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Asymptotic profile of a radially symmetric solution with
transition layers for an unbalanced bistable equation

BETEHSEMER Hiroshi Matsuzawa(Hiroshi Matsuzawa)
Numazu National College of Technology

1 Introduction and Main Results

In this paper, we consider the following boundary value problem:

(P,) { —e2Au = h{jz))?(u — a(|z]))(1 — »?) in Bi(0)
“la=0 on 8B1(0)

where £ > 0 is a small parameter, B;(0) is a unit ball in R" centered at the
origin and the function a is a C* function on [0, 1] satisfying —1 < a(fz]) <1 and
a'(0) = 0. The function h is a positive C* function on {0, 1] satisfying h'(0) = 0.
We set r = |2|.

Problem (P.) appears in various models such as population genetics, chemical
reactor theory and phase transition phenomena. See [1] and the references therein.
If the function h satisfies h(r) = 1 and the function a satisfies a(r) # 0, then
this problem (P.) has been studied in [1], [4] and [7]. In this case, it is shown
that there exist radially symmetric solutions with transition layers near the set
{z € Bi(0)]a(|z|) = 0}. If the set {r € Rfa(r) = 0} contains an interval I, then
the problem to decide the configuration of transition layer on I is more delicate.

On the other hand, in the case of N = 1, if the function A satisfies h(r) # 1 and
the function a satisfies a(r) = 0, then this problem (P.) has been studied in 8]
and [9]. In this case, it is shown that there exist stable solutions with transition
layers near prescribed local minimum points of h.

In this paper, we consider the case where the function a satisfies a({r) # 0 with
a(r) = 0 on some interval I C (0,1). We show the minimum point of the function
r¥=1h(r) on I has very important role to decide the configuration of transition
layer on I in this case.

We note that in [4], Dancer and Shusen Yan considered a problem similar to
ours. They assume that N > 2, h = 1 and the nonlinear term is w(u —a|z])(1 —u)
satisfying a(r) = 1/2 on I = [l3,lo] and a(r) < 1/2 for i; — r > 0 small and
a(r) > 1/2 for r — Iy > 0 small, then 2 global minimizer of the corresponding
functional has a transition layer near the I;, that is, the minimum point of 71
on I (see [4, Theorem 1.3]). In this sense, we can say that our results are natural
extention of the results in [4]. We are going to follow throughtout the variational
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procedure used in [4] with a few modifications prompted by the presence of the

function hA.
Here we state the energy functional corresponding to (P.):

5w = [ GIvut = Pl wde

where F(|z|,u) = [* f(|z|,s)ds and f(|z|,u) = h(|z])*(u — a(|z]))(1 - ©?).
It is easy to see that the following minimization problem has a minimizer

inf{J.(u)ju € H'(B;(0))}. (1.1)

Let A_ = {z € Bi(0)|a(]z]) < 0} and A, = {z € B;(0)|a(]z]) > 0}.
In this paper, we will analyze the profile of the minimizer of (1.1}. Our main
theorem is the following:

Theorem 1.1. Let u. be a global minimizer of (1.1). Then u, is radially symmetric

and
{ 1, uniformly on any compact subset of A_,
U, —

—1 , uniformly on any compact subset of A,

as ¢ — 0. In particular u. converges uniformly near the boundary of Bi(0), that
is, if a(r) < 0 on [rg,1] for some ro > 0, u, — 1 uniformly on m\BTO(O)
and if a(r) > 0 on [ro,1] for some ry > 0, u, = ~1 uniformly on B;(0)\ B, (0).
Moreover, for any 0 < r; <ry < luwitha(r;) =0,i1=1,2,a(r)#0 forr;—r>0

small and for r —ry > 0 small, a(r) =0 if r € [r1,72], we have:

(i) If a{r) < O for r; — 7 > 0 small and a(r) > 0 for r — ry > 0, then for any
small n > 0 and for any small 8 > 0, there exists a positive number £y which
has the following properties: For any € € (0,¢&|, there exist t.; < t.o such
that

()
u(r)>1—1 forr € [ry —0,t.1),
‘U’E(té‘,l) =1- 7,

Ue(te,z) =-14+ m, .
u(r) < —1+m, forr € (2,72 + 6]

(b) The function u.(r) is decreasing in (t1,tz2)
(c) The inequality 0 < Ry < t”—;tf—l— < Ry holds, where R; and Ry are two
constants independent of £ > 0.

