<table>
<thead>
<tr>
<th>Title</th>
<th>Integer-valued and almost integer-valued functions (Algebraic combinatorics and the related areas of research)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hirata-Kohno, Noriko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1476: 78-87</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-03</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/48207</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Integer-valued and almost integer-valued functions

Noriko Hirata-Kohno

Dept. of Mathematics
College of Science and Technology
NIHON University
Kanda, Chiyoda, Tokyo 101-8308, JAPAN
email: hirata at math.cst.nihon-u.ac.jp

October 4, 2005

Abstract

In this article, we discuss conditions so that complex entire functions are integer-valued, by means of methods based on Diophantine problems. We also describe how are deduced conditions to be “almost” integer-valued.

Keywords: Integer-valued functions, Almost integer-valued functions, Lattice, Geometry of numbers, Transcendence method.

1 Introduction

We first consider a naive question as follows. Denote by $\overline{\mathbb{Q}}$ the algebraic closure of \mathbb{Q} in \mathbb{C}. Let $F(z)$ be a complex function in one variable which satisfies $F(u) \in \overline{\mathbb{Q}}$ for any $u \in \mathbb{Q}$.

Could we specify any properties for the function $F'(z)$?

We know that such $F(z)$ is NOT necessarily algebraic function; we had examples in 1894 due to P. Stäckel of a transcendental function taking algebraic values at all algebraic points. In fact, Stäckel's showed a more general statement: for any countable set S, and for any set T being dense in the complex plane, there exists an entire function $F'(z) = \sum_{n=0}^{\infty} f_n z^n$ with rational f_n, satisfying $F'(u) \in T$ for any $u \in S$. Thus we have $F'(\overline{\mathbb{Q}}) \subset \overline{\mathbb{Q}}$ for $S = T = \overline{\mathbb{Q}}$.

Moreover he constructed in 1902 a transcendental function $F(z) = \sum_{n=0}^{\infty} f_n z^n$ with rational f_n, analytic in a neighbourhood of the origin, with the property that the both $F(z)$ and its inverse function take algebraic values at all algebraic points $\in \overline{\mathbb{Q}}$ in the neighbourhood.
We also recall that the Hermite-Lindemann theorem shows \(\exp(\alpha) \notin \overline{\mathbb{Q}} \) for any \(\alpha \in \overline{\mathbb{Q}} \), \(\alpha \neq 0 \), which says, such transcendental function always takes transcendental values at any non-trivial algebraic point. Stäckel's result notices that this is not true for all transcendental functions. F. Beukers and J. Wolfart gave in 1988 a condition for the algebraicity of the values of Gauss' hypergeometric function \(F(z) \) and Wolfart made a criterion to distinguish whether a Gauss' hypergeometric function takes algebraic values at algebraic points or not [Be-Wo]: if Gauss' hypergeometric function \(F(z) \) is algebraic over \(\mathbb{C}(z) \), then \(F(\overline{Q}) \subset \overline{Q} \), otherwise there are hypergeometric functions, either \(F(z) \) with \(F(\xi) \in \overline{Q} \) for only finitely many \(\xi \in \overline{Q} \), or \(F(z) \) such that there is a subset \(E \subset \overline{Q} \) which is dense in \(\mathbb{C} \) satisfying \(F(\xi) \in \overline{Q} \) whenever \(\xi \in E \).

On the other hand, there are many examples of transcendental functions such that \(F(N) \subset \mathbb{Z} \), or \(F(Q) \subset \overline{Q} \) e. g. \(F(z) = 2^z \).

Now we ask, what it is, the function \(F(z) \) with \(F(N) \subset \mathbb{Z} \) or \(F(Z) \subset \mathbb{Z} \). We have the following fundamental result due to G. Pólya [Po] in 1915 (see also [Ha]).

