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A Classification of Semiregular RDS’s with k = 12

REAKYE BHEFEE % & (Yutaka Hiramine)
Kumamoto University

1. Introduction

Definition 1.1. An incidence structure (P, B) is called a square (m,u, k, A)-
divisible design if the following conditions (i)-(iii} are satisfied.

@ [P =B = ma.

(i) There exists a partition P=P; UPy U--- UP,, of P satisfying
IPy|=:--=|Pp| =uand

_J0 ifpgel;, &,
P} = {)\ otherwise. (p#geb).
(i) |Bl=k (VBEB).
The following hold.
k(k—1) = (m - Lu, pl=k (VpeP) (1)
k> u) (Bose — Connor{1]) (2)

Let p € P; and B € B and assume that an automorphism group G of (P, B)
acts regularly on both P and B. Set
D={zcG|preB} and U={z € G |pzeP}
Then |D| = k and U is a subgroup of G of order  satisfying

DDV =k 4+ MG - U). (3)
The equation (3) is equivalent to the following.

0 if aU =0U,
X otherwise.

iapnbm:{ (@a#beG) (4)

Definition 1.2. Let G be a group of order mu and U a subgroup of G of
order u. A k-subset D is called a (m,u, k, A)-difference set relative to U if D
satisfies (3). D is also called a relative difference set (RDS) relative to U.
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Conversely, given a (m, u, k, ))-difference set D in G relative to U. Then we
can show that dev(D) is a square (m,u, k, A)-divisible design, where

dev(D) = (G, {Dz | z € G}).

Definition 1.3. A squere (m, u, k, A)-divisible design is said to be symmetric
if its dual is also a square (mn, u, k, X)-divisible design. In other words, there is
a partition B =By U ---UB,, of B satisfying

0 if B,CeBy;, 3,

BnCl|=
| | A otherwise.

(B#£CeB)
Result 1.4. (W. S. Connor [3]) Let (P,B) be a square (m,u, k, A)-divisible
design such that k > uX. If (k,A) = 1, then (P,B) is symmetric.

Remark 1.5. Let D bea (m,u,k, A)-difference set in G relative to a subgroup
U. it DD = DU D, then dev(D) is symmetric.

Result 1.6. (D. Jungnickel [9]) If G > U, then DD-V = D=UD,
Concerning this, we have the following results.

Proposition 1.7. dev(D) is symmetric if and only if
DEYD = ul + A(G = V) for o subgroup V of G.

Proof. Set (P,B) = dev(D) and assume (P, B) is symmetric. Then, there exists
a partition B = By U - .- B,y of B such that
0 lfB,C'EB;, 34, (B#£C eB).
A otherwise.

Set B1 = {Dgi1,Dga,--- ,Dgu}, where g = 1}. As Dd; 0 Dg; = @ for
any distinct 4,7 € {1,2,--,u}, for each By there is an element g € G so that

Bi = {Dg19, Dgag, -~ , Dgug}.
We note that

iBNnCl=

DgiNDg; =0 (S {(di,d2) | d1,dz € D,d1g; = dag;} =)
= {(d,d) |di,d2 €D, di'dy=gig;'} =0 (%)

Set V = {g1(=1),92,--- , gu}. Let g5,g; € V. Then, by (x), Dg,-gj_1 NnD=40.
Hence L"ghgj"1 = Dgy, for some g, € V. Thus gigv,,-—i =gy € VandsoVisa
subgroup of G of order u. By (*), we have the lemma. O

Corollary 1.8. Let D be an RDS. Then D=V is also an RDS if and only if
dev(D) is symmetric.

Definition 1.9. An RDS D is called symmetric if dev(D) is symmetric, oth-
erwise non-symmetric.

If the equality in (2) holds, then k = m = uA and so (m, u, k, A) = (ul, u, uA, A).



Definition 1.10. A square (m, %, k, A)-divisible design (P, B) is called o transver-
sal design and denoted by TDx(k;u) if |[BNP;| = 1 for VB € B and Vi €
{1,2-- ,m}.

Therefore, a square (m,u,k, A)-divisible design is a transversal design iff
kE=m(=ul).
<= k=m(=u\).

Definition 1.11. If k¥ = m = u), then a (m,u, k, A)-difference set D in a
group G is sald to be semiregular. Cleary |G| = u?).

Remark 1.12. Under the above assumption, DD £ D=1 D in general.
However, every known transversal design obtained from semiregular RDS is
symmetric,

In this talk we give examples of semiregular RDS’s D which do not satisfy
the condition of Proposition 1.7. Then it gives us examples so that dev(D)’s
are non-symmetric, and consequently non-symmetric transversal designs.

