A Classification of Semiregular RDS's with k = 12

熊本大学 教育学部 平峰 豊 (Yutaka Hiramine) Kumamoto University

1. Introduction

Definition 1.1. An incidence structure (\mathbb{P}, \mathbb{B}) is called a *square* (m, u, k, λ) -divisible design if the following conditions (i)-(iii) are satisfied.

- (i) $|\mathbb{P}| = |\mathbb{B}| = mu$.
- (ii) There exists a partition $\mathbb{P} = \mathbb{P}_1 \cup \mathbb{P}_2 \cup \cdots \cup \mathbb{P}_m$ of \mathbb{P} satisfying $|\mathbb{P}_1| = \cdots = |\mathbb{P}_m| = u \text{ and}$ $[p,q] = \begin{cases} 0 & \text{if } p,q \in \mathbb{P}_i, \ \exists i, \\ \lambda & \text{otherwise.} \end{cases} (p \neq q \in \mathbb{P}).$
- (iii) $|B| = k \quad (\forall B \in \mathbb{B}).$

The following hold.

$$k(k-1) = (m-1)u\lambda, \qquad [p] = k \quad (\forall p \in \mathbb{P})$$
 (1)

$$k \ge u\lambda \quad (\text{Bose} - \text{Connor}[1])$$
 (2)

Let $p \in \mathbb{P}_1$ and $B \in \mathbb{B}$ and assume that an automorphism group G of (\mathbb{P}, \mathbb{B}) acts regularly on both \mathbb{P} and \mathbb{B} . Set

$$D = \{x \in G \mid px \in B\} \text{ and } U = \{x \in G \mid px \in \mathbb{P}_1\}.$$

Then |D| = k and U is a subgroup of G of order u satisfying

$$DD^{(-1)} = k + \lambda(G - U). \tag{3}$$

The equation (3) is equivalent to the following.

$$|aD \cap bD| = \begin{cases} 0 & \text{if } aU = bU, \\ \lambda & \text{otherwise.} \end{cases} \quad (a \neq b \in G)$$
 (4)

Definition 1.2. Let G be a group of order mu and U a subgroup of G of order u. A k-subset D is called a (m, u, k, λ) -difference set relative to U if D satisfies (3). D is also called a relative difference set (RDS) relative to U.

Conversely, given a (m, u, k, λ) -difference set D in G relative to U. Then we can show that dev(D) is a square (m, u, k, λ) -divisible design, where

$$dev(D) := (G, \{Dx \mid x \in G\}).$$

Definition 1.3. A square (m, u, k, λ) -divisible design is said to be *symmetric* if its dual is also a square (m, u, k, λ) -divisible design. In other words, there is a partition $\mathbb{B} = \mathbb{B}_1 \cup \cdots \cup \mathbb{B}_m$ of \mathbb{B} satisfying

a partition
$$\mathbb{B} = \mathbb{B}_1 \cup \cdots \cup \mathbb{B}_m$$
 of \mathbb{B} satisfying
$$|B \cap C| = \begin{cases} 0 & \text{if } B, C \in \mathbb{B}_i, \ \exists i, \\ \lambda & \text{otherwise.} \end{cases} \quad (B \neq C \in \mathbb{B})$$

Result 1.4. (W. S. Connor [3]) Let (\mathbb{P}, \mathbb{B}) be a square (m, u, k, λ) -divisible design such that $k > u\lambda$. If $(k, \lambda) = 1$, then (\mathbb{P}, \mathbb{B}) is symmetric.

Remark 1.5. Let D be a (m, u, k, λ) -difference set in G relative to a subgroup U. If $DD^{(-1)} = D^{(-1)}D$, then dev(D) is symmetric.

Result 1.6. (D. Jungnickel [9]) If G > U, then $DD^{(-1)} = D^{(-1)}D$.

Concerning this, we have the following results.

Proposition 1.7. dev(D) is symmetric if and only if $D^{(-1)}D = u\lambda + \lambda(G - V)$ for a subgroup V of G.