Definition 1 Let \(F(z) \) be an entire function in \(\mathbb{C} \). Write \(|F|_r = \sup_{|z| \leq r} |F(z)| \) and define \(\tau(F) \) the order of exponential type of \(F(z) \); \(\tau(F) = \lim_{r \to +\infty} \frac{\log |F|_r}{r} \).

Theorem A (Pólya) Let \(F(z) \) be an entire function in \(\mathbb{C} \) with \(F(N) \subset \mathbb{Z} \). Suppose \(\tau(F) < \log 2 \). Then \(F(z) \) is a polynomial.

Pólya considered also the case \(F(Z) \subset \mathbb{Z} \) (see also [Ca]).

Theorem B (Pólya) Let \(f'(z) \) be an entire function in \(\mathbb{C} \) with \(f'(Z) \subset \mathbb{Z} \). Suppose \(\tau(F) < \log(\frac{3 + \sqrt{5}}{2}) \). Then \(F(z) \) is a polynomial.

In Theorem A and B, we see that \(f'(z) \) is necessarily a polynomial in \(\mathbb{Q}[z] \), but not in \(\mathbb{Z}[z] \) (consider for example, \(\frac{1}{2}z(z + 1) \)).

The bounds \(\log 2 \) and \(\log(\frac{3 + \sqrt{5}}{2}) \) are optimal because of \(2^z \) and \(\left(\frac{3 + \sqrt{5}}{2} \right)^z + \left(\frac{3 - \sqrt{5}}{2} \right)^z \).

2 Results

We see, \(F(z) \) is a polynomial with coefficients in \(\mathbb{Q} \), which is equivalent to say the functions \(z^h F(z)^k \) \((h,k \in \mathbb{N} \cup \{0\}) \) are linearly dependent over \(\mathbb{Q} \). Then a natural generalization of works of Pólya is to seek a sufficient condition such that several functions \(f_1, \cdots, f_L \) are linearly dependent over \(\mathbb{Q} \).

For \(\zeta_1, \zeta_2, \cdots \in \mathbb{C} \) denote by \(r(N) := \max_{1 \leq n \leq N} |\zeta_n| \).

We then show
Theorem 1 Let L and N_0 be rational integers with $1 < N_0 < L$. There are constants $C_1 > 0$ and $C_2 > 0$ depending only on L, N_0 satisfying the following. Let $\zeta_1, \zeta_2, \ldots \in \mathbb{C}$ be infinite complex points pairwise distinct. Let f_1, \ldots, f_L be entire functions in \mathbb{C}. Suppose $f_j(\zeta_n) \in \mathbb{Z}$ for any j, n with $1 \leq j \leq L$ and $n \geq 1$. If we have $\max_{1 \leq j \leq L} \log |f_j|_{C_1, r(N)} \leq C_2 N$ for any $N \geq N_0$, then the functions f_1, \ldots, f_L are linearly dependent over \mathbb{Q}.

We are able to calculate $C_1 > 0$ and $C_2 > 0$ in an explicit manner. Several consequences of Theorem 1 are, for instance, as follows:

Corollary 2 Let $F(z)$ be an entire function in \mathbb{C} with $F(\mathbb{N}) \subset \mathbb{Z}$. Suppose $\tau(F) \leq \frac{1}{40}$. Then $F(z)$ is a polynomial over \mathbb{Q}.

Proof We consider f_1, \ldots, f_L as $\frac{z(z-1)\cdots(z-h+1)}{h!}F(z)^k (h, k \in \mathbb{N} \cup \{0\})$. \hfill \square

Corollary 3 Let F be an entire function with $F(\mathbb{N}) \subset \mathbb{Z}$ with $\tau(F) \leq \frac{1}{44}$. Then there exist $N_1, N_2 \in \mathbb{N}$ such that F satisfies the functional equation

$$\sum_{h=0}^{N_1} \sum_{k=0}^{N_2} a_{hk} z^h F(z+k) = 0$$

with $a_{hk} \in \mathbb{Q}$ not all zero.