2. Known non-normal semiregular RDS’s

Let D be a (uA, u, ul, A)-difference set (i.e. semiregular RDS) in G relative to
U. Then D is called normal and non-normal according as U <G and U 4 G,
respectively. We note that dev(D) is symmetric for evey normal RDS applying
Jungnickel’s result.

Example 2.1, ([6], [7]) The following are all known ezamples of non-normal
semiregular RDS'’s.

(i) (ur/\) = (272):G = (m,y I at = yz = 1,3/”156?} = .’17"1>(E Dg),
U={y): (424,2)-DS

(Il) (U))‘) = (474>1G = (‘T:y I zt = y27 y4 = 1,y—1$y = m~1>
(2 Qlﬁ)i U= <y> : (4;4)4;1)'DS

(iii) (u,A) = (2,8),G = {2,y | 2 =¢? = 1,y Loy = 27)
(~8Dg), U=1{y) : (16,216,8)-DS

(1V) (U’ /\) = (218):G = («"U,?j I z!f = y2 - lay_lmy = 229)
(: M5(2))7 U= (y) : (16:2)16;8)'DS

(v) Let A be a (4m?,2m? — m,m? — m)-difference set in a group N, Assume
t is an automorphism of N of order 2. Then D = AU(N\ A"t is a
non-normal (4m?,2,4m?,2m?)-DS in o group N(t) relative to (t).

128



130

3. Semiregular RDS’s with |D| =12

From now on we assume that D is a semiregular RDS in a group G relative
to a subgroup U with {D} = 12. Set u = |U]|. Then G = 12y and D is a
(12,4,12,))-DS, where ) = 12. Thus |D| = 12 and one of the following holds.

@) (wA)=(2,6), |Gl=24, |U|=2
(i) (uw,A)=(3,4), [G|=36, [U|=

(iii) (u,A)=(4,3), |G|=48, [Ul=4
(iv) (m,X) =(6,2), |Gl=72, |U|=6.
™) (W) =(12,1), |G| =144, [U|=12.

Remark 3.1. Let D be a semiregular RDS in a group G relative to U and
let s be an automorphism of G. Then D* is also a semiregular RDS {with the
same parameters as D) in G relative to U,

CASE (1)) =(2,6), |G|=24, [U|=2
The following lemma holds.

Lemma 3.2. ([7]) If there exists a (2n,2, 2n, n)-difference set in G relative to
U such that G = NU for a subgroup N of G of index 2, then n* = 2.

By Lemma 3.2 we have the following.
Lemma 3.3. If (u,\) = (2,6), then [G,G] > U.

Lemma 3.4. N. Ito {[8]) If a group G of order 4n{> 4) contains a normal
(2n,2,2n,n)-DS relative to U, then a Sylow 2-subgroup of G is neither cyclic
nor dihedral.

By Remark 3.1, Lemmas 3.3, 3.4, there are five possibilities.

(1) G=QsxZ3, U=2(Qg) x 1.

(2) G=Qa, U=2(Qu)

(8) G =1Zy x Ay and there are three possibilities for U{x~ Zj).
(4) G=5L(2,8), U= Z(SL(2,3)).

(5) G =S4 and there are two possibilities for U(x~ Zs).

By a computer search, we have the following.

Lemma 3.5. Assume (u,A) = (2,6). Then, a group G of order 24 contains
a (12,2,12,6)-DS if and only if G ~ Qs x Z3, Qo4 or SL(2,3).
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CASE (u,)) = (3,4), |G| =36, U] =3.
In this case (m,u, k,A) = (12,3,12,4).

Lemma 3.6. Let G be ¢ nonabelian group of order 36. Then there are eleven
possibilities.

(i G~Dgs, (i) G=~Qs, (ii) G ~ Dyg X Zy ,

(IV)G SgXSg, (V)G$33XZ6,

(vi) G~ (Z3 x (Z3 x L3)) X Zs, |Z(G)| =2,

(vil) G = (Z4 % Z3) x Z3, |Z{G)| = 8,

(vm) G ~ Zy x (Zs3 x L3}, where an element of order 4 inverts Og(G)

(ix) G = {d)}{a,b) @ Zyx (Z3xZ3), a®* =t =d*=]a,b]=1,a®=b"1, 0% =nq,
(X) G Ay x Zg, (Xl) G ’.l’Zg X (Zg X Zz)

By a computer search we have the following.

Lemma 3.7. Assume (u,A) = (3,4). Then, o nonabelian group G of order
36 contains o (12,3,12,4)-DS if and only if

G~ (Zg x Z3) x Zz (1Z(G)] =6, U=03(Z(G))),

A4XZ;3 (U=1XZ3), or SgXZs.

The first and the second cases have been previously known. But the third
is a new one and has unusual properties.

