<table>
<thead>
<tr>
<th>Title</th>
<th>Nonconvex cost optimal control problems for semilinear second order evolution equations (Dynamics of functional equations and numerical simulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakagiri, Shin-ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1474: 186-194</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/48175</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Nonconvex cost optimal control problems for semilinear second order evolution equations

1 Introduction

In this paper we study the optimal control problem for the control system described by the semilinear evolution problem in Hilbert space of the form

\[
\begin{aligned}
&y'' + A_2(t)y' + A_1(t)y = f(t, y, y') + B_3v_3 \text{ in } (0, T), \\
y(0) = y_0 + B_1v_1, \quad y'(0) = y_1 + B_2v_2,
\end{aligned}
\]

(1.1)

where \(A_1(t), A_2(t)\) are time varying operators on Hilbert spaces \(V_1, V_2\) embedded in a pivot Hilbert space \(H\), \(f(t, y, y')\) is a nonlinear function, \(y_0, y_1\) are given initial values, \(v_1, v_2, v_3\) are control variables, and \(B_1, B_2, B_3\) are controllers. Under appropriate conditions on \(A_1(t), A_2(t), y_0, y_1\) and \(f(t, y, y')\) in (1.1), we establish the wellposedness result and the Fréchet differentiability of solutions with respect to \(v = (v_1, v_2, v_3)\) by the variational setting as in Dautray and Lions [3]. The quadratic cost optimal control theory for linear hyperbolic distributed parameter systems has been completely developed by Lions [8] and his school at the middle of 60's. After that the central theme of control theory has been moved to the nonlinear problems. Also the general nonconvex cost optimal control problems are studied extensively for nonlinear systems by many researchers (see Ahmed and Teo [1], Barbu [2], Fattorini [4], Fursikov [5], Li and Yong [10] and the references cited therein). However, in practical applications to partial differential equations, there is a few researches involving initial value controls and the attached cost functional is not necessary convex. Taking into account of this matter, we study the nonconvex cost optimal control problems for (1.1). Let \(F = F(v, y)\) and \(G = G(t, v, y)\) be real valued (not necessary convex in \(y\)) functions. The cost \(J(v)\) attached to (1.1) is given by the following general integral cost

\[
J(v) = F(v, y(v; T)) + \int_0^T G(t, v, y(v; t))dt,
\]

(1.2)

where \(y = y(v)\) is the solution of (1.1). Under the Fréchet differentiability on \(F, G\) in the argument for \(y\) and the Gateaux differentiability on \(F, G\) in the argument for \(v\), we establish the necessary optimality condition for optimal controls by using the Fréchet differentiability of \(y(v)\) in the control variable \(v = (v_1, v_2, v_3)\).
2 Semilinear second order evolution equations

Let H be a real pivot Hilbert space with inner product $(\cdot, \cdot)_H$ and norm $\| \cdot \|_H$. For $i = 1, 2$, let V_i be a real separable Hilbert space with the norm $\| \cdot \|_{V_i}$. The dual space of V_i is denoted by V'_i and the duality pairing between V'_i and V_i is denoted by $(\cdot, \cdot)_{V'_i, V_i}$. Assume that each pair (V_i, H) is a Gelfand triple space and that V_i is continuously embedded in V_2. Let $0 < T < \infty$ and let $a_i(t; \phi, \varphi), t \in [0, T]$ be a family of symmetric bilinear forms on $V_i \times V_i$, $i = 1, 2$. We suppose that there exist $c_{i1} > 0$ such that

$$|a_i(t; \phi, \varphi)| \leq c_{i1} \| \phi \|_{V_i} \| \varphi \|_{V_i} \quad \text{for all} \quad \phi, \psi \in V_i \text{ and } t \in [0, T];$$

(2.1)

and there exist $\alpha_i > 0$ and $\lambda_i \in \mathbb{R}$ such that

$$a_i(t; \phi, \varphi) + \lambda_i \| \phi \|^2_H \geq \alpha_i \| \phi \|^2_{V_i} \quad \text{for all} \quad \phi \in V_i \text{ and } t \in [0, T].$$

