<table>
<thead>
<tr>
<th>Title</th>
<th>Second order Nonlinear Difference Equations whose Eigenvalues are 1 (Dynamics of functional equations and numerical simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Suzuki, Mami</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録，1474: 110-117</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/48166</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Second order Nonlinear Difference Equations
whose Eigenvalues are 1

Mami Suzuki
Department of Management Informatics,
Aichi Gaksen Univ.

Keywords: Analytic solutions, Functional equations, Nonlinear difference equations.

1 Introduction

At first we consider the following second order nonlinear difference equation,

\[
\begin{aligned}
 u(t+1) &= U(u(t), v(t)), \\
 v(t+1) &= V(u(t), v(t)),
\end{aligned}
\]

where \(U(u, v) \) and \(V(u, v) \) are entire functions for \(u \) and \(v \). We suppose that the equation (1.1) admits an equilibrium point \((u^*, v^*) = (0, 0)\). Furthermore we suppose that \(U \) and \(V \) are written in the following form

\[
\begin{pmatrix}
 u(t + 1) \\
 v(t + 1)
\end{pmatrix} = M \begin{pmatrix}
 u(t) \\
 v(t)
\end{pmatrix} + \begin{pmatrix}
 U_1(u(t), v(t)) \\
 V_1(u(t), v(t))
\end{pmatrix},
\]

where \(U_1(u, v) \) and \(V_1(u, v) \) are higher order terms of \(u \) and \(v \). Let \(\lambda_1, \lambda_2 \) be characteristic values of matrix \(M \). For some regular matrix \(P \) which decided by \(M \), put \(\begin{pmatrix}
 u \\
 v
\end{pmatrix} = P \begin{pmatrix}
 x \\
 y
\end{pmatrix} \), then we can transform the system (1.1) into the following simultaneous system of first order difference equations (1.2):

\[
\begin{aligned}
 x(t + 1) &= X(x(t), y(t)), \\
 y(t + 1) &= Y(x(t), y(t)),
\end{aligned}
\]

*Research partially supported by the Grant-in-Aid for Scientific Research (C) 15540217 from the Ministry of Education, Science and Culture of Japan.
where $X(x, y) = \lambda_1 x + \sum_{i+j \geq 2} c_{ij} x^i y^j = \lambda_1 x + X_1(x, y),$
and $Y(x, y) = \lambda_2 y + \sum_{i+j \geq 2} d_{ij} x^i y^j = \lambda_2 y + Y_1(x, y),$

(1.3)

or

\[
\begin{align*}
X(x, y) &= \lambda x + y + \sum_{i+j \geq 2} c_{ij}' x^i y^j = \lambda x + X_1'(x, y), \\
Y(x, y) &= \sum_{i+j \geq 2} d_{ij}' x^i y^j = \lambda y + Y_1'(x, y),
\end{align*}
\]

(1.4)

where $\lambda = \lambda_1 = \lambda_2$.

In this note we consider analytic solutions of difference system (1.2), making use of Theorems in [1] and [4]. We will seek an analytic solution of (1.2) under the conditions $\lambda_1 = \lambda_2 = 1$ and definition (1.3). Further we suppose that

\[
\begin{align*}
X(x, y) &= x + \sum_{i+j \geq 2, i \geq 1} c_{ij} x^i y^j = x + X_1(x, y), \\
Y(x, y) &= \sum_{i+j \geq 2, j \geq 1} d_{ij} x^i y^j = y + Y_1(x, y),
\end{align*}
\]

(1.5)

where $X_1(x, y) \neq 0$ or $Y_1(x, y) \neq 0$. For the case $|\lambda_1| \neq 1$ or $|\lambda_2| \neq 1$, we obtained analytic general solutions of (1.2) in [5] and [6]. For a long time we could not treat the equation (1.2) under the condition $|\lambda_1| = |\lambda_2| = 1$, because it is difficult to have an analytic solution of the equation (1.2). For analytic solutions of a nonlinear first order difference equations, Kimura [1] and Yanagihara [7] studied the cases in which the absolute value of the eigenvalue equal to 1.