Proof. Set $(\mathbb{P}, \mathbb{B}) = \text{dev}(D)$ and assume (\mathbb{P}, \mathbb{B}) is symmetric. Then, there exists a partition $\mathbb{B} = \mathbb{B}_1 \cup \cdots \otimes \mathbb{B}_{u\lambda}$ of \mathbb{B} such that

a partition
$$\mathbb{B} = \mathbb{B}_1 \cup \cdots \mathbb{B}_{u\lambda}$$
 of \mathbb{B} such that
$$|B \cap C| = \begin{cases} 0 & \text{if } B, C \in \mathbb{B}_i, \ \exists i, \\ \lambda & \text{otherwise.} \end{cases} \quad (B \neq C \in \mathbb{B}).$$

Set $\mathbb{B}_1 = \{Dg_1, Dg_2, \dots, Dg_u\}$, where $g_1 = 1\}$. As $Dd_i \cap Dg_j = \emptyset$ for any distinct $i, j \in \{1, 2, \dots, u\}$, for each \mathbb{B}_k there is an element $g \in G$ so that $\mathbb{B}_k = \{Dg_1g, Dg_2g, \dots, Dg_ug\}$.

We note that

$$Dg_i \cap Dg_j = \emptyset \quad (\leftrightarrows \{(d_1, d_2) \mid d_1, d_2 \in D, d_1g_i = d_2g_j\} = \emptyset)$$

$$\iff \{(d_1, d_2) \mid d_1, d_2 \in D, \ d_1^{-1}d_2 = g_ig_i^{-1}\} = \emptyset \quad (*)$$

Set $V = \{g_1(=1), g_2, \dots, g_u\}$. Let $g_i, g_j \in V$. Then, by $(*), Dg_ig_j^{-1} \cap D = \emptyset$. Hence $Dg_ig_j^{-1} = Dg_k$ for some $g_k \in V$. Thus $g_ig_j^{-1} = g_k \in V$ and so V is a subgroup of G of order u. By (*), we have the lemma. \square

Corollary 1.8. Let D be an RDS. Then $D^{(-1)}$ is also an RDS if and only if dev(D) is symmetric.

Definition 1.9. An RDS D is called *symmetric* if dev(D) is symmetric, otherwise *non-symmetric*.

If the equality in (2) holds, then $k = m = u\lambda$ and so $(m, u, k, \lambda) = (u\lambda, u, u\lambda, \lambda)$.

Definition 1.10. A square (m, u, k, λ) -divisible design (\mathbb{P}, \mathbb{B}) is called a transversal design and denoted by $\mathrm{TD}_{\lambda}(k; u)$ if $|B \cap \mathbb{P}_i| = 1$ for $\forall B \in \mathbb{B}$ and $\forall i \in \{1, 2 \cdots, m\}$.

Therefore, a square (m, u, k, λ) -divisible design is a transversal design iff $k = m (= u \lambda)$.

$$\iff k = m(= u\lambda).$$

Definition 1.11. If $k = m = u\lambda$, then a (m, u, k, λ) -difference set D in a group G is said to be *semiregular*. Cleary $|G| = u^2\lambda$.

Remark 1.12. Under the above assumption, $DD^{(-1)} \neq D^{(-1)}D$ in general. However, every known transversal design obtained from semiregular RDS is symmetric.

In this talk we give examples of semiregular RDS's D which do not satisfy the condition of Proposition 1.7. Then it gives us examples so that dev(D)'s are non-symmetric, and consequently non-symmetric transversal designs.

2. Known non-normal semiregular RDS's

Let D be a $(u\lambda, u, u\lambda, \lambda)$ -difference set (i.e. semiregular RDS) in G relative to U. Then D is called *normal* and *non-normal* according as $U \triangleleft G$ and $U \not \triangleleft G$, respectively. We note that dev(D) is symmetric for every normal RDS applying Jungnickel's result.

Example 2.1. ([6], [7]) The following are all known examples of non-normal semiregular RDS's.

(i)
$$(u, \lambda) = (2, 2), G = \langle x, y \mid x^4 = y^2 = 1, y^{-1}xy = x^{-1} \rangle (\simeq D_8),$$

 $U = \langle y \rangle : (4, 2, 4, 2) \cdot DS$

(ii)
$$(u, \lambda) = (4, 4), G = \langle x, y \mid x^4 = y^2, y^4 = 1, y^{-1}xy = x^{-1} \rangle$$

 $(\simeq Q_{16}), \quad U = \langle y \rangle : (4, 4, 4, 1) - DS$

(iii)
$$(u, \lambda) = (2, 8), G = \langle x, y \mid x^{16} = y^2 = 1, y^{-1}xy = x^7 \rangle$$

 $(\simeq SD_{32}), \quad U = \langle y \rangle : (16, 2, 16, 8) - DS$

(iv)
$$(u, \lambda) = (2, 8), G = \langle x, y \mid x^{16} = y^2 = 1, y^{-1}xy = x^9 \rangle$$

 $(\simeq M_5(2)), \quad U = \langle y \rangle : (16, 2, 16, 8) - DS$

(v) Let A be a $(4m^2, 2m^2 - m, m^2 - m)$ -difference set in a group N. Assume t is an automorphism of N of order 2. Then $D = A \cup (N \setminus A^t)t$ is a non-normal $(4m^2, 2, 4m^2, 2m^2)$ -DS in a group $N\langle t \rangle$ relative to $\langle t \rangle$.