(2.2)

Further, we suppose that the function $t \to a_i(t; \phi, \varphi)$ is continuously differentiable in $[0, T]$ and there exists a $c_{i2} > 0$ such that

$$|a'_i(t; \phi, \varphi)| \leq c_{i2} \| \phi \|_{V_i} \| \varphi \|_{V_i} \quad \text{for all} \quad \phi, \psi \in V_i \text{ and } t \in [0, T].$$

(2.3)

By (2.1) we can define the operators $A_i(t) \in \mathcal{L}(V_i, V'_i)$ by the relation $a_i(t; \phi, \varphi) = \langle A_i(t)\phi, \varphi \rangle_{V'_i, V_i}$. In what follows, we shall write $V_1 = V$ for notational simplicity.

Now we consider the following semilinear damped second order evolution equation

$$\begin{align*}
\left\{ \begin{array}{l}
y'' + A_2(t)y' + A_1(t)y = f(t, y, y') \quad \text{in} \quad (0, T), \\
y(0) = y_0 \in V, \quad y'(0) = y_1 \in H,
\end{array} \right.
\end{align*}$$

(2.4)

where $f : [0, T] \times V_2 \times H \to V'_2$. The solution Hilbert space $W(0, T)$ of (2.4) is defined by

$$W(0, T) = \{ w | w \in L^2(0, T; V), w' \in L^2(0, T; V_2), w'' \in L^2(0, T; V') \}$$

denothed with the norm

$$\|w\|_{W(0, T)} = \left(\|w\|^2_{L^2(0, T; V)} + \|w'\|^2_{L^2(0, T; V_2)} + \|w''\|^2_{L^2(0, T; V')} \right)^{\frac{1}{2}}.$$

A function $t \to y(t)$ is said to be a weak solution of (2.4) if $y \in W(0, T)$ and y satisfies

$$\langle y'', \phi \rangle_{V', V} + a_2(\cdot; y'(), \phi) + a_1(\cdot; y(), \phi) = \langle f(\cdot, y(\cdot), y'(\cdot)), \phi \rangle_{V_2', V_2}$$

for all $\phi \in V$ in the sense of $\mathcal{D}'(0, T)$.

$$y(0) = y_0 \in V, \quad \frac{dy}{dt}(0) = y_1 \in H,$$

where $\mathcal{D}'(0, T)$ is the space of distributions on $(0, T)$ (cf. Dautray and Lions [3]).

We impose the following assumptions on the nonlinear term $f : [0, T] \times V_2 \times H \to V'_2$ in (2.4).

(A1) The mapping $t \to f(t, y, z)$ is strongly measurable in V'_2 for all $y \in V_2$ and $z \in H$.

(A2) There exists a $\beta \in L^2(0, T; \mathbb{R}^+)$ such that
\[
\|f(t, y_1, z_1) - f(t, y_2, z_2)\|_{V_2} \leq \beta(t)(\|y_1 - y_2\|_{V_2} + |z_1 - z_2|_{H}) \quad \text{a.e. } t \in [0, T]
\]
for $y_1, y_2 \in V_2$ and $z_1, z_2 \in H$.

(A3) There exists a $\gamma \in L^2(0, T; \mathbb{R}^+)$ such that
\[
\|f(t, 0, 0)\|_{V_2} \leq \gamma(t) \quad \text{a.e. } t \in [0, T].
\]

The following theorem on existence, uniqueness, regularity and energy equality of solutions to (2.4) holds (for a proof see [7]).