Next we consider a functional equation

\[
\Psi(X(x, \Psi(x))) = Y(x, \Psi(x)),
\]

(1.6)

where $X(x, y)$ and $Y(x, y)$ are holomorphic functions in $|x| < \delta_1$, $|y| < \delta_1$. We assume that $X(x, y)$ and $Y(x, y)$ are expanded there as in (1.5).

As far as $\frac{dx}{dt} \neq 0$, an existence of solutions of (1.2) is equivalent to an existence of solution Ψ of (1.6). Furthermore we can reduce (1.2) to the following first order difference equation

\[
x(t + 1) = X(x(t), \Psi(x(t))),
\]

(1.7)

Hereafter we consider t to be a complex variable, and concentrate on the difference system (1.2). Our aim in this paper is to show the following Theorem 1.

Theorem 1 Suppose $X(x, y)$ and $Y(x, y)$ are expanded in the forms (1.5) such that $X_1(x, y) \neq 0$ or $Y_1(x, y) \neq 0$.

(1) We define domains $D_1(\kappa_0, R_0)$ by
$$D_1(\kappa_0, R_0) = \{ t : |t| > R_0, |\arg[t]| < \kappa_0 \},$$
where κ_0 is any constant such that $0 < \kappa_0 \leq \frac{\pi}{4}$ and R_0 is sufficiently large number which may depend on X and Y. Further define
$$D^*(\kappa, \delta) = \{ x ; |\arg[x]| < \kappa, 0 < |x| < \delta \},$$
where δ is a small constant and κ is a constant such that $\kappa = 2\kappa_0$, i.e., $0 < \kappa \leq \frac{\pi}{2}$.

Suppose that $k \epsilon_{20} = A_{11} < 0$ for some $k \in \mathbb{N}$, $k \geq 2$, and $A = c_{20}$, then we have a formal solution $x(t)$ of (1.2) the following form
$$x(t) = -\frac{1}{At} \left(1 + \sum_{j+k \geq 1} \hat{a}_{jk} t^{-j} \left(\frac{\log t}{t} \right)^{k} \right)^{-1},$$
where \hat{a}_{jk} are constants which are defined by X and Y.

(2) Suppose $R_1 = \max\{R_0, 2/(|A|\delta)\}$, then there is a solution $x(t)$ of (1.2) such that $x(t) \in D^*(\kappa, \delta)$ for $t \in D_1(\kappa_0, R_1)$, which the solution satisfying the following conditions:
(i) $x(t)$ is holomorphic in $D_1(\kappa_0, R_1)$.
(ii) $x(t)$ is expressible in the form
$$x(t) = -\frac{1}{At} \left(1 + b(t, \frac{\log t}{t}) \right)^{-1},$$
where $b(t, \eta)$ is holomorphic for $t \in D_1(\kappa_0, R_1)$, $|\eta| < r$, and in the expansion $b(t, \eta) \sim \sum_{k=1}^{\infty} b_k(t) \eta^k$, $b_k(t)$ is asymptotically develop-able into $b_k(t) \sim \sum_{j+k \geq 1} b_{jk} t^{-j}$, as $t \to \infty$ through $D_1(\kappa_0, R_1)$, where b_{jk} are constants which are defined by X and Y.

2 Proof of Theorem 1

In [1], Kimura considered the following first order difference equation
$$w(t + \lambda) = F(w(t)),$$
where F is represented in a neighborhood of ∞ by a Laurent series
$$F(z) = z \left(1 + \sum_{j=1}^{\infty} b_j z^{-j} \right), \quad b_1 = \lambda \neq 0.$$ (2.1)

He defined the following domains
$$D(\epsilon, R) = \{ t : |t| > R, |\arg[t] - \theta| < \frac{\pi}{2} - \epsilon, \text{ or } \text{Im}(e^{i(\theta-\epsilon)}t) > R, \text{ or } \text{Im}(e^{i(\theta+\epsilon)}t) < -R \}.$$ (2.2)
\[
\mathcal{D}(\epsilon, R) = \{ t : |t| > R, |\arg[t] - \theta - \pi| < \frac{\pi}{2} - \epsilon \text{ or } \text{Im}(e^{-i(\theta + \pi - \epsilon)}t) > R \\
\text{or } \text{Im}(e^{-i(\theta + \pi + \epsilon)}t) < -R \}, \quad (2.3)
\]

where \(\epsilon \) is an arbitrarily small positive number and \(R \) is a sufficiently large number which may depend on \(\epsilon \) and \(F \), \(\theta = \arg \lambda \), (in this present paper, we consider the case \(\lambda = 1 \) in (D1)). He proved the following theorems A and B.

