Asymptotic profile of a radially symmetric solution with transition layers for an unbalanced bistable equation

沼津工業高等専門学校 Hiroshi Matsuzawa (Hiroshi Matsuzawa)
Numazu National College of Technology

1 Introduction and Main Results

In this paper, we consider the following boundary value problem:

$$(\mathbf{P}_{\varepsilon}) \left\{ egin{array}{ll} -\varepsilon^2 \Delta u = h(|x|)^2 (u - a(|x|))(1 - u^2) & ext{in } B_1(0) \\ rac{\partial u}{\partial \nu} = 0 & ext{on } \partial B_1(0) \end{array}
ight.$$

where $\varepsilon > 0$ is a small parameter, $B_1(0)$ is a unit ball in \mathbb{R}^N centered at the origin and the function a is a C^1 function on [0,1] satisfying -1 < a(|x|) < 1 and a'(0) = 0. The function h is a positive C^1 function on [0,1] satisfying h'(0) = 0. We set r = |x|.

Problem (P_{ε}) appears in various models such as population genetics, chemical reactor theory and phase transition phenomena. See [1] and the references therein. If the function h satisfies $h(r) \equiv 1$ and the function a satisfies $a(r) \not\equiv 0$, then this problem (P_{ε}) has been studied in [1], [4] and [7]. In this case, it is shown that there exist radially symmetric solutions with transition layers near the set $\{x \in B_1(0)|a(|x|)=0\}$. If the set $\{r \in \mathbb{R}|a(r)=0\}$ contains an interval I, then the problem to decide the configuration of transition layer on I is more delicate.

On the other hand, in the case of N=1, if the function h satisfies $h(r) \not\equiv 1$ and the function a satisfies $a(r) \equiv 0$, then this problem (P_{ε}) has been studied in [8] and [9]. In this case, it is shown that there exist stable solutions with transition layers near prescribed local minimum points of h.

In this paper, we consider the case where the function a satisfies $a(r) \not\equiv 0$ with a(r) = 0 on some interval $I \subset (0,1)$. We show the minimum point of the function $r^{N-1}h(r)$ on I has very important role to decide the configuration of transition layer on I in this case.

We note that in [4], Dancer and Shusen Yan considered a problem similar to ours. They assume that $N \geq 2$, $h \equiv 1$ and the nonlinear term is u(u-a|x|)(1-u) satisfying a(r) = 1/2 on $I = [l_1, l_2]$ and a(r) < 1/2 for $l_1 - r > 0$ small and a(r) > 1/2 for $r - l_2 > 0$ small, then a global minimizer of the corresponding functional has a transition layer near the l_1 , that is, the minimum point of r^{N-1} on I (see [4, Theorem 1.3]). In this sense, we can say that our results are natural extention of the results in [4]. We are going to follow throughtout the variational

procedure used in [4] with a few modifications prompted by the presence of the function h.

Here we state the energy functional corresponding to (P_{ε}) :

$$J_{arepsilon}(u) = \int_{B_1(0)} rac{arepsilon^2}{2} |
abla u|^2 - F(|x|, u) dx,$$

where $F(|x|, u) = \int_{-1}^{u} f(|x|, s) ds$ and $f(|x|, u) = h(|x|)^2 (u - a(|x|))(1 - u^2)$. It is easy to see that the following minimization problem has a minimizer

$$\inf\{J_{\varepsilon}(u)|u\in H^{1}(B_{1}(0))\}.$$
 (1.1)

Let $A_{-} = \{x \in B_1(0)|a(|x|) < 0\}$ and $A_{+} = \{x \in B_1(0)|a(|x|) > 0\}$.

In this paper, we will analyze the profile of the minimizer of (1.1). Our main theorem is the following:

Theorem 1.1. Let u_{ε} be a global minimizer of (1.1). Then u_{ε} is radially symmetric and

$$u_{arepsilon}
ightarrow \left\{ egin{array}{ll} 1 & ext{, uniformly on any compact subset of A_{-},} \ -1 & ext{, uniformly on any compact subset of A_{+},} \end{array}
ight.$$

as $\varepsilon \to 0$. In particular u_{ε} converges uniformly near the boundary of $B_1(0)$, that is, if a(r) < 0 on $[r_0, 1]$ for some $r_0 > 0$, $u_{\varepsilon} \to 1$ uniformly on $\overline{B_1(0)} \setminus B_{r_0}(0)$ and if a(r) > 0 on $[r_0, 1]$ for some $r_0 > 0$, $u_{\varepsilon} \to -1$ uniformly on $\overline{B_1(0)} \setminus B_{r_0}(0)$. Moreover, for any $0 < r_1 \le r_2 < 1$ with $a(r_i) = 0$, $i = 1, 2, a(r) \ne 0$ for $r_1 - r > 0$ small and for $r - r_2 > 0$ small, a(r) = 0 if $r \in [r_1, r_2]$, we have:

- (i) If a(r) < 0 for $r_1 r > 0$ small and a(r) > 0 for $r r_2 > 0$, then for any small $\eta > 0$ and for any small $\theta > 0$, there exists a positive number ε_0 which has the following properties: For any $\varepsilon \in (0, \varepsilon_0]$, there exist $t_{\varepsilon,1} < t_{\varepsilon,2}$ such that
 - (a)

$$\left\{egin{array}{ll} u_arepsilon(r) > 1 - \eta & ext{for } r \in [r_1 - heta, t_{arepsilon,1}), \ u_arepsilon(t_{arepsilon,1}) = 1 - \eta, \ u_arepsilon(t_{arepsilon,2}) = -1 + \eta, \ u_arepsilon(r) < -1 + \eta, & ext{for } r \in (t_{arepsilon,2}, r_2 + heta]. \end{array}
ight.$$

- (b) The function $u_{\varepsilon}(r)$ is decreasing in $(t_{\varepsilon,1}, t_{\varepsilon,2})$
- (c) The inequality $0 < R_1 \le \frac{t_{\varepsilon,2} t_{\varepsilon,1}}{\varepsilon} \le R_2$ holds, where R_1 and R_2 are two constants independent of $\varepsilon > 0$.
- (d) If $t_{\varepsilon_j,1}$, $t_{\varepsilon_j,2} \to \bar{t}$ for some positive sequence $\{\varepsilon_j\}$ converging to zero as $j \to \infty$, then \bar{t} satisfies $h(\bar{t})\bar{t}^{N-1} = \min_{s \in [r_1, r_2]} h(s) s^{N-1}$.