3. Semiregular RDS's with |D| = 12

From now on we assume that D is a semiregular RDS in a group G relative to a subgroup U with |D|=12. Set u=|U|. Then G=12u and D is a $(12, u, 12, \lambda)$ -DS, where $u\lambda=12$. Thus |D|=12 and one of the following holds.

(i)
$$(u, \lambda) = (2, 6), \quad |G| = 24, \ |U| = 2.$$

(ii)
$$(u, \lambda) = (3, 4), \quad |G| = 36, \ |U| = 3.$$

(iii)
$$(u, \lambda) = (4, 3), \quad |G| = 48, \ |U| = 4.$$

(iv)
$$(u, \lambda) = (6, 2), |G| = 72, |U| = 6.$$

(v)
$$(u, \lambda) = (12, 1), \quad |G| = 144, \ |U| = 12.$$

Remark 3.1. Let D be a semiregular RDS in a group G relative to U and let s be an automorphism of G. Then D^s is also a semiregular RDS (with the same parameters as D) in G relative to U^s .

CASE
$$(u, \lambda) = (2, 6), \quad |G| = 24, \ |U| = 2$$

The following lemma holds.

Lemma 3.2. ([7]) If there exists a (2n, 2, 2n, n)-difference set in G relative to U such that G = NU for a subgroup N of G of index 2, then $n^* = 2$.

By Lemma 3.2 we have the following.

Lemma 3.3. If $(u, \lambda) = (2, 6)$, then $[G, G] \ge U$.

Lemma 3.4. N. Ito ([8]) If a group G of order 4n(>4) contains a normal (2n, 2, 2n, n)-DS relative to U, then a Sylow 2-subgroup of G is neither cyclic nor dihedral.

By Remark 3.1, Lemmas 3.3, 3.4, there are five possibilities.

- (1) $G = Q_8 \times \mathbb{Z}_3$, $U = Z(Q_8) \times 1$.
- (2) $G = Q_{24}, U = Z(Q_{24}).$
- (3) $G = \mathbb{Z}_2 \times A_4$ and there are three possibilities for $U(\simeq \mathbb{Z}_2)$.
- (4) G = SL(2,3), U = Z(SL(2,3)).
- (5) $G = S_4$ and there are two possibilities for $U(\simeq \mathbb{Z}_2)$.

By a computer search, we have the following.

Lemma 3.5. Assume $(u, \lambda) = (2, 6)$. Then, a group G of order 24 contains a (12, 2, 12, 6)-DS if and only if $G \simeq \mathbb{Q}_8 \times \mathbb{Z}_3$, \mathbb{Q}_{24} or SL(2, 3).

CASE
$$(u, \lambda) = (3, 4), \quad |G| = 36, \ |U| = 3.$$

In this case $(m, u, k, \lambda) = (12, 3, 12, 4)$.

Lemma 3.6. Let G be a nonabelian group of order 36. Then there are eleven possibilities.

(i) $G\simeq D_{36}$, (ii) $G\simeq Q_{36}$, (iii) $G\simeq D_{18} imes \mathbb{Z}_2$,

(iv) $G \simeq S_3 \times S_3$, (v) $G \simeq S_3 \times \mathbb{Z}_6$

(vi) $G \simeq (Z_2 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3)) \times \mathbb{Z}_2, |Z(G)| = 2,$

(vii) $G \simeq (\mathbb{Z}_4 \ltimes \mathbb{Z}_3) \times \mathbb{Z}_3, |Z(G)| = 6,$

(viii) $G \simeq \mathbb{Z}_4 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3)$, where an element of order 4 inverts $O_3(G)$,

(ix) $G = \langle d \rangle \langle a, b \rangle \simeq \mathbb{Z}_4 \ltimes (\mathbb{Z}_3 \times \mathbb{Z}_3), \quad a^3 = b^3 = d^4 = [a, b] = 1, a^d = b^{-1}, b^d = a,$

(x) $G \simeq A_4 \times Z_3$, (xi) $G \simeq \mathbb{Z}_9 \times (\mathbb{Z}_2 \times \mathbb{Z}_2)$.