Theorem A. Equation (D1) admits a formal solution of the form
\[
t \left(1 + \sum_{j+k \geq 1} \hat{q}_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right) \quad (2.4)
\]
containing an arbitrary constant, where \(\hat{q}_{jk} \) are constants defined by \(F \).

Theorem B. Given a formal solution of the form (2.4) of (D1), there exists a unique solution \(w(t) \) satisfying the following conditions:

(i) \(w(t) \) is holomorphic in \(D(\epsilon, R) \),

(ii) \(w(t) \) is expressible in the form
\[
w(t) = t \left(1 + b(t, \frac{\log t}{t}) \right), \quad (2.5)
\]

where the domain \(D(\epsilon, R) \) is defined by (2.2) and \(b(t, \eta) \) is holomorphic for \(t \in D(\epsilon, R) \), \(|
\eta| < 1/R \), and in the expansion \(b(t, \eta) \sim \sum_{k=1}^{\infty} b_k(t) \eta^k \), \(b_k(t) \) is asymptotically developable into \(b_k(t) \sim \sum_{j+k \geq 1} \hat{q}_{jk} t^{-j} \), as \(t \to \infty \) through \(D(\epsilon, R) \), where \(\hat{q}_{jk} \) are constants which are defined by \(X \) and \(Y \).

Also there exists a unique solution \(\hat{w} \) which is holomorphic in \(\hat{D}(\epsilon, R) \) and satisfies a condition analogous to (ii), where the domain \(\hat{D}(\epsilon, R) \) is defined by (2.3).

In Theorem A and B, he defined the function \(F \) as in (2.1). But in our method, we cannot have a Laurent series of the function \(F \). Hence we derive following Propositions.

In the following, \(A \) denotes the constant \(A = c_{20} \) in Theorem 1, where \(c_{20} \) is the coefficient in (1.5).

Proposition 2. Suppose \(\tilde{F}(t) \) is holomorphic and expanded asymptotically in \(\{ t ; -1/(At) \in D^*(\kappa, \delta), A < 0 \} \) as
\[
\tilde{F}(t) \sim t \left(1 + \sum_{j=1}^{\infty} b_j t^{-j} \right), \quad b_1 = \lambda \neq 0,
\]
where \(D^*(\kappa, \delta) \) is defined in (1.9). Then the equation
\[
\psi(\tilde{F}(t)) = \psi(t) + \lambda \quad (2.6)
\]
has a formal solution
\[\psi(t) = t \left(1 + \sum_{j=1}^{\infty} q_j t^{-j} + q \frac{\log t}{t} \right), \tag{2.7} \]
where \(q_1 \) can be arbitrarily prescribed while other coefficients are uniquely determined by \(b_j, \ (j = 1, 2, \ldots) \), independently of \(q_1 \).

Proposition 3. The equation (2.6) has a solution \(w = \psi(t) \), which is holomorphic in \(\{ t; -1/(At) \in D^*(\kappa/2, \delta/2), A < 0 \} \) and has asymptotic expansion (2.7) there.

These Propositions are proved as in [1] pp. 212–222. Since \(A = c_{20} < 0 \) and \(\kappa_0 = \kappa/2 \), we see that \(x = -1/(At) \in D^*(\kappa/2, \delta/2) \) equivalent to \(t \in D_1(\kappa/2, 2/(|A|\delta)) = D_1(\kappa_0, 2/(|A|\delta)) \), where \(D_1(\kappa_0, R_0) \) is defined in (1.8). Further, as in [1] pp. 206 and pp. 228–232, we have following Proposition 4.

Proposition 4. Suppose a function \(\phi \) is the inverse of \(\psi \) such that \(w = \psi^{-1}(t) = \phi(t) \). Then we have \(\phi \circ \psi(t) = w, \psi \circ \phi(t) = t \), furthermore \(\phi \) is holomorphic and asymptotically expanded in \(\{ t; t \in D_1(\kappa_0, 2/(|A|\delta)) \} \) as
\[\phi(t) \sim t \left\{ 1 + \sum_{j+k \geq 1} \hat{q}_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right\}. \tag{2.8} \]
This function \(\phi(t) \) is a solution of difference equation of (D1).