- (ii) If a(r) > 0 for $r_1 r > 0$ small and a(r) < 0 for $r r_2 > 0$, then for any small $\eta > 0$ and for any small $\theta > 0$, there exists a positive number ε_0 which has the following properties: For any $\varepsilon \in (0, \varepsilon_0]$, there exist $t_{\varepsilon,1} < t_{\varepsilon,2}$ such that
 - (a)

$$\begin{cases} u_{\varepsilon}(r) < -1 + \eta & \text{for } r \in [r_1 - \theta, t_{\varepsilon,1}), \\ u_{\varepsilon}(t_{\varepsilon,1}) = -1 + \eta, \\ u_{\varepsilon}(t_{\varepsilon,2}) = 1 - \eta, \\ u_{\varepsilon}(r) > 1 - \eta, & \text{for } r \in (t_{\varepsilon,2}, r_2 + \theta]. \end{cases}$$

- (b) The function $u_{\varepsilon}(r)$ is increasing in $(t_{\varepsilon,1}, t_{\varepsilon,2})$.
- (c) The inequality $0 < R_1 \le \frac{t_{\epsilon,2} t_{\epsilon,1}}{\varepsilon} \le R_2$ holds, where R_1 and R_2 are two constants independent of $\varepsilon > 0$.
- (d) If $t_{\varepsilon_j,1}$, $t_{\varepsilon_j,2} \to \overline{t}$ for some positive sequence $\{\varepsilon_j\}$ converging to zero as $j \to \infty$, then \overline{t} satisfies $h(\overline{t})\overline{t}^{N-1} = \min_{s \in [r_1, r_2]} h(s)s^{N-1}$.

図 1: The profile of the global minimizer u_{ε} .

- Remarks. (i) We note that results from (a) to (c) both in cases (i) and (ii) are not related to the presence of the function h. The effect of presence of function h appears in the result (d) in (i) and (ii).
 - (ii) If $\min_{s \in [r_1, r_2]} s^{N-1} h(s)$ is attained at a unique point \bar{t} , we can show $t_{\varepsilon,1}, t_{\varepsilon,2} \to \bar{t}$ as $\varepsilon \to 0$ without taking subsequences.
- (iii) If the function $r^{N-1}h(r)$ is constant on $[r_1, r_2]$, it is a very difficult problem to know the location of the point $\bar{t} \in [r_1, r_2]$.

This paper is organized as follows. In section 2, we prepare some preliminary results. We will prove Theorems 1.1 in section 3.

2 Preliminary Results

In this section we prepare some preliminary results.

Let D is a bounded domain in \mathbb{R}^N . Let $\overline{f}(x,t)$ be a function defined on $\overline{D} \times \mathbb{R}$ which is bounded on $\overline{D} \times [-1,1]$. Suppose \overline{f} is continuous on $t \in \mathbb{R}$ for each $x \in \overline{D}$ and is measurable in D for each $t \in \mathbb{R}$. We also assume

$$\overline{f}(x,t) > 0 \text{ for } x \in \overline{D}, \ t < -1; \ \overline{f}(x,t) < 0, \text{for } x \in \overline{D}, \ t > 1.$$
 (2.1)

Consider the following minimization problem:

$$\inf \left\{ \overline{J}_{\varepsilon}(u,D) := \int_{D} \frac{\varepsilon^{2}}{2} |\nabla u|^{2} - \overline{F}(x,u) dx : u - \eta \in H_{0}^{1}(D) \right\}, \tag{2.2}$$

where $\eta \in H^1(D)$ with $-1 \le \eta \le 1$ on D and

$$\overline{F}(x,t) = \int_{-1}^{t} \overline{f}(x,s)ds.$$

We can prove next two lemmas by methods similar to [4]. For readers's convenience we prove these lemmas in this section.

Lemma 2.1. Suppose that $\overline{f}(x,t)$ satisfies (2.1). Let u_{ε} be a minimizer of (2.2). Then $-1 \leq u_{\varepsilon} \leq 1$ on D.

Proof. We prove $-1 \le u_{\varepsilon}$ on D. Let $M = \{x : u_{\varepsilon}(x) < -1\}$. Define \tilde{u}_{ε} as follows:

$$\tilde{u}_{\varepsilon}(x) = \begin{cases} u_{\varepsilon}(x) & \text{if } x \in D \backslash M \\ -1 & \text{if } x \in M. \end{cases}$$

Since $u_{\varepsilon}(x) = \eta \geq -1$ on ∂D , we see M is compactly contained in D. Thus $\tilde{u} - \eta \in H_0^1(D)$. If the measure m(M) of M is positive, we have $\overline{J}_{\varepsilon}(\tilde{u}_{\varepsilon}, D) < \overline{J}_{\varepsilon}(u_{\varepsilon}, D)$. Because u_{ε} is a minimizer, we see m(M) = 0, where m(A) denote the Lebesgue measure of the set A. Thus $u_{\varepsilon} \geq -1$. Similarly we can prove that $u_{\varepsilon} \leq 1$.

Lemma 2.2. Suppose that $\overline{f}_1(x,t)$ and $\overline{f}_2(x,t)$ both satisfy (2.1) and the same regularity assumption on \overline{f} . Assume that $\eta_i \in H^1(D)$ satisfy $-1 \leq \eta_i \leq 1$ on D for i=1,2. Let $u_{\varepsilon,i}$ be a corresponding minimizer of (2.2), where $\overline{f}=\overline{f}_i$ and $\eta=\eta_i,\ i=1,2$. Suppose that $\overline{f}_1(x,t)\geq \overline{f}_2(x,t)$ for all $(x,t)\in \overline{D}\times [-1,1]$ and $1\geq \eta_1\geq \eta_2\geq -1$. Then $u_{\varepsilon,1}\geq u_{\varepsilon,2}$.

