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Numerical simulation to the hyperbolic free boundary
problem with volume constraint
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Abstract. The motion of a bubble on water surface is investigated numerically. The
bubble is described by using a graph of scalar function. The bubble moves on the water
surface while changing shape, but its volume is always preserved. The edge of bubble
is called a free boundary, therefore, the problem becomes a free boundary problem
of degenerate hyperbolic type with volume constraint. A minimizing method via the
discrete Morse flow of hyperbolic type works well numerically to this problem.

1 Introduction

In this paper, we treat a motion of bubble which moves on water surface while
changing its shape numerically. We use the graph of a scalar function u to describe
the shape of the bubble. The zero level set of u coincides with the water surface. The
set of points where the bubble touches the water surface is called free boundary. In
order to simplify the model, we assume that the water layer is so thin that its flow
or movement does not influence the bubble. Moreover, water density o is expected
to be constant, and the stress tensor density of the bubble and water surface T to be
homogeneous and isotropic.

We also assume that the volume of air which is surrounded by the bubble is pre-
served at any time, that is, the bubble movement can be described by wave equation
with volume constraint (i.e., [oudz = M). The following equation describes the phe-
nomena well:

Xu>0 Ut = Au — QQ(XE),(U) + AXu>0- (1‘1)
Here Yu»o is the characteristic function of the set {u > 0} and x° € C?*R) is a
smoothing of x satisfying
. 0, s<0
fand S —
x°(s) {1’ c<s

with interpolating in 0 < s < € in such a way that [(x°)’ (s) | < C/e and fs (xX) (s)ds =
1. The term (x°) (u) describes the adhesive force which generates new surface against
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surface tension of water while moving the free boundary. It is due to this term that
oscillation of solution in the whole domain does not occur.

The specificity of this equation lies in the coefficient X,»o on the left-hand side.
Because of this coefficient, non-negativity of the solution is guaranteed. We will show
how to get above equation.

1.1 Energy conserving case

When the energy of bubble system is conserved, the Lagrangian of bubble system is
calculated as follows:

1

L= /Q (719l + Gxuso = o (1) o) (1.2)

Here € is a domain in R™ and Q > 0 is a adhesion. The term o (ut) Xu>0 describes
the velocity energy density of bubble to the vertical direction and T' {Vu; + Q Xu>0
describes the potential energy coming from the shape of bubble. The feature of £
is that the velocity energy disappears when the film of bubble goes under the water
surface.

The action integral is defined by J{u jo Ldt and the problem is to find a
stationary point of the functional J in the suitable function space satisfying volume
constraint. At the first, let us set test function v’ = ﬁ%%—d? CeCF(Q,N{u>0})
and take the first variation of J:

'U,ﬁ--_—A'U;'!"‘)\ (.T,t)EQTm{'U,>0}

Without loss of generality, we choose all constants such as stress tensor density 7', mass
density of the film ¢ or volume of bubble Af to be the simplest one (T’ = o = M = 1).

And we denote by Q = Q/T, Q0 = Q x (0,7).
w(eH=))

In order to get the free boundary condition, let us set test function v® = = Tule @) @

7= (2,t) = p(2) = 24 0n(z), n € C (Q, RM™) and take the inner variation of
J:

|Aul® — (u)? = @* (z,t) € Q, Nd{u> 0},

here we denote z = (z, t).
We obtain the explicit form of the Lagrange multiplier A as

A= / (\Vu[g + Uty Xu>g) dz. (1.3)
0

The integral representation of Lagrange multiplier makes the problem more difficult.
However, we can calculate an approximate solution to (1.1) by use of a time-semidiscretized
functional which is called the discrete Morse flow of hyperbolic type (see [T]).
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1.2 Energy loosing case

On the other hand, when a part of the fihm which composes the bubble goes down
under the water surface, the energy of bubble system is not preserved. In this case, if
one consider the equation vy = Av + Q2 (x°) (v), u = max (v,0) is expected to be a
solution to this phenomena. In such a case, the free boundary condition is not expected
to be satisfied. But such solutions are still satisfy the equation (1.1).

