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On the construction of weak solution to a
free-boundary problem modelling the

vibration of film near obstacle
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Abstract The motion of thin film with an obstacle is treated numerically.
This amounts to the analysis of a wave operator of degenerate type. The discrete
Morse flow of hyperbolic type is applied to construct approximate solution. The
possibility of constructing weak solution in one dimension by adding a higher-
integrable term is investigated.

1 Introduction

In this paper we treat an obstacle problem related to a degenerate hyperbolic
equation, to be specific, we would like to analyse the motion of a rubber
film with an obstacle where the reflection constant is zero. In [1], a similar
problem is studied but the method there relies on the assumption of nonzero
reflection rate and is therefore essentailly different from the one presented
here. For the analysis of one-dimensional case, see [3]. For numerical results,
we refer to the original paper [5].

2 Formulation of the problem

The shape of the rubber film is described by the graph of a scalar function
u : 2 x [0,00) — R, where (2 is a domain in R™ The obstacle is a plane
fixed at the zero level set of u.

The mathematical problem reads: Find function u :  x [0,00) — R
satisfying the following degenerate hyperbolic equation:

Xusolt = Au in Q x (0, c0),
u(z,0) =up(zr) in Q, ’ (2.1)
u(z,0) =w(z) In Q,
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under suitable boundary conditions. Here, xg is the characteristic function
of set E.

In [5], equation (2.1) is derived and justified. In short, for the energy-
conserving case, we consider the Lagrangian

s = [ ' [V = (ot

and show that equations obtained by its variation correspond well to (2.1).

3 Minimizing method
We introduce the following functionals for m > 2

Jm(u) Z/ l 2]12 ]
Qn{{u>0}U{um-1>0}} '

We will determine a sequence {u,,} in K = {u € H*(Q; R);u = ug on 9}
by induction as follows: For given up and u1 = ug + hwo and for m = 2,3, ...
find i,, as the minimizer of J,, in K. Then set up := max(im, 0).

1 .
d:c-‘r——/ |Vul|? dz. (3.1)
2Jq

Remark. If there is no intersection in the integration domain in I, bY
the minimizing process we obtain formally the weak form of the discretized
wave equation. Therefore, it makes no difficulty to establish weak solution.
However, if we add the set {u > 0}, which expresses the fact that the solution
cannot go under zero, we obtain a free boundary problem. It is not known how
to introduce weak solution, we even do not get any kind of energy estimate
for the approzimate solutions. In order to obtain an estimate we have added
the set {um—; > O} (see Proposition 4.1). This may cause the negativity of
minimizers and that is why we adjust them by taking Uy, = max(tm, 0).

The following two results are also taken from [5].

Theorem 3.1 If Ji(ug) < 00, then there ezists a minimizer tm 0f Jim.

Theorem 3.2 For all ! CC €, there exists a positive constant § (0 < < 1)

independent of m, such that the minimizers Um belong to C°(Q).
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Using the above theorem, we can choose the support of test functions in
the set {u > 0}. Then the first variation formula of Jp(u) is

U Pt ety G4 de = 0
Q h?
Vo € CP(QN{u > 0})
u=0 outside the set {u > 0}.

Now we interpolate the minimizers {u,,} in time and define the approxi-
mate weak solution. We define #"* and u® on © x (0, 00) by

B0 = Bt
ul(z,t) = —(n;z— )'um(x)er?}: Upn—1(2),

for (z,t) € Q x ((m — 1)h,mh], n € N. We define the approximate solution
as follows.

Definition 3.1 We call the solution of the following equation an approxi-
mate solution to the rubber film problem:

/ / (“f “* t“h)mv "ng) dedt = 0,
h

v¢ e C2([0,T) x QN {u" > 0}), (3.2)
wh=0 in (hT)xQ\{u" >0}

Further, we require that it satisfy the initial conditions u™(0) = wgy and
ut(h) = ug + hvy.

If one can pass to the limit as A — 0, then the above approximate so-
lutions are expected to converge to the solution of the following type of
equation.

Definition 3.2 We call u a weak solution to (2.1), if u satisfies the follow-
mg:
T ,
/ / (—utgy + VuVo) drdt — / vpp(z,0)dr =0
0o Jo 0

Vo € CP(Q x [0,T) N {u> 0}),
u=0 outside of {u > 0}

and u(0) = ug 1n the sense of traces.



4 Energy estimate

We shall derive an energy estimate for the minimizers of Jp,, m = 2,3, ... .

Proposition 4.1 We have for m = 2,3, ...