3 Almost integer-valued functions

Let us try to relax our condition in Theorem 1. We still want as consequence the functions to be polynomials over \mathbb{Q} or linearly dependent over \mathbb{Q}, however we DOUBT if we really need the functions are integer-valued in the sufficient condition. Indeed we succeeded in proving the following.

Put $\delta(N) := \min_{1 \leq h < k \leq N} |\zeta_h - \zeta_k|$ for $N \geq 2$ and $\zeta_1, \zeta_2, \ldots \zeta_N \in \mathbb{C}$ distinct.

Set also $\|z\| := \min_{m \in \mathbb{Z}} |z - m|$.

Theorem 4 Let L and N_0 be rational integers with $1 < N_0 < L$. There are constants $C_1 > 19$, $C_2 > 0$ and $C_3 > 0$ depending only on L, N_0 satisfying the following. Let $\zeta_1, \zeta_2, \ldots \in \mathbb{C}$ be infinite complex points pairwise distinct. Let f_1, \ldots, f_L be entire functions in \mathbb{C}. Assume

$$\max_{1 \leq j \leq L} \log |f_j|_{C_1, r(N)} \leq C_2 N$$

for any $N \geq N_0, 1 \leq j \leq L$. For $1 \leq \forall j \leq L$, $\forall n \geq 1$ assume also

$$\|f_j(\zeta_n)\| \leq C_3 e^{-3(n+1)} \left(\frac{\delta(2n+1)}{r(2n+1)}\right)^{n+1}.$$ \hspace{1cm} \hfill (2)

Then the functions f_1, \ldots, f_L are linearly dependent over \mathbb{Q}.

We may explicitly calculate C_1, C_2 and C_3. We present consequences of Theorem 4:

Corollary 5 Let $F(z)$ be an entire function in C. Suppose $\tau(F) \leq \frac{1}{481}$ and $\|F(n)\| \leq e^{-5n}$ for any $n \in \mathbb{N}$. Then $F(z)$ is a polynomial over \mathbb{Q}.

4 Outline of the proof of theorems

We prove the theorems by Schneider's method which is one of main transcendence methods to deal with Diophantine problems.

Proof of Theorem 1

[First step] : construction of an auxiliary function

We may suppose that each $f_j(z)$, $(1 \leq j \leq L)$ is not identically zero. Then we know that the zeroes of the functions are isolated. We start to construct the function $F(z) := \sum_{j=1}^{L} p_j f_j(z)$ such that the coefficients $p_j \in \mathbb{Z}$ $(1 \leq j \leq L)$ are not all zero and that, for any $n, 1 \leq n \leq N_0$, $F(\zeta_n) = 0$. This requires to solve a system in unknowns in \mathbb{Z} by Siegel's Lemma (the algebraic one, see [Da-Hi] and [Hi]). We use the Lemma to conclude that there exist $p_j \in \mathbb{Z}$ $(1 \leq j \leq L \max) \log|p_j| \leq \frac{1}{L-N_0} \log L + \frac{N_0(N_0-1)}{L} \log \frac{C_1}{2}$.

[Second step] : extrapolation

We consider for each $N \geq N_0$ the following properties:

$A(N)$: $F(\zeta_n) = 0$ for $1 \leq \forall n \leq N$

$B(N)$: $|F|_{r(N+1)} < 1$.

We shall show $A(N) \implies B(N)$ and $B(N) \implies A(N+1)$.

[Proof of $A(N) \implies B(N)$] : By the hypothesis $A(N)$, we see that the function F has at least N zeroes in the set $\{z \in \mathbb{C} : |z| \leq r(N+1)\}$. The Lemma of Schwarz (in fact the residue formula; see [Gr] and [Gr-Mi-Wa]) shows

$$\log |F|_{r(N+1)} \leq \log |F|_{C_1 r(N+1)} - N \log \frac{C}{2}$$

then we have

$$\log |F|_{r(N+1)} \leq \frac{1}{L-N_0} \log L - \frac{N_0}{L} \log \frac{C_1}{2}.$$

The suitable choice of C_1 allows us conclude.

