $\langle H(\omega_2), \in, J_i \rangle^{N_i} \models \text{``} \forall b \, \phi_0(a, b) \text{''}.$

We call $\langle \langle (N_i, J_i); i \in \omega \rangle, a, \mathcal{X} \rangle$ a limit sequence if it is constructed as above. For a limit sequence $\langle \langle (N_i, J_i); i \in \omega \rangle, a, \mathcal{X} \rangle$, when an ultrafilter G on the set

$$\bigcup_{i \in \omega} \mathcal{P}\left(\omega_1^{N_i}\right)^{N_i} \setminus J_i$$

satisfies that for every regressive function f on $\omega_1^{N_i}$ in $\bigcup_{i \in \omega} N_i$, f is constant on some condition in G, we call it a $\bigcup \{N_i; i \in \omega\}$ -normal ultrafilter for $\langle \langle (N_i, J_i); i \in \omega \rangle, a, \mathcal{X} \rangle$. Then we form the ultrapower of $\langle \langle (N_i, J_i); i \in \omega \rangle, a, \mathcal{X} \rangle$ formed from G and all functions $f: \omega_1^{N_0} \to N_i$ in $\bigcup_{i \in \omega} N_i$. (More precisely, see [11, Definition 4.15.].) Using this ultrapower, we define the iteration of the sequence $\langle \langle (N_i, J_i); i \in \omega \rangle, a, \mathcal{X} \rangle$, and the iterability of the sequence $\langle \langle (N_i, J_i); i \in \omega \rangle, a, \mathcal{X} \rangle$ as in the iterable pair. We note that for a limit sequence $\langle \langle (N_i, J_i); i \in \omega \rangle, a, \mathcal{X} \rangle$ constructed as above,

• $\langle \langle (N_i, J_i); i \in \omega \rangle, a, \mathcal{X} \rangle$ is iterable.

We define the game $\mathcal{G}_{\omega}^{\phi}$ as follows. Suppose that $\langle\langle(N_i,J_i);i\in\omega\rangle,a,\mathcal{X}\rangle$ is a limit sequence, J is a normal uniform ideal on ω_1 . Players I and II collaborate to build an iteration of $\langle\langle(N_i,J_i);i\in\omega\rangle,a,\mathcal{X}\rangle$ consisting of limit sequences $\langle\langle(N_i^{\alpha},J_i^{\alpha});i\in\omega\rangle,a^{\alpha},\mathcal{X}^{\alpha}\rangle$, $\bigcup\{N_i^{\alpha};i\in\omega\}$ -normal ultrafilters G_{α} for $\langle\langle(N_i^{\alpha},J_i^{\alpha});i\in\omega\rangle,a^{\alpha},\mathcal{X}^{\alpha}\rangle$ and a commuting family of embeddings $j_{\alpha,\beta}$ for $\alpha\leq\beta\leq\omega_1$ with the following rule: In each round α , II chooses a set A in the set $\bigcup\{\mathcal{P}(\omega_1^{N_i^{\alpha}})^{N_i^{\alpha}}\setminus J_i^{\alpha};i\in\omega\}$, and then I chooses a $\bigcup\{N_i^{\alpha};i\in\omega\}$ -normal ultrafilter G_{α} for $(\langle(N_i^{\alpha},J_i^{\alpha});i\in\omega\rangle,a^{\alpha},\mathcal{X}^{\alpha})$ with $A\in G_{\alpha}$. After all ω_1 many rounds have been played, I wins if

• $\langle H(\omega_2), \in, J \rangle \models "\forall v \, \phi_0(j_{0,\omega_1}(a), v) ".$

(We should note that II has a strategy such that after all ω_1 rounds have been played whenever player II plays according to this strategy,

• $J_i^{\omega_1} = J \cap N_i^{\omega_1}$ holds for every $i \in \omega$.

We can prove σ -closedness of \mathbb{P}_{max}^{ϕ} using strategies for both players I and II. See [11, Lemma 4.43.], [7, 3.4 Lemma and 3.5 Lemma], [1, Lemma 2.5].)

