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1 Introduction

We consider a wave function defined by the following Fourier transformation

$u_{m}(x, t)= \int_{-\infty}^{\infty}S_{m}(k)e^{i\{kx-\omega(k)t\}}dk$ ,

where $\mathrm{i}=\sqrt{-1}$ , $k$ is a frequency number, $S_{m}(k)$ is a spectrum function and $\omega(k)$ is
an angular frequency. From the definition we can see that $u_{m}(x, t)$ is a mixture of some
waves with different frequencies each other on some bandwidth controlled by the spectrum

function $S_{m}(k)$ . When $S_{m}(k)$ is a delta function $\delta_{k_{0}}(\cdot)$ concentrated on a frequency $k_{0}$

the wave function $u_{m}(x, t)$ is called the (purely) monochromatic wave $u_{1}(x, t)$ , $\mathrm{i}.\mathrm{e}$ ,

$u_{1}$ $(x, t)= \int_{-\infty}^{\infty}\delta_{k_{0}}(k)e^{i\{kx-\omega(k)\mathrm{t}\}}dk$

$=\cos\{k_{0}x-\omega \langle k)t\}+\mathrm{i}\sin\{k_{0}x-\omega (k)t\}$ .

On the other hand $u_{m}(x, t)$ is called a nearly monochromatic wave function if $S_{m}(k)$ is

a unimodal function with a small compact support. As to some application of nearly

monochromatic waves, see for example [6]. In this note we focus on the envelope function

defined by
$A_{m}(x, t)= \frac{u_{m}(x,t)}{u_{1}(x,t)}$ ,

and show that the envelope function $A_{m}(x, t)$ satisfies Schr\"odinger equation under some
conditions for the spectrum function $S_{m}(k)$ and the angular function $\omega$ $(k)$ . Furthermore

we deal with the cases when the spectrum function is a bimodal function $S_{b}(k)$ with a

compact support which constructs a bichromatic wave function $u_{b}(x, t)$ and the angular

frequency is a two dimensional function $\omega$ $(k$ , $\cdot$ $)$ , respectively. In these cases we show

that the envelope function satisfies a kind of nonlinear Schr\"odinger equation under some
conditions for the spectrum function and the angular function. As for the details of

the nearly monochromatic waves, see e.g. [5]. Further, for more applications of nearly

monochromatic waves and bichromatic waves, see $[1]-[6]$ .
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2 Profile of nearly monochromatic waves

For analyzing the envelope function $A_{m}(x, t)$ we first introduce a profile of $u_{m}(x, t)$ which

means an approximation of $u_{m}(x, t)$ by replacing $\omega$ $(k)$ or $\omega(k, \cdot)$ with the Taylor expan-

sion of them as following.

Definition 1 Suppose that an angular function $\omega(k)\in C^{\infty}$ can be represented by

$\omega$ $(k)$ $= \sum_{j=0}^{\infty}\frac{\omega^{(j)}(k_{0})}{j!}(k-k_{0})^{f}$

from the Taylor expansion. The $nth$ order profile of the envelope function of nearly

monochromatic wave defined by

$\tilde{A}_{m}^{n}(x, t)=\frac{f_{K}S_{m}(k)e\mathrm{J}dkl\{kx-\sum_{=0}^{n}\frac{(j)_{\{k_{\mathrm{f}1})}}{j}(k-k_{0})^{j}t\}}{u_{1}(x,t)}.,.$

,

where $K$ is a compact support of $S_{m}(k)$ .

Theorem 1 The second order profile $\tilde{A}_{m}^{12}$ (x, t) satisfies the linear Schwm\"odinger equa-

tion,
.

$\{\frac{\partial\tilde{A}_{m}^{2}(x,t)}{\partial t}+\omega’(k_{0})\frac{\partial\tilde{A}_{m}^{2}(x,t)}{\partial x}\}+\frac{1}{2!}\omega’(k_{0})\frac{\partial^{2}\tilde{A}_{m}^{2}(x,t)}{\partial x^{2}}=0$ .

3 Bichromatic waves and nearly bichromatic waves

Put $S_{2}(k)= \frac{\delta_{h_{0}}(k)+\delta_{k_{1}}\langle k)}{2}$ for some frequencies $k_{0}$ and $k_{1}$ with $|k_{1}-k_{0}|=O(\Delta)$ for
sufficiently small positive constant A. Then the (purely) bichromatic wave is defined by

u2 $(x, t)= \int_{-\infty}^{\infty}S_{2}(k)e^{i\{kx-\omega(k)t\}}dk=\frac{1}{2}[e^{i\{k_{0}x-\omega(k_{0})t\}}+e^{i\{k_{1}x-\omega(k_{1})t\}}]$ .

Furthermore let $S_{b}(k)$ be a bimodal spectrum function with a compact support $K$ and
suppose that the length of the support is $|K|=O(\Delta)$ . Let $u_{b}(x, t)$ be a nearly bichromatic
wave defined by

$u_{b}(x, t)= \int_{K}S_{b}(k)e^{i\{kx-\omega(k)t\}}dk$

and $A_{b}(x, t)$ be the envelope function of $u_{b}(x, t)$ defined by

$A_{b}(x, t)= \frac{u_{b}(x,t)}{u_{2}(x,t)}$ .
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Furthermore $\tilde{A}_{b}^{n}(x, t)$ is the n-th order profile of $\tilde{A}_{b}(x_{7}$ ? $)$ defined by

$\tilde{A}_{b}^{n}(x, t)=\frac{\int_{K}S_{b}(k)edki\{kx-\sum_{j=0}^{n}\frac{\omega^{(j)}(k_{0})}{\mathrm{j}-}(k-k_{0})^{j}t\}}{u_{2}(x,t)},$

.