Theorem 2.1 Assume that both a_i, $i = 1, 2$ satisfy (2.1)-(2.3) and $f(t, y, z)$ satisfy (A1)-(A3). Then there exists a unique weak solution $y \in W(0, T) \cap C([0, T]; V) \cap C^1([0, T]; H)$ of (2.4). Moreover, for each $t \in [0, T]$, y satisfies the energy equality
\[
a_1(t; y(t), y(t)) + |y'(t)|_H^2 + 2 \int_0^t a_2(\sigma; y(\sigma), y'(\sigma))d\sigma \\
= a_1(0; y_0, y_0) + |y_1|_H^2 + \int_0^t a'_1(\sigma; y(\sigma), y(\sigma))d\sigma \\
+ 2 \int_0^t \langle f(\sigma, y(\sigma), y'(\sigma)), y'(\sigma)\rangle_{V_2', V_2}d\sigma. \tag{2.5}
\]

The following energy inequality follows from the assumptions (A1)-(A3) and the energy equality (2.5): For each $t \in [0, T]$
\[
\|y(t)\|_V^2 + |y'(t)|_H^2 + \int_0^t \|y'(\sigma)\|_{V_2}^2d\sigma \leq c(||y_0||_V^2 + |y_1|_H^2 + \|\gamma\|_{L^2(0,T;\mathbb{R}^+)}^2), \tag{2.6}
\]
where c is a proper constant depending only on β in (A2).

Note here that we will omit writing the integral variables in the definite integral if there are some confusions. For example, in (2.6) we will express $\int_0^t \|y'(\sigma)\|_{V_2}^2d\sigma$ instead of $\int_0^t \|y'(\sigma)\|_{V_2}^2d\sigma$.

3 Continuity and Fréchet differentiability

Throughout this section we assume that (2.1)-(2.3) and (A1)-(A3) hold without any indication. In this section we establish the continuity and Gâteaux differentiability of the solution mapping for (2.4) on the initial values and forcing functions. Let \mathcal{F} be a product space defined by
\[
\mathcal{F} = V \times H \times L^2(0, T; V_2'). \tag{3.1}
\]

The norm of \mathcal{F} is defined by
\[
\|(y_0, y_1, g)\|_F = (||y_0||_V^2 + |y_1|_H^2 + \|g\|_{L^2(0, T; V_2')}^2)^{1/2} \quad \text{for } (y_0, y_1, g) \in \mathcal{F}.
\]
For each \(q = (y_0, y_1, g) \in \mathcal{F} \) we consider the following semilinear damped second order system:
\[
\begin{aligned}
& y''(q) + A_2(t)y'(q) + A_1(t)y(q) = f(t, y(q), y'(q)) + g \quad \text{in} \quad (0, T), \\
& y(q; 0) = y_0 \in V, \quad y'(q; 0) = y_1 \in H,
\end{aligned}
\] (3.2)

Here in (3.2), \(A_1(t), A_2(t) \) and \(f(t, y, z) \) are differential operators and the nonlinear function satisfying the assumptions given in Section 2.

By virtue of Theorem 2.1, we can define uniquely the solution mapping \(q = (y_0, y_1, g) \rightarrow y(q) \) of \(\mathcal{F} \) into \(W(0, T) \), because \(f(t, y, z) + g(t) \) satisfies the assumptions (A1)-(A3).

Theorem 3.1 The solution mapping \(q = (y_0, y_1, g) \rightarrow y(q) \) of \(\mathcal{F} \) into \(W(0, T) \) is strongly continuous. Further, for each \(q_1 = (y_0^1, y_1^1, g_1) \in \mathcal{F} \) and \(q_2 = (y_0^2, y_1^2, g_2) \in \mathcal{F} \) we have the inequality
\[
\begin{aligned}
& \| y(q_1; t) - y(q_2; t) \|_V^2 + | y'(q_1; t) - y'(q_2; t)|_H^2 + \int_0^t \| y'(q_1) - y'(q_2) \|^2_{V_2} \, d\sigma \\
& \leq c(\| y_0^1 - y_0^2 \|^2_V + | y_1^1 - y_1^2|^2_H + \| g_1 - g_2 \|^2_{L^2(0,T;V_2)}), \quad \text{for all} \ t \in [0, T],
\end{aligned}
\] (3.3)

where \(c > 0 \) depends only on \(\beta \) in (A3).