Proof. Let $M = \{x \in D : u_{\varepsilon,2} > u_{\varepsilon,1}\}$. Define $\varphi_{\varepsilon} = (u_{\varepsilon,2} - u_{\varepsilon,1})^+$. Since $\eta_1 \geq \eta_2$, we have $\varphi_{\varepsilon} \in H_0^1(D)$. Set $\overline{F}_i(x,u) = \int_{-1}^u \overline{f}_i(x,s) ds$. Since $u_{\varepsilon,i}$ is a minimizer of

$$J_{arepsilon,i}(u) := \int_D rac{arepsilon^2}{2} |
abla u|^2 - \overline{F}_i(x,u) dx$$

and $\varphi_{\varepsilon} = 0$ for $x \in D \backslash M$, we have

$$0 \leq J_{\varepsilon,1}(u_{\varepsilon,1} + \varphi_{\varepsilon}) - J_{\varepsilon,1}(u_{\varepsilon,1})$$

$$= \int_{M} \frac{\varepsilon^{2}}{2} (|\nabla(u_{\varepsilon,1} + \varphi_{\varepsilon})|^{2} - |\nabla u_{\varepsilon,1}|^{2}) dx - \int_{M} \int_{u_{\varepsilon,1}}^{u_{\varepsilon,1} + \varphi_{\varepsilon}} \overline{f}_{1}(x,s) ds$$

$$\leq \int_{M} \frac{\varepsilon^{2}}{2} (|\nabla(u_{\varepsilon,1} + \varphi_{\varepsilon})|^{2} - |\nabla u_{\varepsilon,1}|^{2}) dx - \int_{M} \int_{u_{\varepsilon,1}}^{u_{\varepsilon,1} + \varphi_{\varepsilon}} \overline{f}_{2}(x,s) ds$$

$$= J_{\varepsilon,2}(u_{\varepsilon,2}) - J_{\varepsilon,2}(u_{\varepsilon,2} - \varphi_{\varepsilon}) \leq 0.$$

This implies that $u_{\varepsilon,1} + \varphi_{\varepsilon}$ is also a minimizer of $J_{\varepsilon,1}(u)$. Let L > 0 be large enough such that $\overline{f}_1(x,t) + Lt$ is strictly increasing for $x \in \overline{D}$, $t \in [-1,1]$. From

$$-\varepsilon^2 \Delta(u_{\varepsilon,1} + \varphi_{\varepsilon}) = \overline{f}_1(u_{\varepsilon,1} + \varphi_{\varepsilon}),$$

we obtain

$$-\varepsilon^2 \Delta \varphi_{\varepsilon} = \overline{f}_1(u_{\varepsilon,1} + \varphi_{\varepsilon}) - \overline{f}_1(u_{\varepsilon,1}).$$

Thus

$$-\varepsilon^2 \Delta \varphi_{\varepsilon} + L \varphi_{\varepsilon} = \overline{f}_1(u_{\varepsilon,1} + \varphi_{\varepsilon}) + L(u_{\varepsilon,1} + \varphi_{\varepsilon}) - (\overline{f}_1(u_{\varepsilon,1}) + Lu_{\varepsilon,1}) > 0$$

in D. Fix $z_0 \in M$. Let $x_0 \in \partial M$ such that $|x_0 - z_0| = \operatorname{dist}(z_0, \partial M)$. Using the Strong maximum principle and Hopf's lemma in $B_{\operatorname{dist}(z_0,\partial M)}(z_0)$, we obtain that $\frac{\partial \varphi_{\varepsilon}}{\partial \nu}(x_0) < 0$, where $\nu = (x_0 - z_0)/|x_0 - z_0|$. But $\varphi_{\varepsilon}(x) = 0$ for $x \notin M$. Thus, $\frac{\partial \varphi_{\varepsilon}}{\partial \nu}(x_0) = 0$. This is a contradiction. Thus we obtain $M = \emptyset$.

3 Proof of Main Theorem

In this section we prove Theorem 1.1. The following proposition is the first part of Theorem 1.1.

Proposition 3.1. Let u_{ε} be a global minimizer of the problem (1.1). Then u_{ε} satisfies

$$u_{arepsilon}
ightarrow \left\{egin{array}{ll} uniformly \ on \ any \ compact \ subset \ of \ A_{-} \ -1 \end{array}
ight.$$
 uniformly on any compact subset of A_{+}

as $\varepsilon \to 0$.

Proof. Let $x_0 \in A_-$. Choose $\delta > 0$ small so that $B_{\delta}(x_0) \subset A$. Take $b \in (\max_{z \in \overline{B_{\delta}(x_0)}} a(z), 1/2)$. Define $f_{x_0,\delta,b}(t) = (\min_{z \in B_{\delta}(x_0)} h(z)^2)(t-b)(1-t^2)$. Then for $x \in \overline{B_{\delta}(x_0)}$, $t \in [-1,1]$, we have $f(|x|,t) \geq f_{x_0,\delta,b}(t)$. Let $u_{\varepsilon,x_0,\delta,b}$ be the minimizer of

$$\inf\left\{\int_{B_\delta(x_0)}rac{arepsilon^2}{2}|
abla u|^2-F_{x_0,\delta,b}(u)dx:u+1\in H^1_0(B_\delta(x_0))
ight\},$$

where $F_{x_0,\delta,b}(t) = \int_{-1}^t f_{x_0,\delta,b}(s) ds$. It follows from Lemmas 2.1 and 2.2 that

$$u_{\varepsilon,x_0,\delta,b}(x) \leq u_{\varepsilon}(x) \leq 1$$
, for $x \in B_{\delta}(x_0)$.

Since $\int_{-1}^{1} f_{x_0,\delta,b}(s)ds > 0$, it follows from [2, 3] that $u_{\varepsilon,x_0,\delta,b}(x) \to 1$ as $\varepsilon \to 0$ uniformly in $B_{\delta/2}(x_0)$, thus $u_{\varepsilon}(x) \to 1$ as $\varepsilon \to 0$ uniformly in $B_{\delta/2}(x_0)$.

To prove the rest of Theorem 1.1, we need the following proposition and lemma.

Proposition 3.2. Let u be a local minimizer of the following problem:

$$\inf \left\{ \int_{B_1(0)} \frac{1}{2} |\nabla u|^2 - G(|x|, u) dx : u \in H^1(B_1(0)) \right\}.$$

Here $G(r,t) = \int_{-1}^{t} g(r,s)ds$, g(r,t) is C^{1} in $t \in \mathbb{R}$ for each $r \geq 0$, g(r,t) and $g_{t}(r,t)$ are measurable on $[0,+\infty)$ for each $t \in \mathbb{R}$, g(r,t) < 0 if t < -1 or t > 1 and $|g(r,t)| + |g_{t}(r,t)|$ is bounded on $[0,k] \times [-2,2]$ for any k > 0. Then u is radial, i.e., u(x) = u(|x|).

Proof. See [4, Proposition 2.6].
$$\Box$$

Before we prove Theorem 1.1, we prepare a lemma.