By a computer search we have the following.

Lemma 3.7. Assume $(u, \lambda) = (3, 4)$. Then, a nonabelian group G of order 36 contains a (12, 3, 12, 4)-DS if and only if

$$G \simeq (\mathbb{Z}_4 \ltimes \mathbb{Z}_3) \times \mathbb{Z}_3 \ (|Z(G)| = 6, \ U = O_3(Z(G))),$$

 $A_4 \times \mathbb{Z}_3 \ (U = 1 \times Z_3), \ or \ S_3 \times \mathbb{Z}_6.$

The first and the second cases have been previously known. But the third is a new one and has unusual properties.

Example 3.8. Let
$$G = \langle a, b, c \mid a^3 = b^2 = c^6 = 1, b^{-1}ab = a^{-1}, ac = ca, bc = cb \rangle$$
 and set $D = \{1, c, c^2, c^3, a, ac, b, a^2bc^5, abc^4, a^2bc, bc^4, abc \}$.

Then D is a non-symmetric (12, 3, 12, 4)-DS relative to $U = \langle ac^2 \rangle \simeq Z_3$.

Let $(\mathbb{P},\mathbb{B})(=\operatorname{dev}(D))$ be the corresponding transversal design and let A be an incidence matrix of (\mathbb{P}, \mathbb{B}) . Then

where,
$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $J = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

However,

An RDS D is called *symmetric* if $D^{(-1)}$ is also an RDS. Since AA^T has entries $2, 5 (\not\in \{0, 4, 12\})$, the dual of dev(D) is not a transversal design. Applying Proposition 1.7, $D^{(-1)}$ is a non-symmetric RDS. As far as I know, this is the only known non-symmetric RDS.

CASE
$$(u, \lambda) = (4, 3), \quad |G| = 48, \ |U| = 4$$

In this case $(m, u, k, \lambda) = (12, 4, 12, 3)$.

We use the following two lemmas to settle the present case.

Lemma 3.9. If $2 \mid u$ and $2 \nmid \lambda$, then U contains every involution of G.

Lemma 3.10. (Elliott-Butson) Let D be a $(u\lambda, u, u\lambda, \lambda)$ -DS in G relative to U. If U contains a normal subgroup N of G of order v, then DN/N is a $(u\lambda, u/v, u\lambda, v\lambda)$ -DS in G/N relative to U/N.

Applying Lemmas 3.5 and 3.10, it suffices to check the following case.

$$G = \langle a, b, c \mid a^4 = b^4 = c^3 = 1, c^{-1}ac = ab, c^{-1}bc = ab^2 \rangle, \quad U = \langle a^2, b^2 \rangle$$

We have the following by a computer search.

Lemma 3.11. There is no (12, 4, 12, 3)-DS.

CASE
$$(u, \lambda) = (6, 2), \quad |G| = 72, \ |U| = 6.$$

In this case $(m, u, k, \lambda) = (12, 6, 12, 2)$.

Observation. For every known semiregular RDS, |U| is a power of a prime.

The smallest undecided case is u = 6.

Lemma 3.12. Let G be a nonabelian group of order 72. Then there are five possibilities.

(i) $G \simeq SL(2,3) \times \mathbb{Z}_3$, (ii) $G \simeq A_4 \times \mathbb{Z}_6$, (iii) $G \simeq A_4 \times S_3$, (iv) $G \simeq \langle t \rangle (M \times T)$, $t^2 = 1$, $M \simeq A_4$, $T \simeq \mathbb{Z}_3$,

 $\langle t \rangle M \simeq S_4, \ \langle t \rangle T \simeq S_3,$

(v) $G \triangleright Q$, |Q| = 9.

Applying Lemmas 3.5, 3.7 and 3.10, we have the following by a computer search.

Lemma 3.13. There is no (12, 6, 12, 2)-DS.

CASE
$$(u, \lambda) = (12, 1), |G| = 144, |U| = 12.$$

In this case $(m, u, k, \lambda) = (12, 12, 12, 1)$.

By Lemma 1 of [2], the following hods.