Upy — Um—1 ‘
| 20 + [ VumllZe) < lvolliag + Vil

Proof. Choose \ arbitrary (0 < A < 1). By the minimality property we
have Jy(Gim) < (1 — A)lim + Mg 1), thus,

1, _ _
Jimn (Il + Attos = ) = Im(Gim)) 20 (4.1)

By A, we denote the set {&y, > 0} U {um-1 > 0}. We investigate the
behaviour of individual terms in (4.1). For the gradient term we get

NN S Gt g =2
)\h_}glJrﬁ/QIV(uan)\(um_l_um))} — Vi, |* dz

= / Vfbm . V(um_l — ﬁm) dx
Q

1
<3 [ Vunaida = [ (Vi de
2 Ja 2 /a

1 ,
< 1/ V1) d:c——/ Vit |® dz.
2 /o 2 /o

Taking into account that {Zm + A(um-1 — Um) > 0} C Ap, we find
L N
I\ = /Q ol Aty = ) = 2t F s
X {4 AU 1— i) >0}t >0} 0T

- fﬂ 5}—151% — Qo1 + Um—2]* XA, 0T

1. .
< f %E(lum + )\(um—-l - um) — 2Um-1 + um—2l2
QN Am
Here, we have omitted a term of the form

lﬂm + A(um—l - ﬁm) — 2Up—1 + um~2i2

: \(X{ﬁm—h\(um_l — G ) >0 U {um-1>0} T X{tim >0}U{tim—1 >0i .

H
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Since it holds

2 ¢ {in > 0} U {tim_y > 0}
=z ¢ {{Lm —+ )\(um——l — &m) > O} U {'Ufm—l > 0},

we conclude that H is nonpositive and thus the whole term can be neglected.
Then we have

1 N
im I(A) < — (U1 — i) (i — U1 = (Um—1 = U 2)) dT
A—0+ " Janam
1 _ , .
< a2\~ |t — Um~1HL2(QnAm) + ||t — um—ZHLE(QmAm) .

The inequality is preserved even if we replace @, by um = max(i,y,,0). Noting
that the sets {iiy > 0} and {un, > 0} are the same, we can make the same
replacement also in the integration domain. Hence, we obtain

1 .
lim [ )\) S — (um-—l - um-—?)g - (um - um*1)2 dx
A0+ ( 212 J on{ fum>0}Ufum—1>0}}
1 N
< 'zﬁ Q(um~1 - Um—Q)z - (um - um—~1)2 dz.

Using the above estimates, we arrive at

2
< i — U — 1 — U
0 < /\ET&L )\(Jm(um + Mt Um>) I (T )

1 .
< 3 (um-s = tmal® = ttm = et [*) + (| Vitmaal? = [Vun|l?) -
Summing up we obtain the assertion. a

5 Weak solution

The energy estimate derived in the previous section allows us to extract a
weakly convergent subsequence from the approximate solutions. However,
we do not get uniform convergence which is necessary to pass to the limit as
h — 0in (3.2).
We can get the uniform convergence by adding a certain term into the
original equation:
Xus0Us = Au —uy, v > 2. (5.1)
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We employ the same method where in the functional (3.1) a new term of the

form
3
Y Jo

appears. We prove the following

v

U — Um-1 dz

h

Theorem 5.1 There exists a subsequence {u"}n_o+ of the approzimate weak
solutions which converges to a weak solution of (5.1).

Proof. We give only the idea of the proof. First, we prove uniform higher

integrability of a subsequence of approximate solutions by use of Gehring’s

theory. To this end, we need an energy estimate and a Caccioppoli inequality.
The energy estimate is calculated as in Proposition 4.1. We get

() + IV E) 2y + [ / Wi[tdzdt < const.  (5.2)

To deduce Caccioppoli inequality, we have to consider two cases: 'inside
the set {um > 0}’ and 'near the boundary 0{un, > 0}’.

In the first case we note that Jo,(tm) < Jn(¥) for ¢ = Gy — & (U, — Un2,.
Here ¢ > 0, 1,, is a standard cut-off function on Bsr(mg) with Bog C {um >
0} and U is a mean value to be defined later. By variation of J,, we get

/ Vi, < —— (s — 2 + 2 (i — O (5:3)
QN{tm >0}
- N ')/—2 -~
_2/ YVl VTl (U — U) ——/ Um ~ Um-1 m — tm- 1( — U2
0 Q h h

Here it is worth noting that we could get rid of the characteristic function by

. lﬂm — 2Up—1 + Um—2 — E(ﬂ'm - U)"Y%JQ
ili% . ohZe X {iim —€(tm —U)n3, >0} {tim 1 >0}
‘lam - 2u'm——l + um—ZIQX{ﬂm>D}U{um_1>O} dz
1