2 Free Boundary Condition

In this section, we formally derive free boundary condition for the free boundary
problem which is obtained when ¢ is taken to zero in {1.1).

Proposition 2.1. If we assume the existence of u°, the classical solution to (1.1), and
u® — Ju (e — 0) in some suitable sense (assumptions are shown in the calculation)
with v satisfying Av — v = X in Qp N {v > 0}, then the equality |Vv|? — (v;)? = @
on &{v > 0} holds.

Proof. To show this, we multiply (uj (E g%i) to both sides of (1.1) and integrate
on Qr, (¢ € CE(Qr)). We get the following identity (see [2]):

Cul (AU — XuesoUfy — A" Xues0) d2 = Q%*Cus (%) (u®)dz. (2.1)
Q7 Qr

Noting that [x*(u)],, = (x%)' (u) u, and by the integration by parts, the right-hand
side of (2.1) can be calculated in the following way:

(rhs.(2.1)) = —-/Q Q*Cext(u®)dz

- GQ%dz (uf — v, X°(uF) — Xu>o are assumed)
£—0 Qrn{o>0}

— - / CQPedS,
QrN8{v>0}

where v, is the k-th element of the outer normal v = (v; - - - Unt1) to the set {v >0} C
Qp with v, being the ¢ direction.



On the other hand, the left-hand side of (2.1} can be calculated as follows:
(Lhs.(2.1)) = — / [V (Cus) Vs — (Cufxue>o0)eus + CA Xuss0uz] d2
Q7 -

— — [V(Cur) Vo = (CUrXxu>0)10: + C)\Xv>01’ki:} dz

=0 Qr

(uf, — v, A* — X is assumed)

= / Cop(Av — vy — N)dz — / Cop (Yo, —v;) - vdS
Qrn{v>0}

Qrnd{v>0}

= —/ Cop(Vu, —v) - vdS (Av —vy = A is assumed).
Qrnd{v>0}

Note that outer normal to {v > 0} is v = —Duv/|Dv|, where Dv = (Vz, "+ , Vs, V).
Therefore, we can see that vy = —v|Dv| on 9{u > 0}. Then, eventually, the left hand
side of {2.1) becomes

(Lhs(2.1) = - / Cop(Vo, =) - vdS = — / ¢ [IVul? = (w)?] wedsS.
JQrnd{v>0} J Qrnd{v>0}

Thus we get the equation
/ (Q*dS = ¢ [IVol? = (ve)?] wdS,
4 Qrnd{v>0} J Qpnd{v>0}

which shows that
Vol — (0)? = @? ond{v > 0}. (2.2)

The limit boundary condition (2.2) is the same as the one obtained for the hyperbolic
free boundary problem introduced in [5]. ]

3 Minimizing method for the bubble problem

Like in [8], we introduce another approximation problem to (1.1). Here, we give
the volume constraint in the admissible space for finding a minimizer of a discretized
functional corresponding to the Lagrangian.

Problem 3.1. Let Q be a bounded domain in R™. Forn = 2,3,..., find minimizer
uy, of the following functional:

Dy o Lo .
Jo() = Q*“ ot ot oda + 3 [ [Vuitda + [Q Cx(uyds,  (3.1)

in the function set

Ky = {u € WH(Q,R);u =0 on 0Q, /udz = ]\/I}.
Ja
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Functions ug, uj € Ky with uy = ug + hvg are given and the sequence {u,} is to be de-
termined inductively. Moreover, by use of these minimizers, construct an approzimate
weak solution to (1.1).

Let us set test function w® = m’%, ¢ e C(QN{u>0}) and take the first

variation of J,:

/ (’LL - 2?1‘71];; + Un-2¢ + VUV¢+ QZ(XS),('U)Cb) dr = / (ZS)\ndLE
9. ' i Q
Vo € C(Qn {u>0}), (3.2)

u =0 otherwise

Here,

72
is the Lagrange multiplier coming from the volume constraint. From the second iden-
tity, we can conclude that u = 0 outside the set {u > 0}.

— 2Up— oy .
Ay = f (u U1+ U 2uxu>o + qui‘z) dz
Q

4 Interpolation in time and approximate solution

In this section, we carry out interpolation in time of minimizers {un} and introduce
the approximate weak solution. First we state the definition of weak solution.