We define the game $\mathcal{G}_{\omega_1}^{\phi}$ as follows. Let p_0 is a condition of \mathbb{P}_{max}^{ϕ} . Players I and II collaborate to build a decreasing ω_1 -chain $\langle p_{\alpha}; \alpha \in \omega_1 \rangle$ of conditions with the following rule: In each round α , if α is a successor ordinal, II chooses a condition p_{α} below $p_{\alpha-1}$. If α is a limit ordinal, then II chooses a cofinal ω -sequence of α and, letting $\langle \langle (N_i^{\alpha}, J_i^{\alpha}); i \in \omega \rangle$, $a_{\alpha}^*, \mathcal{X}_{\alpha}^* \rangle$ be the induced limit sequence, II chooses a set A_{α} in the set $\bigcup \left\{ \mathcal{P} \left(\omega_1^{N_i^{\alpha}} \right)^{N_i^{\alpha}} \setminus J_i^{\alpha}; i \in \omega \right\}$, and then I chooses a condition $p_{\alpha} = \langle (M_{\alpha}, I_{\alpha}), a_{\alpha}, \mathcal{X}_{\alpha} \rangle$ below every p_{β} such that for some iteration k of $\langle \langle (N_i^{\alpha}, J_i^{\alpha}); i \in \omega \rangle$, $a_{\alpha}^*, \mathcal{X}_{\alpha}^* \rangle$, $k \left[\mathcal{X}_{\alpha}^* \right] \subseteq \mathcal{X}_{\alpha}$ and $\omega_1^{N_0^{\alpha}} \in k(A_{\alpha})$. After all ω_1 rounds have been played, I wins if, letting $j_{\alpha,\beta}$ ($\alpha < \beta \leq \omega_1$) be the induced commuting family of embeddings on the sequence $\langle p_{\alpha}; \alpha \in \omega_1 \rangle$,

• $\langle H(\omega_2), \in, j_{0,\omega_1}(I_0) \rangle \models "\forall v \, \phi_0(j_{0,\omega_1}(a), v) ".$

(In [10], the strategic iteration lemma for ϕ is the following lemma scheme:

(ZFC $+ \diamondsuit$) Player I has a winning strategy in $\mathcal{G}^{\phi}_{\omega_1}$.

This is related to [7, 5.2 Theorem].)

The following theorem is a basic theorem of \mathbb{P}_{max}^{ϕ} .

Theorem Scheme 1 ([11, Chapter 4], [1, §§3-5], [7, §§5-7], [10, §1]) (ZFC + LC) Let ϕ be a Σ_2 -sentence in the structure $\langle H(\omega_2), \in, NS_{\omega_1} \rangle$. Assume that the following three statements

- (1) player I has a winning strategy in \mathcal{G}_1^{ϕ} ,
- (ω) player **I** has a winning strategy in $\mathcal{G}^{\phi}_{\omega}$,
- (ω_1) player **I** has a winning strategy in $\mathcal{G}^{\phi}_{\omega_1}$,

are all Ω_{ZFC} -consistent. Let G be a $(L(\mathbb{R}), \mathbb{P}_{max}^{\phi})$ -generic filter. Then in $L(\mathbb{R})[G]$, ZFC holds, $\mathfrak{c} = \aleph_2$, NS_{ω_1} is saturated and $\langle H(\omega_2), \in, NS_{\omega_1} \rangle \models "\phi"$ holds.

In the above theorem scheme, the phrase that (1), (ω) and (ω_1) are all Ω_{ZFC} -consistent are usually considered as the slightly stronger following statement:

(ZFC
$$+\diamondsuit$$
) Both (1), (ω) and (ω_1) hold.