(d) If t., 1, te;2 — t for some positive sequence {;} converging to zero as
j = 00, then T satisfies h(ET = min,epr, vy A(s)s¥ 1.
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(i) If a(r) > O for ry —r > 0 small and a(r) < 0 for r — 3 > 0, then for any
small n > 0 and for any small 6 > 0, there exists a positive number €g which
has the following properties: For any € € (0,€q), there exist t.; < tc2 such
that
(a)

u(r) < —=1+1n for r € [ry — 6,t,1),
Ue(ten) = —1+m,
ue(ts,2) =1-n,
ug(r) >1—m, for r € (te2,72 + 6.
(b) The function uc(r) is increasing in (tc1,te,2)-
(c) The inequality 0 < Ry < t”;t"‘ < Ry holds, where Ry and Ry are two
constants independent of € > 0.
(d) If te, 1, te;2 — T for some positive sequence {e;} converging to zero as
j — oo, then t satisfies AT " = minser, r) h(s)sV .

r ¥ h(r)

Y/

ug(r)

& 1: The profile of the global minimizer ..

Remarks . (i) We note that results from (a) to (c) both in cases (i) and (ii)
are not related to the presence of the function k. The effect of presence of

function h appears in the result (d) in (i) and (ii).

(if) If minsep, ry 8" ~*h(s) is attained at a unique point 1, we can show t1, te2 —
7 as ¢ — 0 without taking subsequences.

(iii) If the function r¥~'A(r) is constant on [r1,72], it is & very difficult problem
to know the location of the point € [ry,r3].

This paper is organized as follows. In section 2, we prepare some preliminary
results. We will prove Theorems 1.1 in section 3.
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2 Preliminary Results

In this section we prepare some preliminary results.

Let D is a bounded domain in R¥. Let }‘-(w, t) be a function defined on D x R
which is bounded on D x [—1, 1]. Suppose f is continuous on ¢ € R for each z € D
and is measurable in D for each £ € R. We also assume

f(z,t) >0forz e D, t<~1; f(z,t) <0, forz €D, t > 1. (2.1)

Consider the following minimization problem:
2
inf{js(u,D) = f %[w;? ~F(z,u)dz:u—n¢€ H&(D)} : (2.2)
I :
where n € H(D) with ~1 <9< 1on D and

F(z,t) = /_17(:1:, s)ds.

We can prove next two lemmas by methods similar to [4]. For readers’s convenience
we prove these lemmas in this section.

Lemma 2.1. Suppose that f(z,t) satisfies (2.1). Let u. be a minimizer of (2.2).
Then -1 <u. <1 onD.

Proof. We prove —1 < u, on D. Let M = {z : u.(z) < —~1}. Define @, as follows:

| ufz) freD\M
() = { 1 ifzeM.

Since ue(z) =n > —1 on 8D, we see M is compactly contained in D. Thus i —n €
Hy(D). If the measure m(M) of M is positive, we have J. (i, D) < J.(u, D).
Because u, is a minimizer, we see m(M) = 0, where m(A) denots the Lebesgue
measure of the set A. Thus u, > —1. Similarly we can prove that u, < 1. O

Lemma 2.2, Suppose that fi(z,t) and f,(z,t) both satisfy (2.1) and the same
reqularity assumption on f. Assume that 1, € H Y(D) satisfy ~1 <m; <1onD
fori = 1,2. Let u.; be a corresponding minimizer of (2.2), where f = f, and
=" i =1,2. Suppose that f,(z,t) > f,(z,t) for all (z,t) € D x [~1,1] and
12m2mn2>~1. Then ug; > Ues.

Proof. Let M = {z € D : u.9 > u,1}. Define ¢, = (ug9 — uc;)*. Since ;1 > ns,
we have @, € H}(D). Set Fi(z,u) = [ f;(z,s)ds. Since u,; is a minimizer of

2.
Jos(w) = /D S Vuf - Fi(z,v)da
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and @, = 0 for z € D\M, we have
0 £ Ja,l (ue,l + ‘:06) - Je,l (ue,l)
52 2 0 Ue,itPe
= [ S0+t = FuaPta= [ [ oo s
M M

Ue,1
Ug,1+Pe

g2 -
e Al B N ACDEE
M 2 M Ue,1
- J5,2(ue,2) - ']5,2(71'6,2 - (Pe) S_ 0.