In turn, we raise the problem of differentiability of solution map \(q = (y_0, y_1, g) \in \mathcal{F} \rightarrow y(q) \in W(0, T) \). The Fréchet differentiability of solution map is desirable for many applications, and then we can establish the Fréchet differentiability of solution mapping \(q = (y_0, y_1, g) \in \mathcal{F} \rightarrow y(q) \in W(0, T) \) and characterize the Fréchet derivatives as the solutions of linearized second order evolution equations for (3.2).

Let \(X \) and \(Y \) be Banach spaces, and let \(\mathcal{L}(X, Y) \) be a set of all bounded linear operators from \(X \) to \(Y \). We denote the Banach space \(\mathcal{L}(X, Y) \) endowed with the strong operator topology by \(\mathcal{L}_s(X, Y) \), and endowed with the operator norm topology by \(\mathcal{L}_u(X, Y) \).

We recall the following defintion of Fréchet differentiability of the mapping \(\Phi : X \rightarrow Y \):

Definition 3.1 Let \(\Phi : X \rightarrow Y \). The function \(\Phi \) is said to be Fréchet differentiable at \(x = x_0 \), if there exists a \(T \in \mathcal{L}(X, Y) \) such that
\[
\frac{\| \Phi(x_0 + h) - \Phi(x_0) - Th \|_Y}{\| h \|_X} \rightarrow 0 \quad \text{as} \quad \| h \|_X \rightarrow 0.
\] (3.4)

If \(\Phi \) is Fréchet differentiable at each \(x_0 \in X \), \(\Phi \) is said to be Fréchet differentiable on \(X \).

The operator \(T \) in (3.4) is called the Fréchet derivative of \(\Phi(x) \) at \(x = x_0 \) and is denoted by \(\Phi_x(x_0) \).

Assume that \(\Phi : X \rightarrow Y \) is Fréchet differentiable on \(X \). If the Fréchet derivative \(\Phi_x(\xi) \) is continuous in \(\xi \in X \) with respect to the norm topology of \(\mathcal{L}_u(X, Y) \), \(\Phi \) is said to be continuously Fréchet differentiable, or of \(C^1 \)-class. The space of all continuously Fréchet differentiable functions \(\Phi : X \rightarrow Y \) is denoted by \(C^1(X, Y) \).

By Definition 3.4, the solution mapping \(q \rightarrow y(q) \) of \(\mathcal{F} \) into \(W(0, T) \) is Fréchet differentiable if for any \(q = (y_0, y_1, g) \in \mathcal{F} \) and any \(w = (y_0^*, y_1^*, g^*) \in \mathcal{F} \) there exists a \(dy(q) \in \mathcal{L}(\mathcal{F}, W(0, T)) \) such that
\[
\frac{\| y(q + w) - y(q) - T(q)w \|_{W(0,T)}}{\| w \|_{\mathcal{F}}} \rightarrow 0 \quad \text{as} \quad \| w \|_{\mathcal{F}} \rightarrow 0.
\] (3.5)
The operator $dy(q)$ is called the Fréchet derivative of $y(q)$ and the function $dy(q)w \in W(0, T)$ is called the Fréchet derivative of $y(q)$ in the direction $w \in \mathcal{F}$.

Now, in order to obtain the Fréchet differentiability of the solution mapping, we impose the following assumptions on the nonlinear term $f(t, y, z)$.