[Proof of $B(N) \implies A(N+1)$] : The property $B(N)$ implies $|F(\zeta_n)| < 1$ for any $1 \leq n \leq N + 1$. Since $f_j(\zeta_n) \in \mathbb{Z}$ then we obtain $F(\zeta_n) \in \mathbb{Z}$ namely $F(\zeta_n) = 0$.

[Third step]: conclusion
The property $A(N_0)$ holds by the construction of F in the First step. Therefore by the Second and the Third steps we see that $A(N)$ and $B(N)$ are true for any $N \geq N_0$. If F is not identically zero, the zeroes are isolated, which implies $r(N) \to \infty$, thus by Liouville's theorem $|F|_{r(N)} \to \infty$ for $N \to \infty$, that contradicts with $B(N)$. Then F is identically zero. □

Proof of Theorem 4
[First step]: construction of an auxiliary function
We choose the constants C_1, C_2 so as to satisfy the both:

$$\frac{1}{4} \log \frac{C_1 - 1}{2} - \frac{1}{2} \log 3 - \frac{L}{L-N_0} \log L - \frac{N_0}{2(L-N_0)} - \log \frac{C_1}{C_1-1} > 0,$$

$$C_2 N \leq \frac{(L-N_0)(N-1)}{L} \left(\frac{1}{2} \log \frac{C_1 - 1}{2} - \log 3 \right) - \log L - \frac{N_0}{2L} - \frac{L-N_0}{L} \log \frac{C_1}{C_1-1}.$$

By hypothesis, there are integers a_{jn} such that for each $1 \leq j \leq L, 1 \leq n \leq N_0$:

$$||f_j(\zeta_n)|| = |f_j(\zeta_n) - a_{jn}|.$$

The obvious inequality

$$\log |a_{jn}| \leq \log \left(\frac{1}{2} + |f_j(\zeta_n)| \right) \leq \max \left(\frac{1}{2} + \log |f_j(\zeta_n)|, \log \frac{3}{2} \right)$$

and the assumption of Theorem 4 give us for any $1 \leq j \leq L, 1 \leq n \leq N_0$:

$$\log |a_{jn}| \leq \frac{1}{2} + C_2 N_0.$$

We construct the function $F(z) := \sum_{j=1}^{L} p_j f_j(z)$ such that the coefficients $p_j \in \mathbb{Z}$ ($1 \leq j \leq L$) are not all zero and for any $n, \frac{N_0}{2} \leq n \leq N_0$ that

$$\sum_{j=1}^{L} p_j a_{jn} = 0.$$

Since $L > \lceil N_0/2 + 1 \rceil$ we may solve the system again by Siegel's Lemma to get $p_j \in \mathbb{Z}$ ($1 \leq j \leq L$) not all zero with

$$\max_{1 \leq j \leq L} \log |p_j| \leq \frac{N_0}{L-N_0} \left(\log L + \frac{1}{2} + C_2 N_0 \right).$$

We then have

$$\log |F|_{r(N)} \leq \frac{L}{L-N_0} \left(\log L + C_2 N + \frac{N_0}{2L} \right).$$
[Second step]: extrapolation

We consider for each $N \geq N_0$ the following properties:

$A(N) : \sum_{j=1}^{L} p_j a_{jn} = 0$ for $\frac{N}{2} \leq n \leq N$

$B(N) : |F|_{r(N+1)} < 3^{-N} + 3^{-1}$.

We shall show that $A(N) \implies B(N)$ and $B(N) \implies A(N+1)$.