Definition 4.1. We call u a weak solution to (1.1), if u satisfies the following:

T T
[ / (—uedy + VuVe + Q* (XY (u)¢) dzdt — / vod(z,0)dr = / / Apdzdt
Jo Ja ) Jo Ja
Yo € CR(02 x [0,T) N {u > 0}), (4.1)
u=0 outside {u > 0} (4.2)
and u(0) = ug in the sense of traces.

Now, we consider the approximate solutions. We define a" and u" on Q x (0, c0)
by

@z, t) = un(2),

—(n— h—t
R @)+ P @)

u(z,t)

Me(t) = Ay,

for (2,1) € Qx ((n—1)h,nh], n € N. We can construct the approximate weak solution
to the bubble problem in terms of @" and ul.
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Definition 4.2 (Approximate solution). Let {u,} C Ky and let @" and u" be
defined as above. If the following conditions

T u?(t) *uh(t-— h) _ 0 s hu ) B T .
/h /Q( ht ¢+ Vi"Ve + Q*(x*(u")'d d:z:dt_/h /Q,\ ddz,

Vo € C(Q x [0,T)N {u" > 0}),
W=0 i Qx(hT)\{«">0}

and the initial conditions uw™0) = ug. u*(h) = ug + hvy are satisfied, then we call G
and v approximate solutions to the bubble problem.

If one can pass to the limit as A — 0, then the above approximate solutions are
expected to converge to the solution of (4.1)-(4.2). We expect that a good regularity of
minimizers {u, } should imply that the limit of \* agrees with the Lagrange multiplier A
of (1.3). By now, we could not get any result concerning the convergence of approximate
solutions. However, we can still carry out numerical computations using a minimizing
method.

5 Numerical method

Here we present the numerical method and experimental results. We apply a finite
element method with minimizing algorithm and find minimizer of the approximate
functional J,(u) defined above via steepest descent method for a fixed time step n.
The time step h and diameter of each finite element are chosen small enough related
to the approximation parameter €.

In the following simulations, we use equation with a damping term ~yuy, i.e.

Xu>oUs + YUt = Au — QQ(XE)I('U) — AXu>0-

We choose the parameters as follows: h =5 x 1073, ¢ = 0.1, v = 0.5.

The first example is calculated under Dirichlet boundary conditions and Q* = 0.35.
An initial velocity is imparted to the bubble. It approaches the boundary of €2, reflects
on the boundary and stops in a certain position.

The second example uses Neumann boundary conditions and Q* = 0.35. In this
case, after touching the boundary, the bubble moves along the boundary. The bubble
stops and keeps the smallest surface when reaching the corner of ).

The third example treats a collision of two bubbles with the same volume. After
the collision, the bubbles merge.

In the last example we set Q2 = 0.03 (2125 > 0) and Q? = 0.35 otherwise. The
value of @? determines the contact angle on the free boundary according to the free
boundary condition. Therefore, the bubble lies down if Q? distribution becomes small
and the bubble moves gradually aiming at the part of small Q? distribution.



Figure 2: Neumann boundary conditions

t=0.0 t = 0.80 t = 1.500

Figure 3: Collision of two bubbles with the same volume. Q2 = 0.35.

t = 0.000 t = 0.150 t = 1.500

Figure 4: The bubble is divided to two by the non-uniform distribution of Q%
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6 Conclusions

A numerical method for a bubble motion with free boundary and volume constraint
was developed. The model equation becomes free boundary problem of degenerate
hyperbolic type which is difficult to treat. We have introduced a variational method to
solve this problem and it gives good numerical results. This model can also be applied
to the motion of oil on the bottom of water or to problems related to the phenomenon
of a water-drop dripping from ceiling. Therefore, this work has many applications
and is significant for the future studying of hyperbolic free boundary problems. It is
reported about the former example that the gradient of temperature, wetness or areal
density of surface activator makes oil droplet run on the bottom plane and the droplet
repeats the division and union while moving (see [10]). And we are now involved in the
development of numerical algorithm which describes the division and union of multiple
bubbles.
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