(A4) For each $t \in [0, T]$ and $z \in H$, $f(t, y, z) \in C^1(V_2, V_2')$, and for each $t \in [0, T]$, $f_y(t, y, z) \in C(V_2 \times H, \mathcal{L}(V_2, V_2'))$ and there is $\beta_1 \in L^2(0, T; \mathbb{R}^+)$ such that

$$
\|f_y(t, y, z)\|_{\mathcal{L}(V_2, V_2')} \leq \beta_1(t)(\|y\|_V + |z|_H + 1) \quad a.e. \ t \in [0, T].
$$

(A5) For each $t \in [0, T]$ and $y \in V_2$, $f(t, y, z) \in C^1(H, V_2')$ and $f_z(t, y, z) \in C(H \times V_2, \mathcal{L}(V_2', V_2'))$, and there is $\beta_2 \in L^2(0, T; \mathbb{R}^+)$ such that

$$
\|f_z(t, y, z)\|_{\mathcal{L}(H, V_2')} \leq \beta_2(t)(\|y\|_V + |z|_H + 1) \quad a.e. \ t \in [0, T].
$$

Theorem 3.2 Assume that (A4) and (A5) hold. Then the mapping $q = (y_0, y_1, g) \rightarrow y(q)$ of \mathcal{F} into $W(0, T)$ is Fréchet differentiable and such the Fréchet derivative of $y(q)$ at $q = \overline{q}$ in the direction $w = (y^*_0, y^*_1, g^*) \in \mathcal{F}$, say $z = dy(\overline{q})w$, is a unique weak solution satisfying the following equation

$$
\begin{cases}
 z'' + A_2(t)z' + A_1(t)z = f_y(y, y', y')z + f_z(t, y, y')z' + g^* \quad \text{in} \quad (0, T),
 \\
 z(0) = y_0^*, \quad z'(0) = y_1^*.
\end{cases}
$$

(3.6)

The Fréchet derivative $dy(q)$ is norm continuous in q.

Theorem 3.3 Assume that (A4) and (A5) hold true. Then the Fréchet derivative $dy(q)$ is continuous on \mathcal{F} with respect to the norm topology of $\mathcal{L}_u(\mathcal{F}, W(0, T))$.

Remark 3.1 The Gâteaux differentiability of the mapping $q \rightarrow y(q)$ of \mathcal{F} into $W(0, T)$ is proved in [7] under the same assumptions (A4) and (A5).

4 Nonconvex cost optimal control problems

Let \mathcal{U}_i, $i = 1, 2, 3$ be the Hilbert spaces of control variables u_i, $i = 1, 2, 3$, respectively. We define the product space

$$
\mathcal{U} = \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{U}_3
$$

as the Hilbert space of control variables $v = (v_1, v_2, v_3)$. We consider the following control system

$$
\begin{cases}
 y'' + A_2(t)y' + A_1(t)y = f(t, y, y') + B_3v_3 \quad \text{in} \quad (0, T),
 \\
 y(0) = y_0 + B_1v_1 \in V, \quad y'(0) = y_1 + B_2v_2 \in H,
\end{cases}
$$

(4.2)
in which three control variables are involved in forcing terms and initial conditions (cf. Lions and Magenes II [9; Chapter 6]). Here in (4.2), $B_1 \in \mathcal{L}(\mathcal{U}_1, V)$, $B_2 \in \mathcal{L}(\mathcal{U}_2, H)$ and $B_3 \in \mathcal{L}(\mathcal{U}_3, L^2(0, T; V'_2))$ and are controllers, $y_0 \in V$, $y_1 \in H$, $f(t, y, y')$ is a nonlinear forcing function satisfying the conditions (A1)-(A5), $v = (v_1, v_2, v_3)$ is a control variable and $y(v)$ denotes the solution state for $v = (v_1, v_2, v_3) \in \mathcal{U}$. We put $B = (B_1, B_2, B_3) \in \mathcal{L}(\mathcal{U}, W(0, T))$.
$\mathcal{L}(U, V) \times \mathcal{L}(U, H) \times \mathcal{L}(U, L^2(0, T; V'))$. By Theorem 2.1, for any $v \in U$ there is a unique weak solution $y = y(v) \in W(0, T) \cap C([0, T]; V)$. Hence we have the solution mapping $v \rightarrow y(v) : U \rightarrow W(0, T)$. Since the mapping $U_1 \times U_2 \times U_3 \rightarrow \mathcal{F}$ defined by

$$
(v_1, v_2, v_3) \rightarrow (y_0 + B_1v_1, y_1 + B_2v_2, B_3v_3) \in \mathcal{F}
$$

is affine and continuous, the following theorem follows from Theorem 3.2 and Theorem 3.3 (cf. Ha and Nakagiri [6]).