Lemma 3.3. Let $0 < \eta < 1$ be any fixed constant and w satisfies

$$\begin{cases}
-w_{zz} = w(1 - w^2) & \text{on } \mathbb{R}, \\
w(0) = -1 + \eta \text{ (resp. } w(0) = 1 - \eta), \\
w(z) \le -1 + \eta \text{ (resp. } w(z) \ge 1 - \eta) & \text{for } z \le 0, \\
w \text{ is bounded on } \mathbb{R}.
\end{cases}$$

Then w is a unique solution of

$$\begin{cases}
-w_{zz} = w(1 - w^2) & \text{on } \mathbb{R}, \\
w(0) = -1 + \eta \text{ (resp. } w(0) = 1 - \eta), \\
w'(z) > 0 \text{ (resp. } w'(z) < 0) & z \in \mathbb{R}, \\
w(z) \to \pm 1 \text{ (resp. } w(z) \to \mp 1) & \text{as } z \to \pm \infty.
\end{cases}$$

Proof. See for example [6].

Now we prove the rest of Theorem 1.1.

Proof of Theorem 1.1. For the sake of simplicity, we prove for the case where a(r) < 0 on $[0, r_1)$, a(r) = 0 on $[r_1, r_2]$ and a(r) > 0 on $[r_2, 1]$ for some $0 < r_1 < r_2 < 1$ (see Figure 1 in Section 1).

Part 1. First we show that u_{ε} converges uniformly near the boundary of $B_1(0)$, that is, $u_{\varepsilon} \to -1$ uniformly on $\overline{B_1(0)} \setminus B_{r_2+\tau}(0)$ for any small $\tau > 0$. We note that

we have $u_{\varepsilon} \to -1$ uniformly on $\overline{B_{1-\tau}(0)} \setminus B_{r_2+\tau}(0)$ as $\varepsilon \to 0$. Now we claim that $u_{\varepsilon}(r) \leq u_{\varepsilon}(1-\tau) =: T_{\varepsilon}$ for $r \in [1-\tau, 1]$. We define the function \tilde{u}_{ε} as follows:

$$\tilde{u}_{\varepsilon}(r) = \begin{cases} u_{\varepsilon}(r) & \text{if } r \in [0, 1 - \tau] \\ u_{\varepsilon}(r) & \text{if } u_{\varepsilon}(r) < T_{\varepsilon} \text{ and } r \in [1 - \tau, 1], \\ T_{\varepsilon} & \text{if } u_{\varepsilon}(r) \ge T_{\varepsilon} \text{ and } r \in [1 - \tau, 1]. \end{cases}$$

We note that $\tilde{u}_{\varepsilon} \in H^1(B_1(0))$ and $-F(r, T_{\varepsilon}) \leq -F(r, t)$ for $\varepsilon > 0$ and |r-1| small and $t \geq T_{\varepsilon}$. Hence we obtain $J_{\varepsilon}(\tilde{u}_{\varepsilon}) < J_{\varepsilon}(u_{\varepsilon})$ and we have a contradiction if we assume that the measure of the set $\{r \in [0, 1] | u_{\varepsilon}(r) > T_{\varepsilon} \text{ and } r \in [1 - \tau, 1]\}$ is positive. Hence $-1 < u_{\varepsilon}(r) \leq T_{\varepsilon}$ and $u_{\varepsilon} \to -1$ uniformly on $\overline{B_1(0)} \setminus B_{r_2+\tau}(0)$.

Part 2. Next we remark that, by Proposition 3.2, u_{ε} is radially symmetric and we note that for any $t_2 > t_1$, u_{ε} is a minimizer of the following problem

$$\inf\{J_{\varepsilon}(u,B_{t_2}(0)\overline{\setminus B_{t_1}(0)}): u-u_{\varepsilon}\in H^1_0(B_{t_2}(0)\overline{\setminus B_{t_1}(0)})\},$$

where

$$J_{\varepsilon}(u, M) = \int_{M} \frac{\varepsilon^{2}}{2} |\nabla u|^{2} - F(|x|, u) dx$$

for any open set M. Let m_{ε,t_1,t_2} be the minimum value of this minimization problem.

In this part we show that u_{ε} has exactly one layer near the interval $[r_1, r_2]$.

Step 2.1. First we estimate the energy of transition layer.

Let $\eta > 0$ and $\theta > 0$ be small numbers. Since $u_{\varepsilon} \to 1$ uniformly on $[0, r_1 - \theta]$ and $u_{\varepsilon} \to -1$ uniformly on $[r_2 + \theta, 1 - \theta]$, we can find $\overline{r}_{\varepsilon} \in (r_1 - \theta, r_2 + \theta)$ such that $u_{\varepsilon}(r) \geq 1 - \eta$ if $r \in [0, \overline{r}_{\varepsilon}]$, $u_{\varepsilon}(r) < 1 - \eta$ for $r - \overline{r}_{\varepsilon} > 0$ small. Let $\tilde{r}_{\varepsilon} > \overline{r}_{\varepsilon}$ be such that $u_{\varepsilon}(r) \leq \eta$ if $r \in [\tilde{r}_{\varepsilon}, 1 - \theta]$, $u_{\varepsilon}(r) > \eta$ for $\tilde{r}_{\varepsilon} - r > 0$ small. We may assume that $\overline{r}_{\varepsilon} \to \overline{r} \in [r_1, r_2]$ and $\tilde{r}_{\varepsilon} \to \tilde{r} \in [r_1, r_2]$

We employ the so-called blow-up argument. Let $v_{\varepsilon}(t) = u_{\varepsilon}(\varepsilon t + \overline{r}_{\varepsilon})$. Then

$$-v_{\varepsilon}'' - \varepsilon \frac{N-1}{\varepsilon t + \overline{r}_{\varepsilon}} v_{\varepsilon}' = f(\varepsilon t + \overline{r}_{\varepsilon}, v_{\varepsilon}),$$

 $-1 \le v_{\varepsilon} \le 1$ and $v_{\varepsilon}(0) = 1 - \eta$. Since $\overline{r}_{\varepsilon} \to \overline{r} \in [r_1, r_2]$, it is easy to see that $v_{\varepsilon} \to v$ in $C^1_{loc}(\mathbb{R})$ and

$$-v'' = h(\overline{r})^2(v - v^3), \ t \in \mathbb{R}.$$

and $v(t) \geq 1 - \eta$ for $t \leq 0$. If we set $v(t) = V(h(\overline{r})t)$, the function V(t) satisfies

$$\begin{cases}
-V'' = V - V^3 & \text{on } \mathbb{R}, \\
V(0) = 1 - \eta, \\
V'(t) \ge 1 - \eta & t \le 0.
\end{cases}$$
(3.1)

Hence by Lemma 3.3, the function V is a unique solution for

$$\begin{cases}
-V'' = V - V^3 & \text{on } \mathbb{R}, \\
V(0) = 1 - \eta, \\
V'(t) < 0 & t \le 0. \\
V(t) \to \pm 1 & \text{as } t \to \mp \infty.
\end{cases}$$
(3.2)