This implies that u, ; +; is also a minimizer of J.1(u). Let L > 0 be large enough
such that f,(z,t) + Lt is strictly increasing for z € D, t € [~1,1]. From

—EZA('U/E,I + <pe) = “fl (u’s,l =+ Sas)a
we obtain
“EQA‘Pe = .f1(ue,1 + 905) - 71(’“5,1)-
Thus
'“52A‘Pe + Ly = 71('“5,1 + 906) + L('U'S,l + 906) - (71('“'5,1) + Lus,l) >0

in D. Fix zp € M. Let zo € 8M such that |zo — 20| = dist(zg, 8M). Using the
Strong maximum principle and Hopf’s lemma in Buist(zo,0M)(20), We obtain that
8¢ (zp) < 0, where v = (zo — 20)/|Z0 — z|. But pc(z) = 0 for z ¢ M. Thus,
% (z9) = 0. This is a contradiction. Thus we obtain M = §. O

3 Proof of Main Theorem
In this section we prove Theorem 1.1. The following proposition is the first part

of Theorem 1.1.

Proposition 3.1. Let u. be a global minimizer of the problem (1.1). Then u,
satisfies

1 uniformly on any compact subset of A_
Ue — .
—1 uniformly on any compact subset of Ay

as € —+ 0.

Proof. Let zo € A_. Choose 6 > 0 small so that Bj(zy) cC A. Take b €
(max, 50 a(2),1/2). Define fr,55(t) = (minzep;(zo) R(2)?)(t — b)(1 — t?). Then
for z € Bs(zo), t € [-1,1], we have f(|z},?) = Frosn(t). Let Uegsp be the
minimizer of

2 |
inf {/ -E—V]Vulz ~ Fppsp(u)dz iu+1€ H&(Bg(mg))} .
Bs(zo)
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where Fy,55(t) = ffl frosp(s)ds. It follows from Lemmas 2.1 and 2.2 that
uEizO:é’b(x) -<— uf(m) S 1, for AR S B,s(ﬁ&'g).

Since f_ll frogp(8)ds > 0, it follows from [2, 3] that Uezo50(Z) = 1 ase = 0
uniformly in Bs/2(%o), thus uc(z) — 1 as € — 0 uniformly in Bsja(o)- O

To prove the rest of Theorem 1.1, we need the following proposition and lemma.

Proposition 3.2. Let u be a local minimizer of the following problem.

inf { /B . %;vuﬁ ~ (||, u)dz : u € H‘(BI(O))} .

Here G(r,t) = f_t_lg(r, s)ds, g(r,t) is C* int € R for each r > 0, g(r,t) and
¢i(r,t) are measurable on [0, +00) for each t € R, g(r,t) <0 ft<—-lort>1
and |g(r, )|+ |g:(r,t)| is bounded on [0, k] x [-2,2] for any k > 0. Then u is radial,

i.e., u(z) = u|z]).

Proof. See [4, Proposition 2.6]. O
Befofe we prove Theorem 1.1, we prepare a lemma.

Lemma 3.3. Let 0 < n < 1 be any fized constant and w satisfies

—w,; = w(l — w?) on R,
w(0) = —1+n (resp. w(0) =1 —n),

w(z) € ~1+17 (resp. w(z) >1—1n) for 2 <0,
w 1s bounded on R.

Then w is a unique solution of

—w,, = w(l — w?) on R,
w(0) = —1+ 7 (resp. w(0) =1-1n),
w'(z) > 0 (resp. w'(z) < 0) z € R,
w(z) = £1 (resp. w(z) = F1) as z — £oo.
Proof. See for example [6]. _ O

Now we prove the rest of Theorem 1.1.

Proof of Theorem 1.1. For the sake of simplicity, we prove for the case where
a{r) < 0 on [0,71), a(r) = 0 on [r1,rs] and a(r) > 0 on (ry,1] for some 0 <
71 < 19 < 1 (see Figure 1 in Section 1).

Part 1. First we show that u, converges uniformly near the boundary of B;(0),
that is, u, — —1 uniformly on By(0)\Br,4+-(0) for any small 7 > 0. We note that



we have u, — —1 uniformly on B;_;(0)\Br,+-(0) as ¢ — 0. Now we claim that
ue(r) < ue(1 —7) =: T, for r € {1 — 7,1]. We define the function 4. as follows:

u(r) ifrelf0,1—7]
te(r) = { u(r) ifufr)<Trandrell—-n11]
T. ifu(r) > T, andr € [1 —7,1}.