Theorem 4.1 Assume that (A4) and (A5) hold true. Then the mapping $v \rightarrow y(v)$ of U into $W(0, T)$ is Fréchet differentiable on U and the Fréchet derivative of $y(v)$ at $v = u$ in the direction $w = (w_1, w_2, w_3) \in U$, say $\xi = dy(u)w$, is a unique weak solution satisfying the following equation

$$
\begin{align*}
\xi'' + A_2(t)\xi' + A_1(t)\xi &= f_y(t, y(u), y'(u))\xi + f_z(t, y(u), y'(u))\xi' + B_3w_3 \quad \text{in} \quad (0, T), \\
z(0) &= B_1w_1, \quad z'(0) = B_2w_2.
\end{align*}
$$

(4.3)

Further the Fréchet derivative $dy(v)$ is continuous on U with respect to the norm topology of $\mathcal{L}(U, W(0, T))$.

The nonconvex cost function associated with the control system (4.2) is given by

$$
J(v) = F(v, y(v; T)) + \int_0^T G(t, v, y(v; t)) dt, \quad \forall v \in U,
$$

(4.4)

where $F : U \times V \rightarrow \mathbb{R}$, $G : [0, T] \times U \times V \rightarrow \mathbb{R}$. We assume the following conditions on F and G in (4.4).

(B1) The mapping $(v, y) \rightarrow F(v, y)$ is continuous on $U \times V$.

(B2) The mapping $t \rightarrow G(t, v, y)$ is measurable for all $(v, y) \in U \times V$.

(B3) The mapping $y \rightarrow G(t, v, y)$ is measurable for all $(t, y) \in [0, T] \times U$.

(B4) For any $v \in U$ and arbitrary bounded set $K \subset V$, there exists an $m = m_{v, K} \in L^1(0, T)$ such that

$$
\sup_{y \in K} |G(t, v, y)| \leq m_{v, K}(t), \quad \text{a.e.} \ t \in [0, T].
$$

Let $U_{ad} = U_{ad}^1 \times U_{ad}^2 \times U_{ad}^3$ be a closed convex subset of U, which is called the admissible set. An element $u = (u_1, u_2, u_3) \in U$ is said to be the optimal control of $J(v)$ over U_{ad} if $u \in U_{ad}$ and u satisfies $J(u) = \inf_{v \in U_{ad}} J(v)$.

On the existence of an optimal control for the cost J, we have to suppose some compactness conditions to obtain the existence of an optimal control.

(C1) The admissible set U_{ad} is compact in U.

(C2) The controller $B = (B_1, B_2, B_3)$ is a compact operator.

Theorem 4.2 Assume that (B1)-(B4) hold true. If (C1) or (C2) is satisfied, then there exists at least one optimal control u for the cost $J(v)$ in (4.4) subject to the control system (4.2).
This existence theorem follows from the strong continuity of \(y(v) \) in \(v \) in the space \(W(0, T) \).

In order to give the necessary conditions for the optimal control \(u \), we require the following additional conditions on \(F \) and \(G

(D1) for fixed \(v \in \mathcal{U} \) the Fréchet derivative \(F_y(v, y) \in \mathcal{L}(V, \mathbb{R}) \) exists and \(F_y(v, y) \) is strong continuous in \((v, y) \in \mathcal{U} \times V \);

(D2) for fixed \(y \in V \) the Gâteaux derivative \(F_v(v, y) \in \mathcal{L}(\mathcal{U}, \mathbb{R}) \) exists and \(F_v(v, y) \) is strong continuous in \(v \in \mathcal{U} \);