[Proof of $A(N) \implies B(N)$]:

Put

$$C_3 = e^{-3} \left(L^{-\frac{N}{N_0}} \cdot \exp \left(\frac{N_0}{L-N_0} \left(\frac{1}{2} + C_2 N_0 \right) \right) \right)^{-1}.$$

By the hypothesis $A(N)$, we see

$$|F(\zeta_n)| = \left| \sum_{j=1}^{L} p_j (f_j(\zeta_n) - a_{jn}) \right| \leq C_3^{-1} e^{-3} \max_{1 \leq j \leq L} \| f_j(\zeta_n) \|$$

which shows under the assumption of $\| f_j(\zeta_n) \|$

$$|F(\zeta_n)| \leq n^{\frac{n}{20}} \left(\frac{\delta(2n+1)}{e^3 r(2n+1)} \right)^{n+1}.$$

Because of

$$\frac{\delta(2n+1)}{e^3 r(2n+1)} < 1, \quad \frac{\delta(n)}{r(n)} \geq \frac{\delta(n+1)}{r(n+1)}$$

we have

$$\max_{\frac{N}{2} \leq n \leq N} |k(\zeta_n)| \leq e^{-3 \cdot \frac{N}{20}} N^{\frac{N}{20}} \delta(N+1) \frac{N+1}{r(N+1)}.$$

On the other hand, use the inequality from the residue formula:

Let f be a function analytic in $|z| \leq R$ in C and be $\zeta_0, \zeta_1, \cdots \zeta_l \in C$ in $|z| \leq R$. Then we have

$$|f(\zeta_0)| \leq E_1 + E_2$$

where

$$E_1 = |f|_R \cdot \frac{R}{R - |\zeta_0|} \prod_{n=1}^{l} \frac{|\zeta_0 - \zeta_n|}{R - |\zeta_n|},$$

$$E_2 = \prod_{k=1}^{l} \sum_{n=1}^{l} \left(\frac{|f(\zeta_n)|}{|\zeta_0 - \zeta_n|} \cdot \prod_{i=1, i \neq n}^{l} \frac{1}{|\zeta_i - \zeta_n|} \right).$$

Take $\zeta_0 \in C$ with $|\zeta_0| = r = r(N+1)$ and $\zeta_0 \neq \zeta_i (\frac{N}{2} \leq i \leq N)$. We now get thanks to the above inequality:
\[|F|_r \leq |F|_R \cdot \frac{R}{R-r} \prod_{\frac{N}{2} \leq n \leq N} \frac{|\zeta_0 - \zeta_n|}{|\zeta_0 - \zeta_n|} + \prod_{\frac{N}{2} \leq n \leq N} |\zeta_0 - \zeta_n| \sum_{\frac{N}{2} \leq n \leq N} \left(\frac{|F(\zeta_n)|}{|\zeta_0 - \zeta_n|} \prod_{i \neq n} \frac{1}{|\zeta_i - \zeta_n|} \right). \]

For \(R = C_1 r \), this implies \(|F|_r \leq T_1 + T_2 \) where

\[T_1 = |F|_R \cdot \frac{C_1}{C_1 - 1} \cdot \left(\frac{C_1 - 1}{2} \right)^{-M}, \]

\[T_2 = M \max_{\frac{N}{2} \leq n \leq N} |F(\zeta_n)| 6^{M-1} \left(\frac{3}{M} \right)^{\frac{M}{2}} \left(\frac{r(N + 1)}{\delta(N)} \right)^{M-1} \]

with \(M = [N/2 + 1] \).

The choice of \(C_2 \) and the construction of the auxiliary function let us obtain

\[\log |T_1| \leq -N \log 3. \]