We note that @, € H'(B,(0)) and ~F(r,T,) < —F(r,t) fore > 0 and [r — 1| small
and t > T.. Hence we obtain J;(%.) < Je(u.) and we have a contradiction if we
assume that the measure of the set {r € [0,1]ju.(r) > T. and r € [1 —7,1}} is
positive. Hence —1 < u.(r) < T, and u, ~+ —1 uniformly on B (0)\B;,+-(0).
Part 2. Next we remark that, by Proposition 3.2, u, is radially symmetric and

we note that for any ¢, > t;, u. is a minimizer of the following problem
inf{Je (u, B, (0)\B (0)) : u — ue € Hy(By, (0\B:, (0))},

where

Je(u, M) = f E;{Vuiz — F(|z|,u)dz

M
for any open set M. Let m 4, be the minimum value of this minimization
problem. |

In this part we show that u. has exactly one layer near the interval [ry, rq).

Step 2.1. First we estimate the energy of transition layer.

Let 7 > 0 and § > 0 be small numbers. Since u, — 1 uniformly on 0,r, — 8
and u, — —1 uniformly on [r; + 6,1 — 6], we can find 7 € (r; — 8,72 + 6) such
that ue(r) > 1 — 7 if r € [0,7], ue(r) < 1—nfor r — 7. > 0 small. Let 7 > T,
be such that uc(r) < 7 if r € [fe, 1 — 8], ue(r) > 5 for 7 —r > 0 small. We may
assume that 7. — T € [ry, 9] and 7e — 7 € [r1, 79}

We employ the so-called blow-up argument. Let v(t) = u.(et + 7). Then

N-1
et +T¢

—'Ug — & ’U; = f(Et +Fg, ve),
~1< v <landv(0) =1—1n. SinceT, =T € [r1,79], it is easy to see that
ve = v in C (R) and

~" = (72 (v — %), teR

and v(t) > 1 — 7 for t < 0. If we set v(t) = V(h(7)?), the function V (t) satisfies
~V"=V -V? onR,

v)=1-n, (3.1)
Vi) >1-n t<O0.

113



114

Hence by Lemma 3.3, the function V is a unique solution for

V"=V -V3 onR,
V({0)=1-n,

V(t) <0 t<0.

Vt) = £1 as t — Foo.

(3.2)

Thus, we can find an R > 0 large, such that v(R) = 5. Since v, — v in Cj(R),
we can find an B, € (R — 1,R + 1), such that v/(r) < 0 if r € [0,R.] and
ve(Re) = —1+n. Hence u.(r) < 0if r € [T, Te + €R] and u(Te + eR)=—-1+n.
Then we have

Je(te, Br, +er, (0)\Br,(0))
Fe+eRe 2
= wy1(F¥ 1+ 0.(1)) [ (%—lu’af - F(t, ug)) dt (3.3)

Re
= wy_((FV 1+ 05(1))5/0 (%ngz — F(et + e, v€)> dt
= wn-1 (T + 0.(1)) (Bary + O) + 0:(1))e,

where wy_; is the area of the unit sphere in RY, 0.(1) — 0 as € = 0, fBp(s) is the
positive value defined by

+00 2 1 9
brey = f_ . (-;'Iwas)(t)l%h(s)?(ﬂ'%)_) dt

+o0 2 __ 1\2
= w6 [ gvor+ =

= h(s)b

and wp(e)(t) = V(h(s)t) for s € [0,1]. We note that although the function V
depends on 7, the value
o
e [l T
oo 2 4
is independent of 7.

Step 2.2. We claim u. has exactly one layer near the interval [r, o). To show
u, has exactly one layer near the interval [ry, 72}, it sufficient to prove the following
claim:

Claim. 7, =7, + ¢R,.

Suppose that the claim is not true. Then we can find a t. > 7, + R.¢ such that
u(r) < —1+nif r € (Fe + Ree, te), u:(t:) = —1 +n. Thus we can use the blow-up
argument again at t. to deduce that there is a f, = t, + eR, with u.(r) > 0 if



r € (te,le), ue(f:) = 1 —n. We may assume that t,,%, — ¢ as ¢ — 0 for some
t € [rq,3). Moreover

Je(tte, By, (0)\B;, (0) = wn-1 (£ +0:(1)) (Bugy + O(m))e + 0e(1) (3.4)

Now we claim . > r;. Suppose %, < r;. ‘
Let Fo(t) = ffl(v~—a)(1-vz)dv. Then for any ¢ > 0 small and s € [-1+¢,1—],

Fy(1—t) — Fy(s)
= Fy(l—1) - Fo(s) + Fa(l —t) = Fa(1 —t) — Fals) + Fas)  (3.5)

[(—”2—;1-13}:% ~af - P

Thus it follows from (3.5) that if @ < 0 then
F,(1=t)—F,(s)>0 (3.6)
for s € {~1+1t,1 —t]. Define

1, (7‘) = 1—7) re [?E’F&‘—{_REE]U[tE)fE];
(7) —u(r) 1 € [Fe + Ree, te).