(D3) for fixed \((t, v) \in [0, T] \times \mathcal{U} \) the Fréchet derivative \(G_y(t, v, y) \in \mathcal{L}(V, \mathbb{R}) \) exists and \(G_y(t, v, y) \) is strong continuous in \((v, y) \in \mathcal{U} \times V \);

(D4) for any bounded set \(K \subset \mathcal{U} \times V \), there exists an \(m_K^1(t) \in L^1(0, T) \) such that

\[
sup_{(v, y) \in K} \|G_y(t, v, y)\|_{\mathcal{L}(V, \mathbb{R})} \leq m_K^1(t) \quad \text{a.e. } t \in [0, T];
\]

(D5) for fixed \((t, v) \in [0, T] \times V \) the Gâteaux derivative \(G_v(t, v, y) \in \mathcal{L}(\mathcal{U}, \mathbb{R}) \) exists and \(G_v(t, v, y) \) is strong continuous in \(v \in \mathcal{U} \);

(D6) for any bounded set \(K \subset \mathcal{U} \times V \), there exists an \(m_K^2(t) \in L^1(0, T) \) such that

\[
sup_{(v, y) \in K} \|G_v(t, v, y)\|_{\mathcal{L}(\mathcal{U}, \mathbb{R})} \leq m_K^2(t) \quad \text{a.e. } t \in [0, T].
\]

In what follows we suppose the existence of an optimal control \(u = (u_1, u_2, u_3) \) of the cost (4.4). It is well known (cf. Lions [8]) that the optimality condition for \(u \) is given by the variational inequality

\[
J'(u)(v - u) \geq 0 \quad \text{for all } v \in \mathcal{U}_{ad}, \tag{4.5}
\]

where \(J'(u) \) denotes the Gâteaux derivative of \(J(v) \) in (4.4) at \(v = u \). In order to give the exact form of \(J'(u)(v - u) \), we give the following proposition.

Proposition 4.1 Assume that (A1)-(A5) hold and that \(F \) and \(G \) satisfy (B1)-(B4) and (C1)-(C4). Then \(J(v) \) is Gâteaux differentiable and the derivative \(J'(u)(v - u) \) at the direction \(v - u \) is given by

\[
J'(u)(v - u) = F_y(u, y(u; T))\xi(T) + \int_0^T G_y(t, u, y(u; t))\xi(t) dt \\
+ F_v(u, y(u; T))(v - u) + \int_0^T G_v(t, u, y(u; t))(v - u) dt, \tag{4.6}
\]

where \(\xi \) is the Fréchet derivative \(dy(u)(v - u) \) in Theorem 4.1.

It is desirable to write down the necessary condition in terms of adjoint state equations. However, the well-posedness of adjoint system can not be verified under the conditions (D1) on \(F_y \) and (D3) on \(G_y \). Hence, as in Ha and Nakagiri [6] we employ the transposition method developed by Lions [8] and Lions and Magenes [9] to define the transposed adjoint system.

Let \(\Lambda_{\mathcal{U}_i} \) be the canonical isomorphism of \(\mathcal{U}_i \) onto \(\mathcal{U}_{i}^* \), \(i = 1, 2, 3 \). The following main theorem follows from Proposition 4.1 via the transposition method.
Theorem 4.3 Assume all conditions in Proposition 4.1 hold. Then the optimal control $u \in \mathcal{U}_{ad}$ for (4.4) is characterized by the following system of equations and inequality:

$$
\begin{cases}
 y''(u) + A_2(t)y'(u) + A_3(t)y(u) = f(t, y(u), y'(u)) + B_3u_3 \\
y(u;0) = y_0 + B_1u_1 \in V, \quad y'(u;0) = y_1 + B_2u_2 \in H.
\end{cases}
$$

\begin{align*}
\langle p_T(u), \psi(0) \rangle + (p_T'(u), \psi'(0))_V & \\
+ \int_0^T \langle p(u; t), \psi'' + A_2(t)\psi' + A_1(t)\psi - f_y(t, y(u), y'(u))\psi - f_z(t, y(u), y'(u))\psi' \rangle_{V_2, V'_2} \, dt & \\
= \langle F_y(u, y(u; T)), \psi(T) \rangle + \int_0^T \langle G_y(t, u, y(u; t)), \psi(t) \rangle \, dt
\end{align*}