Thus, we can find an R > 0 large, such that $v(R) = \eta$. Since $v_{\varepsilon} \to v$ in $C^1_{loc}(\mathbb{R})$, we can find an $R_{\varepsilon} \in (R-1,R+1)$, such that $v'_{\varepsilon}(r) < 0$ if $r \in [0,R_{\varepsilon}]$ and $v_{\varepsilon}(R_{\varepsilon}) = -1 + \eta$. Hence $u'_{\varepsilon}(r) < 0$ if $r \in [\overline{r}_{\varepsilon}, \overline{r}_{\varepsilon} + \varepsilon R_{\varepsilon}]$ and $u_{\varepsilon}(\overline{r}_{\varepsilon} + \varepsilon R_{\varepsilon}) = -1 + \eta$. Then we have

$$J_{\varepsilon}(u_{\varepsilon}, B_{\overline{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0) \backslash \overline{B_{\overline{r}_{\varepsilon}}(0)})$$

$$= \omega_{N-1}(\overline{r}_{\varepsilon}^{N-1} + o_{\varepsilon}(1)) \int_{\overline{r}_{\varepsilon}}^{\overline{r}_{\varepsilon}+\varepsilon R_{\varepsilon}} \left(\frac{\varepsilon^{2}}{2} |u_{\varepsilon}'|^{2} - F(t, u_{\varepsilon})\right) dt$$

$$= \omega_{N-1}(\overline{r}_{\varepsilon}^{N-1} + o_{\varepsilon}(1)) \varepsilon \int_{0}^{R_{\varepsilon}} \left(\frac{1}{2} |v_{\varepsilon}'|^{2} - F(\varepsilon t + \overline{r}_{\varepsilon}, v_{\varepsilon})\right) dt$$

$$= \omega_{N-1}(\overline{r}_{\varepsilon}^{N-1} + o_{\varepsilon}(1)) (\beta_{h(\overline{r})} + O(\eta) + o_{\varepsilon}(1)) \varepsilon,$$
(3.3)

where ω_{N-1} is the area of the unit sphere in \mathbb{R}^N , $o_{\varepsilon}(1) \to 0$ as $\varepsilon \to 0$, $\beta_{h(s)}$ is the positive value defined by

$$\beta_{h(s)} = \int_{-\infty}^{+\infty} \left(\frac{1}{2} |w'_{h(s)}(t)|^2 + h(s)^2 \frac{(w^2_{h(s)} - 1)^2}{4} \right) dt$$

$$= h(s) \int_{-\infty}^{+\infty} \frac{1}{2} |V'(t)|^2 + \frac{(V(t)^2 - 1)^2}{4} dt$$

$$= h(s) \beta_1$$

and $w_{h(s)}(t) = V(h(s)t)$ for $s \in [0,1]$. We note that although the function V depends on η , the value

$$\beta_1 = \int_{-\infty}^{+\infty} \frac{1}{2} |V'(t)|^2 + \frac{(V(t)^2 - 1)^2}{4} dt$$

is independent of η .

Step 2.2. We claim u_{ε} has exactly one layer near the interval $[r_1, r_2]$. To show u_{ε} has exactly one layer near the interval $[r_1, r_2]$, it sufficient to prove the following claim:

Claim. $\tilde{r}_{\varepsilon} = \overline{r}_{\varepsilon} + \varepsilon R_{\varepsilon}$.

Suppose that the claim is not true. Then we can find a $t_{\varepsilon} > \overline{r}_{\varepsilon} + R_{\varepsilon}\varepsilon$ such that $u_{\varepsilon}(r) < -1 + \eta$ if $r \in (\overline{r}_{\varepsilon} + R_{\varepsilon}\varepsilon, t_{\varepsilon})$, $u_{\varepsilon}(t_{\varepsilon}) = -1 + \eta$. Thus we can use the blow-up argument again at t_{ε} to deduce that there is a $\tilde{t}_{\varepsilon} = t_{\varepsilon} + \varepsilon \tilde{R}_{\varepsilon}$ with $u'_{\varepsilon}(r) > 0$ if

 $r \in (t_{\varepsilon}, \tilde{t}_{\varepsilon}), u_{\varepsilon}(\tilde{t}_{\varepsilon}) = 1 - \eta$. We may assume that $t_{\varepsilon}, \tilde{t}_{\varepsilon} \to \bar{t}$ as $\varepsilon \to 0$ for some $\bar{t} \in [r_2, r_3]$. Moreover

$$J_{\varepsilon}(u_{\varepsilon}, B_{\tilde{t}_{\varepsilon}}(0) \setminus \overline{B_{t_{\varepsilon}}(0)}) = \omega_{N-1}(t_{\varepsilon}^{N-1} + o_{\varepsilon}(1))(\beta_{h(\tilde{t})} + O(\eta))\varepsilon + o_{\varepsilon}(1)$$
(3.4)

Now we claim $\tilde{t}_{\varepsilon} \geq r_1$. Suppose $\tilde{t}_{\varepsilon} < r_1$.

Let $F_a(t) = \int_{-1}^{t} (v-a)(1-v^2)dv$. Then for any t > 0 small and $s \in [-1+t, 1-t]$,

$$F_{a}(1-t) - F_{a}(s)$$

$$= F_{0}(1-t) - F_{0}(s) + F_{a}(1-t) - F_{0}(1-t) - F_{a}(s) + F_{0}(s)$$

$$= \left[\frac{(v^{2}-1)^{2}}{4}\right]_{s}^{1-t} - a \int_{s}^{1-t} (1-v^{2}) dv$$
(3.5)

Thus it follows from (3.5) that if a < 0 then

$$F_a(1-t) - F_a(s) > 0 (3.6)$$

for $s \in [-1 + t, 1 - t]$. Define

$$\overline{u}_{\varepsilon}(r) := \begin{cases} 1 - \eta & r \in [\overline{r}_{\varepsilon}, \overline{r}_{\varepsilon} + R_{\varepsilon}\varepsilon] \cup [t_{\varepsilon}, \tilde{t}_{\varepsilon}], \\ -u_{\varepsilon}(r) & r \in [\overline{r}_{\varepsilon} + R_{\varepsilon}\varepsilon, t_{\varepsilon}]. \end{cases}$$

By the assumption that $\tilde{t}_{\varepsilon} < r_1$ and using (3.6), we see $F(r, u_{\varepsilon}) < F(r, \overline{u}_{\varepsilon})$ if $r \in [\overline{r}_{\varepsilon}, \tilde{t}_{\varepsilon}]$. Hence, we obtain

$$J_{\varepsilon}(\overline{u}_{\varepsilon}, B_{\tilde{t}_{\varepsilon}}(0) \setminus \overline{B_{\overline{r}_{\varepsilon}}(0)}) < J_{\varepsilon}(u_{\varepsilon}, B_{\tilde{t}_{\varepsilon}}(0) \setminus \overline{B_{\overline{r}_{\varepsilon}}(0)}).$$

Thus we obtain a contradiction. Therefore we have that $\tilde{t}_{\varepsilon} \geq r_1$.