By the assumption that f, < r, and using (3.6), we see F(r,u.) < F(r,%) if
7 € [Fe,1c]. Hence, we obtain

Je(@e, By, (0)\Br, (0)) < Je(ue, By, (0)\Br (0))-

Thus we obtain a contradiction. Therefore we have that te > ri.
Since a(r) > 0 for 7 € [ry,1], we see F(r,t) < F(r,~-1) =01ifr € [r1,1]. Since
ue(r) € (=1,—1+n) for r € [Fe + Ree, t.], we have

Megose = Je(Ter Broten.(0)\Br,(0)) + Je(Te, By, (0)\B:, (0))
+J:(Te, Bi. (0\Br,+er. (0)) + Je (e, Br. (0)\ B, (0))
WN -1 ("f‘-f_lﬁh(F)E + t?{—lﬁh({)&') + 0(7']6) -+ 0(6)

+inf —f F(r,w):—lgwgl-i-n} (3.7
Bte (0)\BF¢ +eRe (0)

+inf{—/ F('r,w):——lgwgl}
Bio (0)\ By, (0)

wr—1(F¥ 1 Brme + Y Brme) + O(ne) + o(e)

v

Vv
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Now we give an upper bound for m.z, 7. Let R > 0 be such that V(h(T)R) = 7,
where V is a unique solution to (3.2). Define %, as follows:

V(h(F)==te) r € [Fe,Te +€R)

_ —14+n~2r—7 —¢cR) relf.+eRT.+cR+¢

Te(r) := -1 _ r€[f. +eR+e,f — € (3:8)
~1+1(r -7 +e¢) T € [Fe — &,T¢]

Now we note that |F(r,t)| = O(n) for r € [F,7:] and ~1 <t < =147 . Then
we have

Je (@, By, (0)\Br,(0))

Je(Tes Bro+re(0)\Br, (0)) + Je(%e, By (0)\Br,-(0))  (3.9)

Me 7, 7,

IAN N

+J€ (Ee, Bﬁs—e (0)\Bﬂ +6R(O))
wy 1Ty (B + O(n))e + ofe) + Ofen) + ofe)
= WN-1T2 B + O(ne) + ole)

IA

By (3.7) and (3.9), we have
wn—1(FY " Buiry + 17 T Bry)e < w1 Buime + Olem) + ofe)

This is a contradiction. So we can conclude 7, = 7. + e K,.

Part 3. It remains to prove that if 7, — 7 for some positive sequence {¢;}

converging to zero as j — 0o then 7 satisfies
FNIR(F) = min sV 1h(s).
s€lrira)

Step 3.1. First we note that from Part 1, the function u, satisfies —1 < u, <
—~1+ 7 for r € [ +€R,, 1] in this case.

Step 3.2. Set H(s) = s¥~h(s). Assume that the result is not true. Then
there exists a subsequence of {7.} (denoted by 7.) such that ¥, — ' € [r{,ry]
and H(r') > minsgp, 4, H(s). Then we can find a point ¢ € (r1,73) such that
H(r'y > H(?).

Next we give a lower estimate for J,(u.). We have

Je(ue) = JE(U’Ea BFe (O)) + Ja(ué:: BFe+eRe (0)\-8?5 (0))
+Je(u67 Bl (0)\Bﬂ+R5€(0))' (310)

First we note that 1 — 7 < u.(r) < 1 for r < 7, and for sufficiently small n > 0,
—F(r,u) > —F(r,1) (u € 1 —n,1]). We also remark that since a(r) < G forr < r,
and a(r) =0 for r; <7 < rp and a(r) > 0 for r > 7y, we have —F(r,1) < 0 for
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r<nr a,n_d ~F(r,1) =0forry <r <ryand —F(r,1) > 0 for 7 > ry. Hence we
have — [* PN~ F(r,1)dr > 0 and we obtain the following estimate