=73 (U — 21 + Um-— 2)(tm U>77m dx
h’ Qﬁ({’fbm>0}u{u'm 1>O})

+ lim 51-2—— / [, — 2Um—1 + Um-2 — & (T, — U)nmkz

’ (X{Qm—e(ﬁm—U)nm>O}U{um_1 >0} 7 X{@m>0}U{um—1 >0}) dx

—% (T, — 2Upp—1 + Um—2) (U — U)n2, dz,
h? Jon(§iim>01U{tm—1>0})
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since the term in brackets is nonpositive. Rewriting in the uP-notation, se-
lecting 7, appropriately for each m, summing with respect to m and making
further technical rearrangements we are supposed to get roughly

/ |Vu"|?dz < c/ lul|? dz (5.4)
Ur Qar

| -
+J_%E Iuh—UIde—i—c/ |7 " = Ul de,
Q2R Q2R

where z = (z,t), Qr = (ih — R,ih + R) x Q(zo) with i € N and Q% a
standard n-cube.

If we set
1

1Q2rl Jay,

the second term on the right-hand side of (5.4) can be estimated using
Sobolev-Poincaré inequality (separately on each interval of the time-partition)

C / l F U{Q d C ( 1 hlq 2
— u’ — z < = / Vu dz)
R? Q2r R? Q2R

g 2/q
< cR™M (]L ]Vuhlqdz) :
Q2r ’

where ¢ = (”H) < 2 and the symbol f stands for the mean value. For the
last term we have by the energy estimate and Sobolev-Poincaré inequality

/ W U d
Q2R

S(/mluh—-U
<UL

2R

U=

utdz,

% (y— 1)2
2 dz) : (/ jup| -1 dz)
Q2R

1
%

2*
P "
]Vuh\zda:) dt . (/ {u’lihz*l)l d/,) 2
Qz2r

1

i -3+
< (f ]Vuh|2dz) : (/ |l G dz)
Q2r Q2r
(y—1)2*

<o |Vedz+e(6) / k=28
Q2r Qar
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However, here 2* = % and therefore, this estimate does not hold for the

case n = 1 we are most interested in. For i = 1 we proceed as follows

178 /8
f luizlq-.JIuh —- U{ dz < (/ luh _ U[’G’ dz) (/ luﬂ(w—ﬂﬂ dz)
Q2R Qar Q2R
1
61 s 1/,5
< / (/ | V"] dx) dt : (/ k| (=15 dz)
2R Q2r

| o #
) 2 5’ 1/./3
/ / [Vuh]Q dx RT dt . (/ [ulftl(‘/—l)ﬁ dz)
Q5p Q2r

27 1B
(/ qu”'Izdz> " (/ juli(r=1P dz)
Q2r Qor

< 9/ IVuhlz dz + cR% / tum(v‘—l)ﬂ dz.
2R Q2R

IA
ny) e N

[T

Choosing g = 53_1 ie., 0 = 5—%, v € (2,3), we get

/ |l — Uldz < cR71 / |ul|?dz + 0 (Vu"f? dz.
Q2r , Qzr Q2R

Altogether we have

. 2/q .
][ |Vu'"Pdz < ¢ (f IVuhlq) +c][ lu?]gdr+}f \Va"f? dz.
R Q2r Q2R 2 Qor

Thus, we can apply Gehring’s theory for time-discretized equations from [2]
and prove higher integrability Vu' € L*t® with § > O independent of A.
Higher integrability of u} follows from (5.2).

We must consider also the ’boundary’ case. In this case let us select
the test function ¥ = Um — EUmNZ,, Um = Max{ly,,0}. Then we get in a
similar way the same estimate as in (5.3) only with the change that i, — U
is replaced by Uy, The derivation of the last term goes on without problems
SINCe X {am—rumn2, >0} — X{im>0} < (0 as before.

As we have proven the continuity of un, and o lies on the free boundary,
there is a sufficiently large area where u, = 0 in Bag. Therefore, we are
again able to apply Sobolev-Poincaré inequality and get the same result.
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Now, in the one-dimensional case, from the Sobolev imbedding theorem
we get a uniform bound on the Hélder norms of a subsequence of u and we
are able to pass to the limit in the approximate equation. O

6 Conclusion

We have formulated a hyperbolic free boundary problem describing the inter-
action of a film and an obstacle and we have suggested its numerical solution.
Several properties of the approximate solutions are shown. We also found
out that by adding a higher integrable term, it is possible, using Gehring’s
theory, to construct weak solution and prove its regularity.
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