Theorem 3.14. Every transversal design with $\lambda = 1$ is symmetric.

The above theorem implies that if there is a (u, u, u, 1)-DS in a group G, then the corresponding transversal design can be extended to a projective plane of order u which admits G as a collineation group of order u^2 . Thus $u \neq 12$ by Baumert-Hall [4] and the following holds.

Lemma 3.15. There is no (12, 12, 12, 1)-DS.

By Lemmas 3.5, 3.7, 3.11, 3.13 and 3.15, we have the following.

Theorem 3.16. A group G contains a $(u\lambda, u, u\lambda, \lambda)$ -DS D with |D| = 12 if and only if G is isomorphic to one of the following.

(i)
$$(u, \lambda) = (2, 6), G = \mathbb{Q}_8 \times \mathbb{Z}_3, U = Z(Q_8) \times 1 \simeq \mathbb{Z}_2.$$

(ii)
$$(u, \lambda) = (2, 6), G = \mathbb{Q}_{24}, U = Z(Q_{24}) \simeq \mathbb{Z}_2.$$

(iii)
$$(u, \lambda) = (2, 6), G = SL(2, 3), U = Z(SL(2, 3)) \simeq \mathbb{Z}_2.$$

(iv)
$$(u, \lambda) = (3, 4), G = S_3 \times \mathbb{Z}_6, U \simeq \mathbb{Z}_3$$
 (a non-symmetric RDS).

(v)
$$(u, \lambda) = (3, 4), G = (\mathbb{Z}_4 \times \mathbb{Z}_3) \times \mathbb{Z}_3, |Z(G)| = 6, U = O_3(Z(G)).$$

(vi)
$$(u, \lambda) = (3, 4), G = A_4 \times \mathbb{Z}_3, U = 1 \times Z_3.$$

(vii)
$$(u, \lambda) = (3, 4), G = \mathbb{Z}_6 \times \mathbb{Z}_6, U \simeq \mathbb{Z}_3.$$

4. Construction of non-symmetric RDS's

In this section we show the following.

Theorem 4.1. There exists a non-symmetric $(2^{2m}3^m, 3, 2^{2m}3^m, 2^{2m}3^{m-1})$ -(m-1)times

difference set in $(S_3 \times Z_6) \times (\mathbb{Z}_6 \times \mathbb{Z}_2) \times \cdots \times (\mathbb{Z}_6 \times \mathbb{Z}_2)$ relative to $U \times 1 \times \cdots \times 1$, where D is a non-symmetric (12,3,12,4)-difference set in $S_3 \times \mathbb{Z}_6$ relative to its non-normal subgroup U of order 3 (see Example 3.8).

Corollary 4.2. There exists a non-symmetric $TD_{2^{2m}3^{m-1}}[2^{2m}3^m;3]$ for every $m \in \mathbb{N}$.

Example 4.3.

In order to prove Theorem 4.1, we need the following lemma.

Lemma 4.4. Let $L = G \times H$, where G be a group of order $u^2\lambda$ and H is a group of order $u\mu$. Let D be a $(u\lambda, u, u\lambda, \lambda)DS$ in G relative to a subgroup U of G of order u and let C be a $(u\mu, u, u\mu, \mu)DS$ in $U \times H$ relative to U. Then

- (i) CD is a $(u^2\lambda\mu, u, u^2\lambda\mu, u\lambda\mu)DS$ in L relative to U.
- (ii) CD is symmetric if and only if D is symmetric.

Proof. Let $c_1, c_2 \in C$ and $d_1, d_2 \in D$ and assume $c_1d_1 = c_2d_2$. Then $c_1^{-1}c_2 = d_1d_2^{-1} \in UH \cap G = U$. Thus $d_1 = d_2$ and so $c_1 = c_2$. Therefore CD is a subset of L.

By assumption, the following hold.

$$DD^{(-1)} = u\lambda + \lambda(G - U) \tag{5}$$

$$CC^{(-1)} = u\mu + \mu(UH - U)$$
 (6)

$$G = UD, \quad UC = UH$$
 (7)

Hence $(CD)(CD)^{(-1)} = C(DD^{(-1)})C^{(-1)} = C(u\lambda + \lambda(G-U))C^{(-1)}$ = $u\lambda CC^{(-1)} + \lambda CGC^{(-1)} - \lambda CUC^{(-1)}$ As $C, U \subset UH \rhd U, CU = UC$. Similarly GC = CG. It follows that $(CD)(CD)^{(-1)} = u\lambda(u\mu + \mu(UH - U) + \lambda GCC^{(-1)} - \lambda UCC^{(-1)} = u^2\mu\lambda + u\mu\lambda UH - u\mu\lambda U + \lambda G(u\mu + \mu UH - \mu U) - \lambda U(u\mu + \mu UH - \mu U) = u^2\mu\lambda + u\mu\lambda(L - U)$. Thus we have (i).