Next, we see that the disc of radius \(r(N) + \delta(N)/2 \) contains \(N \) disjoint discs of radius \(\delta(N)/2 \) thus we have \(N \left(\frac{\delta(N)}{2} \right)^2 \leq \left(r(N) + \frac{\delta(N)}{2} \right)^2 \), therefore putting \(\sigma(N) := \frac{\delta(N)}{r(N)} \) we obtain \(\sigma(N) \sqrt{N} \leq 2 + \sigma(N) \) then

\[\sigma(N + 1) \leq \frac{1}{2(\sqrt{2} - 1)\sqrt{N}} \]

for \(N \geq 1 \) and

\[\sigma(N + 1) \leq \frac{2\sqrt{2}}{(\sqrt{3} - 1)\sqrt{N}} \]

for \(N \geq 2 \). The upper bound for \(\max_{\frac{N}{2} \leq n \leq N} |F(\zeta_n)| \) gives us

\[T_2 \leq M e^{-3 - \frac{3M}{2} N} 6^{M-1} \left(\frac{3}{M} \right)^{\frac{M}{2}} \sigma(N + 1)^{\frac{M}{2} - 1} \left(\frac{1}{N/2} \right). \]

Consequently we have \(T_2 < \frac{1}{3} \) for \(N \geq 2 \) and then

\[|F|_{r(N+1)} \leq T_1 + T_2 \leq 3^{-N} + 3^{-1}. \]

[Proof of \(B(N) \implies A(N + 1) \)]

By the assumption on \(\| f_j(\zeta_n) \| \) of the theorem and the property on \(\sigma(N) \), we see

\[\| f_j(\zeta_{N+1}) \| \leq C_3 e^{-7} \]

for any \(N \geq 2 \).
Using the bound for $\log |p_j|$: the coefficient of the auxiliary function, and the choice of C_3, we get

$$\sum_{j=1}^{L} p_j a_{j,N+1} \leq L \max_{1 \leq j \leq L} (|p_j| \| f_j(\zeta_{N+1}) \|) + |F(\zeta_{N+1})| \leq C_3^{-1}e^{-3}C_3e^{-7} + 3^{-2} + 3^{-1} < 1$$

which implies that the integer vanishes, namely $\sum_{j=1}^{L} p_j a_{j,N+1} = 0$.

[Third step]: conclusion
Since $B(N)$ is true for any $N \geq N_0$, we have

$$|F|_{r(N+1)} < 3^{-N} + 3^{-1}$$

then Liouville's theorem assures us that F is identically zero. \square

5 Higher dimensional case

Now we ask to ourselves what happens on \mathbb{C}^m in several variables case, or algebraic integer-valued case. Let K be an algebraic number field of degree $[K : \mathbb{Q}] = d$ and \mathcal{O}_K be the integer ring of K. In such cases, we have also a sequence of proven results. The works due to Seigo Fukasama (− Seigo Morimoto) around 1920's together with the related results of A. O. Gel'fond concerning the entire function in \mathbb{C} with $F(\mathbb{Z}[i]) \subset \mathbb{Z}[i]$ consist of some fundamental concept in this area. Daihachiro Sato also investigated integer-valued functions in 1960's. F. Gramain obtained the best possible bound for the order of the entire function in \mathbb{C} with $F(\mathcal{O}_K) \subset \mathcal{O}_K$ to be a polynomial when K is imaginary quadratic $[Gr]$. For the historical survey we refer his article. C. Pisot dealt with not only integer-valued functions but also almost integer-valued functions by interpolation method. A version in characteristic $p > 0$ is studied by M. Car and D. Adam.

Definition 2 Let $\delta = d$ if $K \subset \mathbb{R}$ and $\delta = \frac{d}{2}$ otherwise.

We claim that the highly important fact

$$a \in \mathbb{Z}, |a| < 1 \implies a = 0$$

is not true in the case of algebraic integers, so we use instead, the following Size Inequality:

$$a \in \mathcal{O}_K, a \neq 0 \implies \log |\overline{a}| \geq -(\delta - 1) \log |\overline{a}|$$

where $|\overline{a}|$ denotes the maximum of absolute values of all the conjugates of a over \mathbb{Q}.

Definition 3 Let $F(z)$ be an entire function in \mathbb{C}^m and $|z|$ denotes Euclidean norm in \mathbb{C}^m. Write $|F|_r = \sup_{z \in \mathbb{C}^m, |z| \leq r} |F(z)|$ and define $\tau(F)$ the order of exponential type

of $F(z)$ by $\tau(F) = \limsup_{r \to +\infty} \frac{\log |F|_r}{r}$.