Since $a(r) \geq 0$ for $r \in [r_1, 1]$, we see $F(r, t) \leq F(r, -1) = 0$ if $r \in [r_1, 1]$. Since $u_{\varepsilon}(r) \in (-1, -1 + \eta)$ for $r \in [\overline{r}_{\varepsilon} + R_{\varepsilon}\varepsilon, t_{\varepsilon}]$, we have

$$m_{\varepsilon,\overline{r}_{\varepsilon},\widetilde{r}_{\varepsilon}} = J_{\varepsilon}(\overline{u}_{\varepsilon}, B_{\overline{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0) \setminus \overline{B_{\overline{r}_{\varepsilon}}(0)}) + J_{\varepsilon}(\overline{u}_{\varepsilon}, B_{\overline{t}_{\varepsilon}}(0) \setminus \overline{B_{\overline{t}_{\varepsilon}}(0)}) + J_{\varepsilon}(\overline{u}_{\varepsilon}, B_{t_{\varepsilon}}(0) \setminus \overline{B_{\overline{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0)}) + J_{\varepsilon}(\overline{u}_{\varepsilon}, B_{\overline{r}_{\varepsilon}}(0) \setminus \overline{B_{\overline{t}_{\varepsilon}}(0)}) \geq \omega_{N-1}(\overline{r}_{\varepsilon}^{N-1}\beta_{h(\overline{r})}\varepsilon + t_{\varepsilon}^{N-1}\beta_{h(\overline{t})}\varepsilon) + O(\eta\varepsilon) + o(\varepsilon) + \inf \left\{ -\int_{B_{t_{\varepsilon}}(0) \setminus B_{\overline{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0)} F(r, w) : -1 \leq w \leq 1 + \eta \right\} + \inf \left\{ -\int_{B_{\overline{r}_{\varepsilon}}(0) \setminus B_{\overline{t}_{\varepsilon}}(0)} F(r, w) : -1 \leq w \leq 1 \right\} \geq \omega_{N-1}(\overline{r}_{\varepsilon}^{N-1}\beta_{h(\overline{r})}\varepsilon + t_{\varepsilon}^{N-1}\beta_{h(\overline{t})}\varepsilon) + O(\eta\varepsilon) + o(\varepsilon)$$

Now we give an upper bound for $m_{\varepsilon,\overline{r}_{\varepsilon},\overline{r}_{\varepsilon}}$. Let R>0 be such that $V(h(\overline{r})R)=\eta$, where V is a unique solution to (3.2). Define $\overline{u}_{\varepsilon}$ as follows:

$$\overline{u}_{\varepsilon}(r) := \begin{cases}
V(h(\overline{r}) \frac{r - \overline{r}_{\varepsilon}}{\varepsilon}) & r \in [\overline{r}_{\varepsilon}, \overline{r}_{\varepsilon} + \varepsilon R] \\
-1 + \eta - \frac{\eta}{\varepsilon} (r - \overline{r}_{\varepsilon} - \varepsilon R) & r \in [\overline{r}_{\varepsilon} + \varepsilon R, \overline{r}_{\varepsilon} + \varepsilon R + \varepsilon] \\
-1 & r \in [\overline{r}_{\varepsilon} + \varepsilon R + \varepsilon, \widetilde{r}_{\varepsilon} - \varepsilon] \\
-1 + \frac{\eta}{\varepsilon} (r - \widetilde{r}_{\varepsilon} + \varepsilon) & r \in [\widetilde{r}_{\varepsilon} - \varepsilon, \widetilde{r}_{\varepsilon}]
\end{cases} (3.8)$$

Now we note that $|F(r,t)|=O(\eta)$ for $r\in [\overline{r}_{\varepsilon},\tilde{r}_{\varepsilon}]$ and $-1\leq t\leq -1+\eta$. Then we have

$$m_{\varepsilon,\overline{r}_{\varepsilon},\overline{r}_{\varepsilon}} \leq J_{\varepsilon}(\overline{u}_{\varepsilon}, B_{\overline{r}_{\varepsilon}}(0) \setminus \overline{B_{\overline{r}_{\varepsilon}}(0)})$$

$$\leq J_{\varepsilon}(\overline{u}_{\varepsilon}, B_{\overline{r}_{\varepsilon}+R\varepsilon}(0) \setminus \overline{B_{\overline{r}_{\varepsilon}}(0)}) + J_{\varepsilon}(\overline{u}_{\varepsilon}, B_{\overline{r}_{\varepsilon}}(0) \setminus \overline{B_{\overline{r}_{\varepsilon}-\varepsilon}(0)})$$

$$+ J_{\varepsilon}(\overline{u}_{\varepsilon}, B_{\overline{r}_{\varepsilon}-\varepsilon}(0) \setminus \overline{B_{\overline{r}_{\varepsilon}+\varepsilon R}(0)})$$

$$\leq \omega_{N-1} \overline{r}_{\varepsilon}^{N-1} (\beta_{h(\overline{r})} + O(\eta))\varepsilon + o(\varepsilon) + O(\varepsilon\eta) + o(\varepsilon)$$

$$= \omega_{N-1} \overline{r}_{\varepsilon}^{N-1} \beta_{h(\overline{r})} + O(\eta\varepsilon) + o(\varepsilon)$$

$$(3.9)$$

By (3.7) and (3.9), we have

$$\omega_{N-1}(\overline{r}_{\varepsilon}^{N-1}\beta_{h(\overline{r})} + t_{\varepsilon}^{N-1}\beta_{h(\overline{t})})\varepsilon \leq \omega_{N-1}\overline{r}_{\varepsilon}^{N-1}\beta_{h(\overline{r})}\varepsilon + O(\varepsilon\eta) + o(\varepsilon)$$

This is a contradiction. So we can conclude $\tilde{r}_{\varepsilon} = \overline{r}_{\varepsilon} + \varepsilon R_{\varepsilon}$.