One of important conclusions of \mathbb{P}_{max}^{ϕ} extensions is Π_2 -maximality. To show this, we need a more technical lemma. For a sentence Φ in the language of set theory, the iteration lemma for ϕ from Φ is defined as follows:

Lemma Scheme; The Iteration Lemma for ϕ from Φ (ZFC+ Φ) If

- (M, I) is an iterable pair,
- $a \in H(\omega_2)^M$ and $\langle H(\omega_2), \in, I \rangle^M \models "\forall b \phi_0(a, b) "$
- J is a normal uniform ideal on ω_1 , and
- $\langle H(\omega_2), \in, J \rangle \models "\phi"$,

then there exists an iteration $j:(M,I)\to (M^*,I^*)$ of length ω_1 such that

- $I^* = J \cap M^*$, and
- $\langle H(\omega_2), \in, J \rangle \models "\forall v \, \phi_0(j(a), v) ".$

Of course, the case that Φ contradicts ϕ does not make sense. In [10], the simple iteration lemma for ϕ is the iteration lemma for ϕ from \diamondsuit , and the optimal iteration lemma for ϕ is the iteration lemma for ϕ from any trivial statement. We note that if (under ZFC) player I has a winning strategy in \mathcal{G}_1^{ϕ} , then the optimal iteration lemma for ϕ holds. We should notice that for some Σ_2 -sentence ϕ in the structure $\langle H(\omega_2), \in, NS_{\omega_1} \rangle$, the simple iteration lemma for ϕ fails. For example, the simple iteration lemma for CH, and for the statement that the almost disjointness number is \aleph_1 fail (see [10, §1.3] and [11, Lemma 5.29.]).

Theorem Scheme 2 ([11, Chapter 4], [1, §§3-5], [7, §§5-7], [10, §1]) (ZFC+LC) Let ϕ be a Σ_2 -sentence in the structure $\langle H(\omega_2), \in, NS_{\omega_1} \rangle$ and Φ a sentence in the language of set theory such that the iteration lemma for ϕ from Φ holds. Assume that both (ω) and (ω_1) are Ω_{ZFC} -consistent. Let G be a $(L(\mathbb{R}), \mathbb{P}^{\phi}_{max})$ -generic filter. Then in $L(\mathbb{R})[G]$, ZFC holds, $\mathbf{c} = \aleph_2$, NS_{ω_1} is saturated and $\langle H(\omega_2), \in, NS_{\omega_1} \rangle \models "\phi "$ holds, and for any Π_2 -sentence ψ in the structure $\langle H(\omega_2), \in, NS_{\omega_1}, R \rangle$ for some set R of reals in $L(\mathbb{R})$, if the statement $\Phi + \langle H(\omega_2), \in, NS_{\omega_1}, R \rangle \models "\phi \wedge \psi "$ is Ω_{ZFC} -consistent, then $\langle H(\omega_2), \in, NS_{\omega_1}, R \rangle \models "\psi "$ holds.

Therefore under the assumption in Theorem Scheme 1, if the optimal iteration lemma for ϕ holds, then ϕ is Π_2 -compact in the extension by \mathbb{P}_{max}^{ϕ} over $L(\mathbb{R})$. We have some examples of Σ_2 -statements for which the optimal iteration lemma fails, e.g. for the existence of a Suslin tree. (See [10, §1.3].) However we should notice that even if the optimal iteration lemma for ϕ fail, we cannot conclude that ϕ cannot be Π_2 -compact.

In this note, we prove the optimal iteration lemma for $\mathfrak{d} = \aleph_1$. This proof is prototypical for any other \mathbb{P}_{max} variations of $\mathfrak{x} = \aleph_1$ where \mathfrak{x} is a cardinal invariant which is the smallest size of the cofinality of some ordered structure, or some ideal on the reals. The point whether we can adopt the proof for $\mathfrak{d} = \aleph_1$ to the optimal iteration lemma for $\mathfrak{x} = \aleph_1$ is whether we have a Suslin ccc Amoeba forcing for this structure and we can show the subgenericity lemma (i.e. a variation of Proposition 2.3).

2 The optimal iteration lemma for $\mathfrak{d} = \aleph_1$

We don't prove the optimal iteration lemma for $\mathfrak{d} = \aleph_1$ usually. We find an equivalent statement of $\mathfrak{d} = \aleph_1$ and we show the optimal iteration lemma for it.