Theorem 2 The second order profile of the envelope function of nearly bichromatic waves
$\tilde{A}_{b}^{2}(x, t)$ satisfies the following Ginzburg-Landau type equation,

$\frac{\partial\tilde{A}_{b}^{2}(x,t)}{\partial t}+\{\omega’(k_{0})+(k_{1}-k_{0})\omega’(k_{0})\frac{e^{ig(x,t)}}{1+e^{ig(x,t)}}\}\frac{\partial\tilde{A}_{b}^{2}(x,t)}{\partial x}$

$= \frac{\mathrm{i}}{2!}\omega’(k_{0})\frac{\partial^{2}\tilde{A}_{b}^{2}(x,t)}{\partial x^{2}}+\sum_{n=3}^{\infty}\frac{(k_{1}-k_{0})^{n}}{n!}\omega^{(n)}(k)\frac{e^{ig(x,t)}}{1+e^{ig(x,t)}}\tilde{A}_{b}^{2}(x, t)$ ,

where

$g(x, t)=(k_{1}-k_{0})x- \{(k_{1}-k_{0})\omega’(k_{0})+\frac{1}{2!}(k_{1}-k_{0})^{2}\omega’(k_{0})+\cdots\}t$.

4 Nearly monochromatic waves with $\omega$ $(\xi, \sigma)$

We next consider the wave equation given by

$\hat{u}_{m}(x, t)=\oint_{K}S_{m}(k)e^{i\{kx-\omega(k,|\hat{A}_{m}(x,t)|)l\}}dk$ ,

where $\omega$ $(\xi, \sigma)$ is a two dimensional angular frequency function and

$\hat{A}_{m}(x, t)=\frac{\hat{u}_{m}(x,t)}{u_{1}(x,t)}$

is the envelope function of $u_{m}\mathrm{A}(x, t)$ . Since the above equation is a kind of an integral

equation and it is difficult to obtain its exact solution, we give a relation between the
integral equation and nonlinear Schr\"odiger equation to investigate the solution.

Theorem 3 Assume the following conditions,

(1) A $>0$ is small enough.

(2) All partial derivatives of $\omega(\xi, \sigma)$ less than third degree are uniformly bounded in

a neighborhood of $(k_{0},0)$ .

(3) $S_{m}(k)$ is bounded and its bound is independent of .

Then we have for $0\leq t\leq Const.\Delta_{f}$ as $\Deltaarrow 0$

.
$\{\frac{\partial\hat{A}_{m}(x,t)}{\partial t}+\omega_{\xi}(k_{0},0)\frac{\partial\hat{A}_{m}(x,t)}{\partial x}\}+\frac{1}{2!}\omega_{\xi\xi}(k_{0})\frac{\partial^{2}\hat{A}_{m}(x_{?}t)}{\partial x^{2}}$

$-\omega_{\sigma}(k_{0},0)|\hat{A}_{m}(x, t)|^{2}\hat{A}_{m}(x, t)=O(\Delta^{4})$ .
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5 Nearly bichromatic waves with $\omega$ $(\xi, \sigma)$

We next consider the wave equation

$\hat{u}_{b}(x, t)=f_{K}S_{b}(k)e^{i\{kx-\omega(k,|\hat{A}_{b}(x,t)|)t\}}dk$ ,

where $\hat{A}_{b}(x, t)$ is the envelope function of $\hat{u}_{b}(x, t)$ defined by

$\hat{A}_{b}(x, t)=\frac{\hat{u}_{b}(x,t)}{u_{2}(x,t)}$ .

Similarly to $\hat{A}_{m}(x_{7}t)$ , the above wave equation means an integral equation and it is

dificult to obtain the exact solution. From the next theorem we can see the exact equation

as the solution of nonlinear Schr\"odinger equation.

Theorem 4 Assume all assumptions of Theorem 3. ij $|k_{1}-k_{0}|=O(\Delta^{2})$ , then $\hat{A}_{b}(x, t)$

satisfies the same nonlinear Schr\"odinger equation in Theorem 3,

$\mathrm{i}\{\frac{\partial\hat{A}_{b}(x,t)}{\partial t}+\omega_{\xi}(k_{0},0)\frac{\partial\hat{A}_{b}(x,t)}{\partial x}\}+\frac{1}{2!}\omega_{\xi\xi}(k_{0})\frac{\partial^{2}\hat{A}_{b}(x,t)}{\partial x^{2}}$

$-\omega_{\sigma}(k_{0},0)|\hat{A}_{b}(x, t)|^{2}\hat{A}_{b}(x, t)=O(\Delta^{4})$ ,

for $0\leq t\leq$ Const. $\Delta_{J}$ as $\Deltaarrow 0$ .

Theorem 5 Assume all assumptions of Theorem 3. ij $|k_{1}-k_{0}|=O(\Delta)$ , then $\hat{A}_{b}(x, t)$

satisfies the following nonlinear Schr\"odinger equation,

$\mathrm{i}\{\frac{\partial\hat{A}_{b}(x,t)}{\partial t}+(\omega_{\xi}(k_{0},0)+\frac{1}{2}\omega_{\xi\xi}(k_{0},0)|k_{1}-k_{0}|)\frac{\partial\hat{A}_{b}(x,t)}{\partial x}\}$

$+ \frac{1}{2!}\omega\xi\xi(k_{0})\frac{\partial^{2}A_{b}^{\mathrm{A}}(x,t)}{\partial x^{2}}-\omega_{\sigma}(k_{0},0)|\hat{A}_{b}(x\dot,t)|^{2}\hat{A}_{b}(x, t)=O(\Delta^{4})$ ,

for $0\leq t\leq$ Const. $\Delta$ , as $\Delta\prec \mathrm{O}$ .
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