Part 3. It remains to prove that if $\overline{r}_{\varepsilon_j} \to \overline{r}$ for some positive sequence $\{\varepsilon_j\}$ converging to zero as $j \to \infty$ then \overline{r} satisfies

$$\overline{r}^{N-1}h(\overline{r}) = \min_{s \in [r_1, r_2]} s^{N-1}h(s).$$

Step 3.1. First we note that from Part 1, the function u_{ε} satisfies $-1 \leq u_{\varepsilon} \leq -1 + \eta$ for $r \in [\overline{r}_{\varepsilon} + \varepsilon R_{\varepsilon}, 1]$ in this case.

Step 3.2. Set $H(s) = s^{N-1}h(s)$. Assume that the result is not true. Then there exists a subsequence of $\{\overline{r}_{\varepsilon}\}$ (denoted by $\overline{r}_{\varepsilon}$) such that $\overline{r}_{\varepsilon} \to r' \in [r_1, r_2]$ and $H(r') > \min_{s \in [r_1, r_2]} H(s)$. Then we can find a point $\overline{t} \in (r_1, r_2)$ such that $H(r') > H(\overline{t})$.

Next we give a lower estimate for $J_{\varepsilon}(u_{\varepsilon})$. We have

$$J_{\varepsilon}(u_{\varepsilon}) = J_{\varepsilon}(u_{\varepsilon}, B_{\overline{r}_{\varepsilon}}(0)) + J_{\varepsilon}(u_{\varepsilon}, B_{\overline{r}_{\varepsilon}+\varepsilon R_{\varepsilon}}(0) \setminus B_{\overline{r}_{\varepsilon}}(0)) + J_{\varepsilon}(u_{\varepsilon}, B_{1}(0) \setminus \overline{B_{\overline{r}_{\varepsilon}+R_{\varepsilon}\varepsilon}(0)}).$$

$$(3.10)$$

First we note that $1 - \eta \le u_{\varepsilon}(r) \le 1$ for $r \le \overline{r}_{\varepsilon}$ and for sufficiently small $\eta > 0$, $-F(r,u) \ge -F(r,1)$ ($u \in [1-\eta,1]$). We also remark that since a(r) < 0 for $r < r_1$ and a(r) = 0 for $r_1 \le r \le r_2$ and a(r) > 0 for $r > r_2$, we have -F(r,1) < 0 for

 $r < r_1$ and -F(r,1) = 0 for $r_1 \le r \le r_2$ and -F(r,1) > 0 for $r > r_2$. Hence we have $-\int_{r_1}^{\overline{r_e}} r^{N-1} F(r,1) dr \ge 0$ and we obtain the following estimate

$$J_{\varepsilon}(u_{\varepsilon}, B_{\overline{r}_{\varepsilon}}(0)) \geq -\int_{0}^{\overline{r}_{\varepsilon}} r^{N-1} F(r, u_{\varepsilon}) dr$$

$$\geq -\int_{0}^{\overline{r}_{\varepsilon}} r^{N-1} F(r, 1) dr$$

$$= -\int_{0}^{r_{1}} r^{N-1} F(r, 1) dr - \int_{r_{1}}^{\overline{r}_{\varepsilon}} r^{N-1} F(r, 1) dr$$

$$\geq -\int_{0}^{r_{1}} r^{N-1} F(r, 1) dr =: A.$$

We also obtain

$$J_{\varepsilon}(u_{\varepsilon}, B_{\overline{r}_{\varepsilon} + R_{\varepsilon}\varepsilon}(0) \setminus B_{\overline{r}_{\varepsilon}}(0)) \ge \omega_{N-1} H(r') \beta_{1}\varepsilon + O(\eta\varepsilon) + o(\varepsilon). \tag{3.11}$$

by methods similar to proof of (3.3).

Since $-1 \le u_{\varepsilon}(r) \le -1 + \eta$ for $r \ge \overline{r}_{\varepsilon} + \varepsilon R_{\varepsilon}$ and for sufficiently small $\eta > 0$, $-F(r,u) \ge -F(r,-1) = 0$ $(u \in [-1,-1+\eta])$, we obtain the following estimate:

$$J_{\varepsilon}(u_{\varepsilon}, B_{1}(0) \backslash B_{\overline{r}_{\varepsilon} + R_{\varepsilon}\varepsilon}(0)) \geq -\int_{\overline{r}_{\varepsilon} + \varepsilon R_{\varepsilon}}^{1} r^{N-1} F(r, u_{\varepsilon}) dr$$

$$\geq -\int_{\overline{r}_{\varepsilon} + \varepsilon R_{\varepsilon}}^{1} r^{N-1} F(r, -1) dr = 0.$$
 (3.12)

Thus we obtain

$$J(u_{\varepsilon}) \ge A + \omega_{N-1} H(r') \beta_1 \varepsilon + O(\eta \varepsilon) + o(\varepsilon). \tag{3.13}$$

Next we give an upper bound for $J_{\varepsilon}(u_{\varepsilon})$. Consider the following function $\overline{w}_{\varepsilon}$:

$$\overline{w}_{\varepsilon}(r) := \begin{cases} 1 & r \in [0, \overline{t} - \varepsilon] \\ 1 - \frac{\eta}{\varepsilon}(r - \overline{t} + \varepsilon) & r \in [\overline{t} - \varepsilon, \overline{t}] \\ V\left(h(\overline{t})\frac{r - \overline{t}}{\varepsilon}\right) & r \in [\overline{t}, \overline{t} + \varepsilon R'] \\ -1 - \frac{\eta}{\varepsilon}(r - \overline{t} - \varepsilon R' - \varepsilon) & r \in [\overline{t} + \varepsilon R', \overline{t} + \varepsilon R' + \varepsilon] \\ -1 & r \in [\overline{t} + \varepsilon R' + \varepsilon, 1], \end{cases}$$

where R'>0 is the number satisfying $V(h(\bar{t})R')=-1+\eta$. Then we can see

$$J_{\varepsilon}(u_{\varepsilon}) \le J_{\varepsilon}(\overline{w}_{\varepsilon}) \le A + \omega_{N-1}H(\overline{t})\beta_{1}\varepsilon + O(\eta\varepsilon) + o(\varepsilon). \tag{3.14}$$

By (3.13) and (3.14) we have a contradiction. The proof of Theorem 1.1 is completed. In the more complicated case, we can show by similar method(see Remark below).

図 2:

Remark. We briefly show in more complicated case, that is, when a is the function as in Figure 2. More precisely we set $I_1 := [r_1, r_2]$ and $I_2 := [r_3, r_4]$ and we assume a > 0 on $[0, r_1) \cup (r_4, 1]$ and a < 0 on (r_3, r_4) .