Definition 2.1 ([10, Lemma 2.6.]). Let I be a normal uniform ideal on ω_1 . A sequence $\langle f_{\xi}; \xi \in \omega_1 \rangle$ of functions in ω^{ω} is an I-good scale if

- it is a scale, i.e. a well-ordered with respect to the eventually dominance, and
- for every $f \in \omega^{\omega}$, the set $\{\xi \in \omega_1; f_{\xi} \text{ dominates } f \text{ everywhere } (f \leq f_{\xi})\}$ is I-positive.

Proposition 2.2. Assume that I is a normal uniform ideal on ω_1 . $\mathfrak{d} = \aleph_1$ holds iff there exists an I-good scale.

Proof. Suppose that $\mathfrak{d} = \aleph_1$ holds, and let $\langle g_{\xi}; \xi \in \omega_1 \rangle$ be a scale, i.e.

- if $\xi < \eta$ in ω_1 , then $g_{\xi} \leq^* g_{\eta}$, and
- for any $h \in \omega^{\omega}$, there exists $\xi \in \omega_1$ such that $h \leq^* g_{\xi}$.

Let

$$\langle X_{s,\alpha}; s \in \omega^{<\omega} \& \alpha \in \omega_1 \rangle$$

be a sequence of pairwise disjoint *I*-positive subsets of ω_1 . By recursion on $\xi \in \omega_1$, we construct $f_{\xi} \in \omega^{\omega}$ such that

- $f_{\xi} \leq^*$ -dominates g_{η} and f_{η} for all $\eta < \xi$, and
- if ξ is in some $X_{s,\alpha}$, then $f_{\xi} \sqsubseteq$ -dominates the function $s \hat{\ } (g_{\alpha} \upharpoonright [|s|, \infty))$.

Then we note that $\langle f_{\xi}; \xi \in \omega_1 \rangle$ is a scale. So what we need to check is *I*-goodness.

Let $f \in \omega^{\omega}$. Then since $\langle g_{\xi}; \xi \in \omega_1 \rangle$ is a scale, we can find $\alpha \in \omega_1$ so that f is \leq^* -dominated by g_{α} . Let $n \in \omega$ be such that $f(i) \leq g_{\alpha}(i)$ for every $i \geq n$ and let $s := f \upharpoonright n$. Then

$$\{\xi \in \omega_1; f \leq g_{\xi}\} \supseteq X_{s,\alpha},$$

that is, the set $\{\xi \in \omega_1; f \leq g_{\xi}\}$ is *I*-positive. The other direction is trivial.

We have a Suslin ccc Amoeba forcing for the structure $\langle \omega^{\omega}, \leq^* \rangle$, the Hechler forcing $\mathbb{D} := \omega^{<\omega} \times \omega^{\omega}$. For $p = \langle s^p, f^p \rangle$ and $q = \langle s^q, f^q \rangle$, $p \leq_{\mathbb{D}} q$ if $s^p \supseteq s^q$, $f^q \leq f^p$ and for every $i \in [|s^q|, |s^p|)$, $s^p(i) \geq f^q(i)$. For a condition $p \in \mathbb{D}$, we define

$$\mathsf{body}(p) := s^p \widehat{} f^p \upharpoonright [|s^p|, \infty),$$

and let $\mathbb{D} \upharpoonright f := \{ p \in \mathbb{D}; \mathsf{body}(p) \le f \}.$

Proposition 2.3. Suppose that M is a model of a large enough fragment of ZFC. (ZFC-Powerset $+\exists \mathcal{P}(2^{\omega})$ is sufficient.) Suppose that f eventually dominates all functions in $\omega^{\omega} \cap M$, and $D \in M$ is such that D is dense in \mathbb{D} in M. Then $D \cap (\mathbb{D} \upharpoonright f)$ is dense in $(\mathbb{D} \upharpoonright f) \cap M$.