In [4], we proved the following theorem C.

Theorem C. Suppose \(X(x, y) \) and \(Y(x, y) \) are defined in (1.5). Then

(1) if \(kc_{20} \neq d_{11} \) for any \(k \in \mathbb{N}, k \geq 2 \), then the formal solution \(\Psi(x) \) of (1.6) of the following form
\[\Psi(x) = \sum_{m=1}^{\infty} a_m x^m, \tag{2.9} \]
is identical to 0, i.e., \(a_1 = a_2 = \cdots = 0 \).

(2) if \(kc_{20} = d_{11} \) for some \(k \in \mathbb{N}, k \geq 2 \), then we have a formal solution \(\Psi(x) \) of (1.6) such the following form
\[\Psi(x) = \sum_{m=k}^{\infty} a_m x^m, \tag{2.10} \]
i.e., \(a_1 = a_2 = \cdots = a_{k-1} = 0 \).

(3) suppose
\[kc_{20} = d_{11} < 0 \ for \ some \ k \in \mathbb{N}, k \geq 2. \tag{2.11} \]
For any κ, $0 < \kappa \leq \frac{\pi}{2}$ and small δ, we define the following domain $D^*(\kappa, \delta)$,
\[
D^*(\kappa, \delta) = \{ x ; |\arg[x]| < \kappa, 0 < |x| < \delta \}.
\] (1.10)
there is a constant $\delta > 0$ and a solution $\Psi(x)$ of (1.6), which is holomorphic and can be expanded asymptotically in $D^*(\kappa, \delta)$ such that
\[
\Psi(x) \sim \sum_{j=k}^{\infty} a_j x^j.
\] (2.12)

Proof of Theorem 1. We prove (1) of Theorem 1. We assume that $kc_{20} = q_{11} < 0$ for some $k \in \mathbb{N}$, we suppose that $R_0 > R$ and $\kappa_0 < \frac{\pi}{4} - \epsilon$. Since $\theta = \arg[\lambda] = \arg[1] = 0$, we have
\[
D_1(\kappa_0, R_0) \subset D(\epsilon, R).
\] (2.13)
From Theorem C, for a $x \in D^*(\kappa, \delta)$ we have a solution $\Psi(x)$ of (1.6) which is holomorphic and can be expanded asymptotically in $D^*(\kappa, \delta)$ such that
\[
\Psi(x) \sim \sum_{j=k}^{\infty} a_j x^j.
\] (2.12)
On the other hand putting $A = c_{20}$ and $w(t) = -\frac{1}{Ae(t)}$ in (1.7), then we have
\[
w(t + 1) = -\frac{1}{AX(-\frac{1}{Ae(t)}; \Psi(-\frac{1}{Ae(t)}))}.
\] (2.14)
If we can have $-\frac{1}{Ae} = x \in D^*(\kappa, \delta)$, then making use of Theorem C, we have a solution $\Psi(x)$ of (1.6) such that $\Psi(x) = \Psi(-\frac{1}{Ae}) \sim \sum_{m=k}^{\infty} a_j (-\frac{1}{Ae})^m$, $(k \geq 2)$. Further from (1.5), we have
\[
-\frac{1}{AX(x, \Psi(x))} \sim w \left[1 + c_{20} \frac{1}{A} w^{-1} + \sum_{k \geq 2} \tilde{c}_k (w)^{-k} \right],
\] (2.15)
where \tilde{c}_k are defined by c_{ij} and $a_k (i + j \geq 2, i \geq 1, k \geq 2)$. From (2.15) and definition of A, we can write (2.15) into the following form (2.16),
\[
w(t + 1) = \tilde{F}(w(t)) \sim w(t) \left\{ 1 + w(t)^{-1} + \sum_{k \geq 2} \tilde{c}_k (w(t))^{-k} \right\}.
\] (2.16)
On the other hand, putting $\lambda = 1$ and $m = 1$ in (2.1), i.e. $\theta = 0$, then making use of the Theorem A, we have the following first order difference equation (D1, $\lambda = 1$)
\[
w(t + 1) = F(w(t)) = w(t) \left(1 + w(t)^{-1} + \sum_{j=2}^{\infty} b_j w(t)^{-j} \right),
\] (D1, $\lambda = 1$)
admits a formal solution of the form \(t \left(1 + \sum_{j+k \geq 1} \bar{q}_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right) \).