Since $UH \triangleright U$, $C^{(-1)}C = CC^{(-1)}$. Hence $(CD)^{(-1)}CD = D^{(-1)}(CC^{(-1)})D = D^{(-1)}(u\mu + \mu UH - \mu U)D$. By (7), the following holds.

$$(CD)^{(-1)}CD = u\mu D^{(-1)}D + u\mu\lambda L - u\mu\lambda G$$
 (8)

Assume CD is symmetric. Then $(CD)^{(-1)}CD = u^2\mu\lambda + u\mu\lambda(L-V)$ for a subgroup V of L of order u. By (8), $u\mu D^{(-1)}D - u\mu\lambda G = u^2\mu\lambda - u\mu\lambda V$. Thus $D^{(-1)}D = u\lambda + \lambda(G-V)$. In particular, V is a subgroup of G of order u and so D is symmetric. Conversely, assume D is symmetric. Then $D^{(-1)}D = u\lambda + \lambda(G-V)$ for a subgroup V of G of order u. Then, by (8), $(CD)^{(-1)}CD = u\mu(u\lambda + \lambda(G-V)) + u\mu\lambda L - u\mu\lambda G = u^2\mu\lambda + u\mu\lambda(L-V)$. Therefore CD is symmetric. Thus we have (ii).

We note that Lemma 4.4(i) is a modification of Result 2.4 of [11], where N is assumed to be normal in G.

Proof of Theorem

Let D be a non-symmetric $(12,3,12,4)\mathrm{DS}$ in $M=S_3\times\mathbb{Z}_6$ relative to a non-normal subgroup U of M (see Example 3.8). Let $H=\langle a\rangle\times\langle b\rangle(\simeq\mathbb{Z}_6\times\mathbb{Z}_3)$. We note that an abelian group $H\times\langle c\rangle(\simeq\mathbb{Z}_6\times\mathbb{Z}_2\times\mathbb{Z}_3)$ contains $(12,3,12,4)\mathrm{DS}$, say $\{1,a,a^2,a^3,a^4c,a^5c,bc^2,ab,a^2bc,a^3bc^2,a^4bc,a^5b\}$. Set $G=H\times M$ and choose $\langle c\rangle$ as a non-normal subgroup of M. Then, applying Lemma 4.4, $H\times M$ contains a non-symmetric $(2^23^2\cdot 4,3,2^23^2\,2^23\cdot 4)\mathrm{DS}$ in G relative to $1\times U(\simeq\mathbb{Z}_3)$ as D is non-symmetric. Repeating this procedure again and again we have the theorem.

References

- [1] R. C. Bose and W.S. Connor, Combinatorial properties of group divisible incomplete block designs, Ann. Math. Stat. 23 (1952) 367-383.
- [2] R. C. Bose, Symmetric group divisible designs with the dual property, J. Stat. Planning Inf. 1 (1977) 87-101.
- [3] W.S. Connor, Some relations among the blocks of symmetric group divisible designs, *Ann. Math. Stat.* **23** (1952), 602-609.
- [4] L. Baumert and M. Hall, Nonexistence of certain planes of order 10 and 12, J. Combin. Theory, Ser. A 14 (1973), 273-280.
- [5] Y. Hiramine, Semiregular relative difference sets in 2-groups containing a cyclic subgroup of index 2, J. Combin. Theory, Ser. A 99 (2002), 358-370.
- [6] Y. Hiramine, On (2n, 2, 2n, n) relative difference sets, J. Combin. Theory, Ser. A 101 (2003), 281-284.
- [7] N. Ito, On Hadamard Groups, J. Algebra 168 (1994), 981-987.
- [8] D. Jungnickel, On automorphism group of divisible designs, Canad. J. Math. 34 (1982), 257-297.
- [9] B. Schmidt, On (p^a, p^b, p^a, p^{a-b}) -Relative Difference Sets, Journal of Algebraic Combinatorics 6 (1997), 279-297.