Let $\eta > 0$ and $\theta > 0$ be small numbers. As in Part 1, we can find pairs of numbers $(\overline{r}_{1,\varepsilon}, \overline{r}_{2,\varepsilon})$ and $(R_{1,\varepsilon}, R_{\varepsilon,2})$ satisfying $\overline{r}_{1,\varepsilon} \in (r_1 - \theta, r_2 + \theta)$, $\overline{r}_{2,\varepsilon} \in (r_3 - \theta, r_4 + \theta)$, $\sup_{\varepsilon} |R_{1,\varepsilon}| < \infty$, $\sup_{\varepsilon} |R_{2,\varepsilon}| < \infty$ and

$$\begin{cases} u_{\varepsilon}(r) < -1 + \eta & \text{for } 0 < r < \overline{r}_{1,\varepsilon} \\ u_{\varepsilon}(\overline{r}_{1,\varepsilon}) = -1 + \eta \\ u_{\varepsilon}(\overline{r}_{1,\varepsilon} + \varepsilon R_{1,\varepsilon}) = 1 - \eta \\ u_{\varepsilon}(r) > 1 - \eta & \text{for } \overline{r}_{1,\varepsilon} + \varepsilon R_{1,\varepsilon} < r < \overline{r}_{2,\varepsilon} \\ u_{\varepsilon}(\overline{r}_{2,\varepsilon}) = 1 - \eta \\ u_{\varepsilon}(\overline{r}_{2,\varepsilon} + \varepsilon R_{2,\varepsilon}) = -1 + \eta \\ u_{\varepsilon}(r) < -1 + \eta & \text{for } \overline{r}_{2,\varepsilon} + \varepsilon R_{2,\varepsilon} < r < 1 \end{cases}$$

We assume $\overline{r}_{1,\varepsilon_j} \to \overline{r}_1 \in I_1$ and $\overline{r}_{2,\varepsilon_j} \to \overline{r}_2 \in I_2$ for some sequence $\{\varepsilon_j\}$ which converges to 0 as $j \to \infty$. In this case it is easy to show that the energy of global minimizer $J(u_{\varepsilon})$ is estimated as follows:

$$J_{\varepsilon_j}(u_{\varepsilon_j}) \ge J_{\varepsilon_j}(u_{\varepsilon_j}, B_{r_2 - \varepsilon}(0)) + \varepsilon_j \omega_{N-1} H(\overline{r}_2) \beta_1 + B + O(\varepsilon_j \eta) + o(\varepsilon_j), \quad (3.15)$$

where $B = -\int_{r_2}^{r_3} r^{N-1} F(r, 1) dr$.

Let us assume the result does not hold. Then $H(\overline{r}_1) > \min_{s \in I_1} H(s)$ or $H(\overline{r}_2) > \min_{s \in I_2}$ hold. We assume $H(\overline{r}_1) = \min_{s \in I_1}$ and $H(\overline{r}_2) > \min_{s \in I_2} H(s)$. We also assume $r_1 = \overline{r}_1$. We note that if $H(\overline{r}_1) > \min_{s \in I_1} H(s)$ or $\overline{r}_1 \in \text{int} I_1$, the proof is more easy.

Let we take $\tilde{r}_2 \in \text{int}I_2$ such that $H(\bar{r}_2) > H(\tilde{r}_2) > \min_{s \in I_2} H(s)$ and consider the following function:

$$\tilde{u}_{\varepsilon}(r) := \begin{cases} u_{\varepsilon}(r) & \text{on } [0, r_2 - \varepsilon) \\ 1 + \frac{\eta}{\varepsilon}(r - r_2) & \text{on } [r_2 - \varepsilon, r_2] \\ 1 & \text{on } [r_2, \tilde{r}_2 - \varepsilon] \\ 1 - \frac{\eta}{\varepsilon}(r - \tilde{r}_2 + \varepsilon) & \text{on } [\tilde{r}_2 - \varepsilon, \tilde{r}_2] \\ V\left(h(\tilde{r}_2)\frac{r - \tilde{r}_2}{\varepsilon}\right) & \text{on } [\tilde{r}_2, \tilde{r}_2 + \varepsilon R''] \\ -1 - \frac{\eta}{\varepsilon}(r - \tilde{r}_2 - \varepsilon R'' - \varepsilon) & \text{on } [\tilde{r}_2 + \varepsilon R'', \tilde{r}_2 + \varepsilon R'' + \varepsilon] \\ -1 & \text{on } [\tilde{r}_2 + \varepsilon R'' + \varepsilon, 1], \end{cases}$$

where V is the unique solution of (3.2) and R'' is the unique value such that $V(h(r_1)R'') = -1 + \eta$.

Since u_{ε} is global minimizer, we can estimate the energy of $J_{\varepsilon}(\tilde{u}_{\varepsilon})$ as follows:

$$J_{\varepsilon}(u_{\varepsilon}) \leq J_{\varepsilon}(\tilde{u}_{\varepsilon}) \leq J_{\varepsilon}(u_{\varepsilon}, B_{r_2 - \varepsilon}(0)) + \varepsilon \omega_{N-1} H(\tilde{r}_2) \beta_1 + B + O(\varepsilon \eta) + o(\varepsilon). \quad (3.16)$$

Then we have a contradiction from (3.15) and (3.16) by taking $\varepsilon = \varepsilon_j$ and sufficiently large j.

References

- [1] S. B. Angenent, J. Mallet-Paret, and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, J. Differential Equations, 67 (1987), 212-242.
- [2] Ph. Clément and L. A. Peletier, On a nonlinear eigenvalue problem occurring in population genetics, Proc. Royal Soc. Edinburg, 100A(1985), 85-101.
- [3] Ph. Clément abd G. Sweers, Existence of multiplicity results for a semilinear eigenvalue problem, Ann. Scuola Norm. Sup. Pisa, 14(1987), 97-121
- [4] E. N. Dancer, S. Yan, Construction of various type of solutions for an elliptic problem, Calculus of Variations and Partial Differential Equations 20(2004), 93-118.
- [5] D. Gilbarg and N.S. Trudinger, "Elliptic partial differential equations of second order", Springer-Verlag, Berlin, second edition 1983.
- [6] H. Matsuzawa, Stable transition layers in a balanced bistable equation with degeneracy, Nonlinear Analysis 58 (2004), 45-67.

- [7] A. S. do. Nascimento, Stable transition layers in a semilinear diffusion equation with spatial inhomogeneities in N- dimensional domains, J. Differential Equations, 190 (2003), 16-38.
- [8] K. Nakashima, Multi-layered stationary solutions for a spatially inhomogeneous Allen-Cahn equation, J. Differential Equations, 191 (2003), 234-276.
- [9] K. Nakashima, K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Non Linéaire **20** (2003), 107-143.