We then quote a theorem due to Gramain:

Theorem C (Gramain) Let K be an algebraic number field of degree $[K : \mathbb{Q}] = d$ and O_K be the integer ring of K. Let $F(z)$ be an entire function in \mathbb{C}^m of $\tau(F) \leq \alpha$. Suppose $F(N^m) \subset O_K$. Assume further there exists a constant $c > 0$ such that for $n \in \mathbb{N}^m$ we have

$$\limsup_{|n| \to \infty} \frac{|F(n)|}{|n|} \leq c.$$

Then under the condition $\log(e^\alpha - 1) < -(\delta - 1) \log(1 + e^c)$ the function F is a polynomial with coefficients in K.

We collect the results as follows by Pólya, G. H. Hardy, Pisot, Gramain, V. Avanissian & R. Gay, A. Baker and A. Martineau. Below assume the function $F(z)$ is entire.

(1) $F(N) \subset \mathbb{Z}$, $\tau(F') < \log 2 \implies F'(z)$ is a polynomial.

(2) $F(Z) \subset \mathbb{Z}$, $\tau(F) < \log \frac{3 + \sqrt{5}}{2} \implies F(z)$ is a polynomial.

(3) $F(N) \subset O_K$, $\log(e^\alpha - 1) < -(\delta - 1) \log(1 + e^c) \implies F(z)$ is a polynomial.

(4) $F(Z) \subset O_K$, $\log(2 \sinh(\frac{\alpha}{2})) < -\frac{d-1}{2} \log(2 + e^c + e^{-c}) \implies F(z)$ is a polynomial.

(5) $F(N^m) \subset \mathbb{Z}$, $\tau(F) < \log 2 \implies F(z)$ is a polynomial.

(6) $F(Z^m) \subset \mathbb{Z}$, $\tau(F) < \log \frac{3 + \sqrt{5}}{2} \implies F(z)$ is a polynomial.

(7) $F(N^m) \subset O_K$, $\log(e^\alpha - 1) < -(\delta - 1) \log(1 + e^c) \implies F(z)$ is a polynomial.

(8) $F'(Z^m) \subset O_K$, $\log(2 \sinh(\frac{\alpha}{2})) < -\frac{d-1}{2} \log(2 + e^c + e^{-c}) \implies F'(z)$ is a polynomial.

The upper bounds $\log 2$ and $\log \frac{3 + \sqrt{5}}{2}$ are only optimal.

We get the following in the case where we consider several variables and algebraic integers:

Theorem 6 Let K be an algebraic number field of degree $[K : \mathbb{Q}] = d$ and O_K be the integer ring of K. Let L and N_0 be rational integers with $1 < N_0 < L$. Let $m \in \mathbb{N}$. Then there are constants $C_1 > 0$ and $C_2 > 0$ depending on L, N_0, m satisfying the following. Let ζ_1, ζ_2, \ldots be infinite points in \mathbb{C}^m pairwise distinct. Let f_1, \ldots, f_L be entire functions in \mathbb{C}^m with $f_j(\zeta_n) \in O_K$ ($1 \leq j \leq L, \forall n \geq 1$). Suppose

$$\max_{1 \leq j \leq L} \frac{\log |f_j|_{C_1 r(N)}}{N} \leq C_2 \quad \forall N \geq N_0.$$

Assume further that there exist $C_3 > 0$ and $C_4 > 0$ such that

$$\max_{1 \leq j \leq L} \frac{\log |f_j(\zeta_N)|}{N} \leq C_3, \quad |\zeta_N| < C_4 N \quad \forall N \geq N_0.$$

Then under the condition $\log(e^{C_2+1}M) < -(\delta - 1) \log(1 + e^{C_2})$ we have that the functions f_1, \ldots, f_L are linearly dependent over K.

References