Proof. Let $p_0 = \langle s_0, f_0 \rangle \in (\mathbb{D} \upharpoonright f) \cap M$. Working in M, we choose $p_i = \langle s_i, f_i \rangle \in \mathbb{D} (\cap M)$ by induction on $i \in \omega$ such that

- $p_{i+1} \in D$, and
- $p_{i+1} \leq_{\mathbb{D}} \langle \mathsf{body}(p_0) \upharpoonright |s_i|, f_i \rangle$. (We must note that $\langle \mathsf{body}(p_0) \upharpoonright |s_i|, f_i \rangle$ is a condition in $\mathbb{D} (\cap M)$ which extends p_0 .)

Then we define $g \in \omega^{\omega}$ such that

$$g(i) := \left\{ \begin{array}{ll} s_0(i) & \text{if } i < |s_0| \\ s_{k+1}(i) & \text{if } |s_k| \le i < |s_{k+1}| \text{ for some } k \in \omega \end{array} \right..$$

Since $\langle p_i; i \in \omega \rangle$ is in M, g is also in M. Thus $g \leq^* f$ holds, hence for large enough $k \in \omega$, $g \upharpoonright [|s_k|, \infty) \leq f \upharpoonright [|s_k|, \infty)$. Then for a fixed such a k, p_{k+1} is in $D \cap (\mathbb{D} \upharpoonright f)$.

Corollary 2.4. Suppose that \mathbb{P} is a forcing notion and \dot{g} is a \mathbb{P} -name such that

- 1. $\Vdash_{\mathbb{P}}$ " $\dot{g} \in \omega^{\omega}$ & \dot{g} eventually dominates all functions in $\omega^{\omega} \cap \mathbf{V}$ ", (where \mathbf{V} is the ground model) and
- 2. for every condition $r \in SLOC$, $\|body(\tilde{r}) \leq \dot{g}\|_{ro(\mathbb{P})}$ is non-zero.

Then \mathbb{D} is completely embeddable into $\mathbb{Q} := ro(\mathbb{P}) * ((\mathbb{D} \upharpoonright \dot{g}) \cap \mathbf{V})$ such that $\Vdash_{\mathbb{Q}}$ " $\dot{f}_{G_{\mathbb{D}}} := \bigcup_{p \in G} s^p \leq \dot{g}$ ".

Proof. We show that the embedding i from \mathbb{D} into \mathbb{Q} , defined by

$$i(r) := \left\langle \left\| \mathsf{body}(\check{r}) \leq \dot{g} \right\|_{ro(\mathbb{P})}, \check{r} \right\rangle$$

for each $r \in \mathbb{D}$, is a complete embedding.

To prove this, we show that for any dense subset D in \mathbb{D} (in the ground model), the set $\{i(r); r \in D\}$ is predense in \mathbb{Q} . Let $\langle p, \check{q} \rangle \in \mathbb{Q}$, i.e.,

$$p \Vdash_{\mathbb{P}} \check{q} \in (\mathbb{D} \upharpoonright \dot{g}) \cap \mathbf{V}$$
 ", i.e. $p \leq_{\mathbb{P}} \|\mathsf{body}(\check{q}) \leq \dot{g}\|_{ro(\mathbb{P})}$.

Since, by the previous proposition,

$$\Vdash_{\mathbb{P}}$$
" $\check{D} \cap (\mathbb{D} \upharpoonright \dot{g})$ is dense in $(\mathbb{D} \upharpoonright \dot{g}) \cap \mathbf{V}$ ",

we can find $p' \leq_{\mathbb{P}} p$ and $q' \leq_{\mathbb{D}} q$ such that $q' \in D$ and

$$p' \Vdash_{\mathbb{P}} \check{q'} \in \check{D} \cap (\mathbb{D} \upharpoonright \dot{g})$$
".