Jo(ue, Br(0)) > ~ / " N-LR(r, w,)dr
0
—/ETN—lF(T,l)dT
01‘1 Te
= -/ TN“IF(T,I)dT—~/ V1E(r, 1)dr
0

T1

v

> —/ TN R (r, V)dr =: A.
0
We also obtain
Jo(te, Br, + r.e (0)\Br, (0)) = wn-1H (") frg + O(ne) + ofe). (3.11)

by methods similar to proof of (3.3).
Since —1 < u.(r) < =1+ n for 7 > 7. + €R, and for sufficiently small 7 > 0,
—F(r,u) > ~F(r,~1) = 0 (u € [~1, —1+ 7)), we obtain the following estimate:

1
T (e, Bu(O\Brosne(0)) > — / rN=1E(r, u)dr

F¢+6R5

1
> _/ rNIP(r, =1)dr =0.  (3.12)

FeteRe

Thus we obtain
J(ue) = A+ wy_1H(7")Bie + O(ne) + o(e). (3.13)

Next we give an upper bound for J;(u,). Consider the following function @:

(1 rel0,f—¢
l—g(r——f+€) reft—e,t
We(r) = { v(h@)f-gz) re[E+eR)
~1-2(r~t—cR —¢) ref+eR t+eR +¢
| -1 relf+eR +¢,1],

where R' > 0 is the number satisfying V(h(f)R') = —1 + 7. Then we can see
Jo(ue) < Jo(W.) < A+wn_1HQE)Bie + O(ne) + o). (3.14)

By (3.13) and (3.14) we have a contradiction. The proof of Theorem 1.1 is com-
pleted. In the more complicated case, we can show by similar method(see Remark

below). O



118

X 2:

Remark . We briefly show in more complicated case, that is, when a is the
function as in Figure 2. More precisely we set Iy := [r1,72] and I := [r3,74] and
we assume a > 0 on [0,71) U (r4, 1] and a < 0 on (r3,74).

Let 7 > 0 and # > 0 be small numbers. Asin Part 1, we can find pairs of numbers
(Fre 7o) and (Rie, Rep) satisfying 71 € (1 — 8,72 + 6), T2 € (r3 — 0,74 + ),
sup, |R1 | < 00, sup, |Ry| < oo and

[ u(r) < —1+7 for 0 < r <7y

ua(Fl,.s) =1+ n
UE(F1,£ + ERL‘Q) =1- n

S ufr)>1—-1n for T1 o +eRye <7 <Top
uE(F2’5) =1- n
’us(?g,g + 632,5) =—-1-+17
{ ue(r) < =147 for7a, + Ry <17 <1

We assume Ty, — 71 € 1 and To; > T2 € I for some sequence {¢;} which
converges to 0 as j — co. In this case it is easy to show that the energy of global
minimizer J{u,) is estimated as follows:

Je (qu) 2 Jej (ustBrz—-E(O)) + ijN—lH(F2)61 + B + 0(5377) + O(Ej)S (315)

7
where B = — [ vV F(r, 1)dr.

Let us assume the result does not hold. Then H(F:) > minsey, H(s) or H(T2) >
min,ez, hold. We assume H(7;) = minse;, and H(73) > minser, H(s). We also
assume 7; = 7. We note that if H(7;) > minsey, H{s) or ¥y € intl;, the proof is
more easy.
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Let we take 7 € intl; such that H(Fy) > H(f;) > minseyz, H(s) and consider
the following function:

[ u(r) on {0,72 — &)
1+ 2(r —ry) on [ry — &,73]
1 on [re, 7o — €]
Ue(r) :=¢ 1=2(r—f2+¢) on [Fy — €, 7o)
174 (h(fz)r——s—iz) on [F2,’F2 +€R”]
~1-2L(r—f—¢eR"—¢) onl[f+eR",f2a+ eR" + €]
-1 on [fo +eR" +¢,1],

\

where V is the unique solution of (3.2) and R” is the unique value such that
V(h(r)R") = =1 +7.
Since u, is global minimizer, we can estimate the energy of J, (1) as follows:

Jo(ue) < Jo(iis) < Je(tte, Bry—e(0)) + ewn_1 H(F2)p1 + B + O(en) + ofe). (3.16)

Then we have a contradiction from (3.15) and (3.16) by taking € = ¢; and suffi-
ciently large j.
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