\forall \psi \in W(0, T) \text{ such that }
\begin{align*}
\psi'' + A_2(t)\psi' + A_1(t)\psi - f_y(t, y(u), y'(u))\psi - f_z(t, y(u), y'(u))\psi' & \in L^2(0, T; V'_2), \\
\psi(0) & \in V, \\
\psi'(0) & \in H.
\end{align*}

\begin{align*}
& (\Lambda_1^{-1}B_1^*p_T(u), v_1 - u_1)_{\mathcal{U}_1} + (\Lambda_2^{-1}B_2^*p_T'(u), v_2 - u_2)_{\mathcal{U}_2} + (\Lambda_3^{-1}B_3^*p(u), v_3 - u_3)_{\mathcal{U}_3} \\
& + F_v(u, y(u; T))(v-u) + \oint_0^T G_v(t, u, y(u))(v-u) \, dt \geq 0, \\
& \forall v = (v_1, v_2, v_3) \in \mathcal{U}_{ad} = \mathcal{U}_{ad}^{1} \times \mathcal{U}_{ad}^{2} \times \mathcal{U}_{ad}^{3}.
\end{align*}

Remark 4.1 The transposed solution $p_u = (p_T(u), p_T'(u), p(u; \cdot))$ of the adjoint system in Theorem 4.3 is verified to satisfy formally the equation

$$
\begin{cases}
p'' - A_2(t)p + (A_1(t) - A_2'(t))p & \\
= f_y(t, y(u), y'(u))p + (f_z(t, y(u), y'(u))p'), \\
p(u; T) = F_y(u, y(u; T)) & \\
p'(u; T) = 0,
\end{cases}
$$

and $p_T(u) = p(u; 0), \quad p_T'(u) = p'(u; 0)$.

Let $\Omega \subset \mathbb{R}^3$ be a bounded domain with sufficiently smooth boundary $\partial \Omega$, and let $Q = [0, T] \times \Omega$ and $\Sigma = [0, T] \times \partial \Omega$. We can give an application of the above Theorem 4.3 to the nonconvex cost optimal control problems for the coupled sine-Gordon equations studied in Nakagiri and Ha [11].

\begin{align*}
\frac{\partial^2 y_1}{\partial t^2} + \alpha_{11} \frac{\partial y_1}{\partial t} + \alpha_{12} \frac{\partial y_1}{\partial t} - \beta_1 \Delta y_1 + \gamma_1 \sin y_1 + k_{11}y_1 + k_{12}y_2 & = B_1v_1(t, x) \quad \text{in } Q,
\end{align*}

\begin{align*}
\frac{\partial^2 y_2}{\partial t^2} + \alpha_{21} \frac{\partial y_1}{\partial t} + \alpha_{22} \frac{\partial y_2}{\partial t} - \beta_2 \Delta y_2 + \gamma_2 \sin y_2 + k_{21}y_1 + k_{22}y_2 & = B_2v_2(t, x) \quad \text{in } Q,
\end{align*}

$\begin{cases}
y_i = 0 \text{ on } \Sigma, \\
y_i(0, x) = E_i^0w_i^0(x), \quad \frac{\partial y_i}{\partial t}(0, x) = E_i^1w_i^1(x) \quad \text{in } \Omega, \quad i = 1, 2.
\end{cases}$

(4.7)

Here in (4.7) α_{ij}, $\beta_i > 0$, γ_i and k_{ij} are constants, v_i and w_i^0, w_i^1 are control variables, and B_i and E_i^0, E_i^1 are controllers defined on appropriate Hilbert spaces of control variables.
References