Then

$$\left\langle p',\check{q'}\right\rangle \leq_{\mathbb{Q}} \left\langle \left\|\mathsf{body}(\check{q'}) \leq \dot{g}\right\|_{ro(\mathbb{P})},\check{q'}\right\rangle = i(q').$$

Assume that i is not a complete embedding, i.e. there exists $\langle p, \check{q} \rangle$ in \mathbb{Q} such that the set

$$D:=\{r\in\mathbb{D};i(r) ext{ and } \langle p,\check{q}
angle ext{ are incompatible in } \mathbb{Q}\}$$

is dense in \mathbb{D} . Then the set $\{i(r); r \in D\}$ is predense in \mathbb{Q} . However then, there exists $r \in D$ so that i(r) and $\langle p, \check{q} \rangle$ are incompatible in \mathbb{Q} , which is a contradiction.

Lemma 2.5. Suppose that M is a countable model of (a large enough fragment of) ZFC, \mathbb{P} and \dot{g} satisfy the hypothesis of Corollary 2.4 in M, $p \in \mathbb{P} \cap M$ and $f \in \omega^{\omega}$. (We may not assume $f \in M$.) Then there exists a (M, \mathbb{P}) -generic filter G containing p such that f is \leq^* -dominated by $\dot{g}[G]$.

Proof. We fix a complete embedding from $ro(\mathbb{D})$ into $\mathbb{Q} := ro(\mathbb{P}) * ((\mathbb{D} \upharpoonright \dot{g}) \cap \mathbf{V})$ as in the previous corollary, and let p' be a projection of p via this embedding.

Let N be a countable model of a large enough fragment of ZFC containing $M \cup \{S\}$. Since N is a countable model, there exists a (N, \mathbb{D}) -generic filter F' containing p'. We let $F := F' \cap M$. Since \mathbb{D} is a Suslin ccc forcing notion, all maximal antichains on \mathbb{D} belonging to M are still maximal in N. Thus F

is (M, \mathbb{D}) -generic and $f \leq^* f_F$. We take a (M, \mathbb{Q}) -generic filter H extending F (via the fixed embedding) with $p \in H$ and let $G := ro(\mathbb{P}) \cap H$. We note that G is $(M, ro(\mathbb{P}))$ -generic. Then

$$f \leq^* f_F \sqsubseteq \dot{g}[H] = \dot{g}[G].$$

Theorem 2.6 (The optimal iteration lemma for the existence of a good scale). (ZFC) If

- (M, I) is an iterable pair,
- $a \in H(\omega_2)^M$ and $H(\omega_2)^M \models$ "a is an I-good scale",
- J is a normal uniform ideal on ω_1 , and
- $\operatorname{cof}(\mathcal{N}) = \aleph_1$,

then there exists an iteration $j:(M,I)\to (M^*,I^*)$ of length ω_1 such that

- $I^* = J \cap M^*$, and
- j(a) is a J-good scale.

Proof. Suppose that (M, I) is an iterable pair, i.e.

- *M* is a countable transitive model of ZFC, and
- $I \in M$ and $M \models$ "I is a normal uniform ideal on ω_1^M ".

Let $\langle f_{\xi}; \xi \in \omega_1^M \rangle$ be in M such that

$$M \models \text{``} \langle f_{\xi}; \xi \in \omega_1^M \rangle$$
 is an *I*-good scale ",

and $\langle g_{\xi}; \xi \in \omega_1 \rangle$ be a (*J*-good) scale. (We don't need *J*-goodness of the sequence $\langle g_{\xi}; \xi \in \omega_1 \rangle$.) Let $\langle X_{n,\alpha}; n \in \omega \& \alpha \in \omega_1 \rangle$ be a sequence of *J*-positive subsets of ω_1 which are pairwise disjoint.