Similarly for the first order difference equation (2.16), making use of Proposition 2, we have a formal solution (2.17) of it such that,

\[
w(t) = t \left(1 + \sum_{j+k \geq 1} b_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right),
\]

where \(b_{jk} \) are defined by \(\bar{F} \) in (2.16).

From \(x(t) = -\frac{1}{At} \), we have a formal solution (2.18) of (1.2) such that,

\[
x(t) = -\frac{1}{At} \left(1 + \sum_{j+k \geq 1} b_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right)^{-1}.
\]

Conversely, if we have a formal function \(x(t) \) such that in (2.18) exist in the domain \(D^*(\kappa, \delta) \), then we can prove that the formal function (2.18) is a formal solution of (1.2), as \(t \to \infty \) through \(D_1(\kappa_0, R_0) \). At first we take a small \(\delta > 0 \). For sufficiently large \(R \), since \(R_0 > R \), we can have

\[
|x(t)| = \left| \frac{1}{At} \left(1 + \sum_{j+k \geq 1} b_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right)^{-1} \right| < \frac{1}{|A|R}(1+1) < \delta.
\]

for \(t \in D_1(\kappa_0, R_0) \). Since \(A = c_{20} < 0 \), if we take sufficiently large \(R_0 \), then we have

\[
\arg \left[1 + b \left(t, \frac{\log t}{t} \right) \right] \leq \kappa_0 + \kappa_0 \text{ for } t \in D_1(\kappa_0, R_0).
\]

Hence we have \(-\kappa_0 - \kappa_0 \leq \arg [x(t)] \leq \kappa_0 + \kappa_0 \). From the assumption of \(\kappa = 2\kappa_0 \), we have

\[
\arg [x(t)] < \kappa \leq \frac{\pi}{2} \text{ for } t \in D_1(\kappa_0, R_0).
\]

From (2.19) and (2.20), we have that \(x(t) \in D^*(\kappa, \delta) \) for a some \(\kappa \), \(0 < \kappa \leq \frac{\pi}{2} \).

Hence we have a \(\Psi(x(t)) \) which satisfies the equation (1.6) and we prove that the function \(x(t) \) is a formal solution of (1.2) and holomorphic in \(D_1(\kappa_0, R_0) \). Therefore we see that the function \(x(t) \) in the (2.18) is a formal solution of (1.2).

Next we prove (2). Suppose that \(R_1 = \max(R_0, 2/(|A|\delta)) \), making use of Proposition 4, then we have a holomorphic solution \(w(t) \) of (2.16) for \(t \in D_1(\kappa_0, R_1) \), i.e., we have a solution \(x(t) \) of (1.2) for \(t \) at there, in which satisfying following conditions:

(i) \(x(t) \) is holomorphic in \(D_1(\kappa_0, R_1) \),
(ii) \(w(t) \) is expressible in the form

\[
x(t) = -\frac{1}{At} \left(1 + b \left(t, \frac{\log t}{t} \right) \right)^{-1}, \tag{2.21}
\]
where $b(t, \eta)$ is holomorphic for $t \in D_1(\kappa_0, R_1)$, $|\eta| < r$, and in the expansion $b(t, \eta) \sim \sum_{k=1}^{\infty} b_k(t)\eta^k$, $b_k(t)$ is asymptotically develop-able into $b_k(t) \sim \sum_{j+k \geq 1} b_{jk} t^{-j}$, as $t \to \infty$ though $D_1(\kappa_0, R_1)$. □

Finally, we have a solution $u(t), v(t)$ of (1.1) by the transformation

$$
\begin{pmatrix}
 u(t) \\
 v(i)
\end{pmatrix} = P
\begin{pmatrix}
 x(t) \\
 \Psi(x(t))
\end{pmatrix}.
$$

References