We build an iteration $\langle M_{\gamma}, G_{\beta}, j_{\gamma,\delta}; \beta < \gamma \leq \delta \leq \omega_1 \rangle$ of (M, I) of length ω_1 such that

• for each $\alpha \in \omega_1$, we fix a sequence $\langle Y_{n,\alpha}; n \in \omega \rangle$ of all $j_{0,\alpha}(I)$ -positive subsets of $\omega_1^{M_{\alpha}}$,

- if $\alpha \leq \gamma$ in ω_1 , $n \in \omega$ and $\omega_1^{M_{\gamma}} \in X_{n,\alpha}$, then $j_{\alpha,\gamma}(Y_{n,\alpha}) \in G_{\gamma}$, and
- for every $\alpha \in \omega_1$, $g_{\alpha} \leq^* f_{\omega_1 M_{\alpha}}^{\alpha+1} (= f_{\omega_1 M_{\alpha}}^{\omega_1})$, where for each $\alpha \leq \omega_1$, we write

$$j_{0,\alpha}\left(\left\langle f_{\xi};\xi\in\omega_{1}^{M}\right\rangle\right)=\left\langle f_{\xi}^{\alpha};\xi\in\omega_{1}^{M_{\alpha}}\right\rangle.$$

(We note that if $\alpha \leq \beta$ in $\omega_1 + 1$ and $\xi \in \omega_1^{M_{\alpha}}$, then $f_{\xi}^{\alpha} = f_{\xi}^{\beta}$.) This can be done by the following claim:

Claim Assume that we have constructed $\langle M_{\gamma}, G_{\beta}, j_{\gamma,\delta}; \beta < \gamma \leq \delta \leq \alpha \rangle$ and $Z \in (\mathcal{P}(\omega_1^{M_{\alpha}}) \setminus j_{0,\alpha}(I))^{M_{\alpha}}$. Then there is a $(\mathcal{P}(\omega_1^{M_{\alpha}}) \setminus j_{0,\alpha}(I))^{M_{\alpha}}$ -generic filter G_{α} with $Z \in G_{\alpha}$ such that $g_{\alpha} \leq^* f_{\omega_1^{M_{\alpha}}}^{\alpha+1}$.

Proof of Claim. We have to notice that

- in a generic extension of M_{α} with $\left(\mathcal{P}\left(\omega_{1}^{M_{\alpha}}\right)\setminus j_{0,\alpha}(I)\right)^{M_{\alpha}}, f_{\xi}^{\alpha} \leq^{*} f_{\omega_{1}^{M_{\alpha}}}^{\alpha+1}$ holds, hence $f_{\omega_{1}^{M_{\alpha}}}^{\alpha+1} \leq^{*}$ -dominates all slaloms in $\mathcal{S} \cap M_{\alpha}$, and
- for each $p \in \mathbb{D} \cap M_{\alpha}$, the set

$$\left\{\xi\in\omega_1{}^{M_\alpha};\mathsf{body}(p)\leq f_\xi^\alpha\right\}$$

is $j_{0,\alpha}(I)$ -positive.

(We note that $f_{\omega_1 M_{\alpha}}^{\alpha+1}$ is in $M_{\alpha+1}$ which is a subuniverse of $M_{\alpha}[G]$ and it is not changed by the transitive collapse and the relation \leq^* is absolute.) So by Lemma 2.5, we can find a desired G_{α} .

By the construction (and the standard argument, e.g. [11, Lemma 4.36.] or [7, 2.8 Lemma]), $j_{0,\omega_1}(I) = J \cap M_{\omega_1}$ and $j_{0,\omega_1}(\langle f_{\xi}; \xi \in \omega_1^M \rangle)$ is a scale. What we need to check is J-goodness of the scale.

To see *J*-goodness, take any $p \in \mathbb{D}$. Then there is $\alpha \in \omega_1$ such that $\mathsf{body}(p) \leq^* g_{\alpha}$, so we can find $n \in \omega$ such that $\mathsf{body}(p) \leq^n f_{\omega_1 M_{\alpha}}^{\alpha+1}$. Let $g \in \mathcal{S}$ be such that $g := (\mathsf{body}(p) \upharpoonright n) \cap f_{\omega_1 M_{\alpha}}^{\alpha+1} \upharpoonright [n, \infty)$. We note that g is in $M_{\alpha+1}$. Since

$$M \models \text{``} \langle f_{\xi}; \xi \in \omega_1^M \rangle \text{ is an } I\text{-good scale "},$$

by elementarity of $j_{0,\alpha+1}$

$$M_{\alpha+1} \models "j_{0,\alpha+1} \left(\left\langle f_{\xi}; \xi \in \omega_1^M \right\rangle \right)$$
 is an $j_{0,\alpha+1}(I)$ -good scale ".

Therefore the set

$$\left\{ \xi \in \omega_1^{M_{\alpha+1}}; g \le f_{\xi}^{\alpha+1} \right\}$$

belongs to $M_{\alpha+1}$ and is $j_{0,\alpha+1}(I)$ -positive. Since $j_{0,\omega_1}(I)=J\cap M_{\omega_1}$ and

$$\begin{array}{ll} j_{\alpha+1,\omega_1}\left(\left\{\xi\in\omega_1^{M_{\alpha+1}};g\leq f_\xi^{\alpha+1}\right\}\right)&=&\left\{\xi\in\omega_1;g\leq f_\xi^{\omega_1}\right\}\\ &\subseteq&\left\{\xi\in\omega_1;\operatorname{body}(p)\leq f_\xi^{\omega_1}\right\}, \end{array}$$

the set
$$\{\xi \in \omega_1; \mathsf{body}(p) \leq f_{\xi}^{\omega_1}\}$$
 is *J*-positive.

We can show the strategic iteration lemma for the existence of a good scale using arguments of the previous proof and [10, Lemma 2.8.]. So we can conclude Shelah–Zapletal's theorem that $\mathfrak{d} = \aleph_1$ is Π_2 -compact.

Acknowledgement. I am grateful to David Asperó, Paul B. Larson and Hiroshi Sakai for helping me to study the theory of \mathbb{P}_{max} , and Masaru Kada and Shizuo Kamo for giving me useful information about thin slaloms and several results. I would like to thank participants of Set Theory Seminar at Chubu University and Nagoya University from 9th to 11th November for useful and kind comments on introduction. I would like to thank participants of Set Theory Seminar at kobe University on Norvember and December for comments in proofs of 2.3, 2.4 and 2.5. I also would like to thank the referee of the paper [12] for many useful and kind comments and suggestions across the whole paper.

References

- [1] D. Asperó, An introduction to \mathbb{P}_{max} forcing, manuscript (2003).
- [2] T. Bartoszyński and H. Judah. Set Theory: On the structure of the real line, A.K.Peters, Wellesley, Massachusetts, 1995.
- [3] Q. Feng and H. Woodin. *P-points in* \mathbb{Q}_{max} models, Ann. Pure Appl. Logic 119 (2003), no. 1-3, 121–190.
- [4] P. Larson. An \mathbb{S}_{max} variation for one Souslin tree, J. Symbolic Logic 64 (1999), no. 1, 81–98.
- [5] P. Larson. The stationary tower. Notes on a course by W. Hugh Woodin, volume 32 of University Lecture Series.

- [6] P. Larson. Saturation, Suslin trees and meager sets, Arch. Math. Logic, 44 (2005) no. 5, 581–595.
- [7] P. Larson. Forcing over models of determinacy, to appear in the Handbook of Set Theory.
- [8] P. Larson and S. Todorčević. Chain conditions in maximal models, Fund. Math. 168 (2001), no. 1, 77–104.
- [9] J. Pawlikowski. Powers of transitive bases of measure and category, Proc. Amer. Math. Soc. 93 (1985), no. 4, 719–729.
- [10] S. Shelah and J. Zapletal. Canonical models for ℵ₁-combinatorics, Ann. Pure Appl. Logic 98 (1999), no. 1-3, 217–259.
- [11] H. Woodin. The axiom of determinacy, forcing axioms and the nonstationary ideal, de Gruyter Series in Logic and its Applications, 1. Walter de Gruyter & Co., Berlin, 1999.
- [12] T. Yorioka. \mathbb{P}_{max} variations related to slaloms, to appear in MLQ.