Example 3.8. Let G = {a,b,c|a® =0 =c® =1,
b-lab=a"!, ac=ca, bc = cb)
and set D ={1,¢,¢% c% a,ac,b,a’bc’®, abct, abe, bet, abe}.
Then D is a non-symmetric (12,3, 12,4)-DS relative to U = (ac?) ~ Zs.
Let (P,B)(= dev(D)) be the corresponding transversal design and let 4 be
an incidence matrix of (P,B). Then

[ 121 40 4 4J 4] 47 AT 4 4J 4T 4] 4T
4J 121 47 4J 4F 4J AT 4T 4 4T 47 4T
4J 4J 121 4J 4 4J 4T 4T 4 4J 4T 4J
4J 4J 4J 121 47 4 4T 40 4 4J 4J 4J
4J 4J 4J 4J 121 4J 4 4 4 40 4T 4J
4J 4] 4J 4J 4J 121 4 47 4 40 4J 4J
4J 4J 4J 4J 47 4J 12 4J 4 4J 4 4J
47 4J 4J 4 4T A AT 121 AJ 4J 4J 4J
4J 4J 4J 4J 4 4T 4 40 121 4 4J 4T
47 4 4 4 4T 4 4 4 4 121 4J 4J
47 4J 47 4 4J 4 4 4T 4 4J 121 4J
4J 4] 4J 4 4J 4T 4J 4J 4 4T 4J 121

100 111
where, 7= | 0 1 0 |andJ={ 1 1 1.
0 01 111

AAT
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However,

( 12 4 4 4 5 4 5 4 27
4 12 4 4 4 5 4 b5 4
4 4 12 4 2 4 5 4 5
4 4 4 12 4 2 4 b5 4

ATA =

4 5 4 2 4 12 4 4 4
5 4 5 4 4 4 12 4 -4
4 5 4 5 4 4 4 12 4

L2 4 5 4 4 4 4 4 12|

An RDS D is called symmetric if D(~1) is also an RDS. Since AAT has entries
2,5(¢ {0,4,12}), the dual of dev(D) is not a transversal design. Applying
Proposition 1.7, D(—Y is a non-symmetric RDS. As far as I know, this is the
only known non-symmetric RDS.

CASE (u,))=(4,3), |G]=48, [U|=4

In this case (rm,u, k, A) = (12,4,12,3).
We use the following two lemmas to settle the present case.

Lemma 3.9. If 2| u and 21, then U contains every involution of G,

Lemma 3.10. (Elliott-Butson) Let D be a (ud,u,ul, A)-DS in G relative
to U. If U contains a normal subgroup N of G of order v, then DN/N is o
(uh, /v, uA,vA)-DS in G/N relative to U/N.

Applying Lemmas 3.5 and 3.10, it suffices to check the following case.
G={abe|at=t"=c=1clac=abc e =ab?), U="{(a?b)
We have the following by a computer search.

Lemma 3.11. There is no {12,4,12, 3)-DS.

CASE (4, \) =(6,2), |G|=T2, |U|=6.
In this case (m,u, k, \) = (12,6,12,2).
Observation. For every known semiregular RDS, |U] is a power of a prime.

The smallest undecided case is # = 6.



Lemma 3.12. Let G be a nonabelian group of order 72. Then there are five
possibilities.
(i) G~ SL(2,3) x Zg, (i) G~ Ay xZg (i) G~ Ay x 83,
(V) G ()M xT), t* =1, M~ Ay, T =73,
(M ~ 8y, ()T ~ Ss,
) G Q, Q] =9.

Applying Lemmas 3.5, 3.7 and 3.10, we have the following by a computer
search.

Lemma 3.13. There is no (12,6,12,2)-DS.

CASE (u,\)=(12,1), |G|=144, |U]=12.
In this case {m,u,k, A) = (12,12,12,1).
By Lemma 1 of [2], the following hods.

Theorem 3.14. FEvery tronsversal design with A = 1 is symmetric.

The above theorem implies that if there is a (u,u,u,1)-DS in a group G,
then the corresponding transversal design can be extended to a projective plane
of order » which admits G as a collineation group of order u?. Thus u # 12 by
Baumert-Hall [4] and the following holds.

Lemma 3.15.  There is no (12,12,12,1)-DS.
By Lemmas 3.5, 3.7, 3.11, 3.13 and 3.15, we have the following.

Theorem 3.16. A group G contains a (uw,u,u, A)-DS D with |D} = 12 if
and only if G is isomorphic to one of the following.

(i) (u,A)=1(2,6), G=QsxZs, U=2(Qs) x1 xZs.
(i) (u,A)=1(2,6), G=Qu, U=2(Qau) ~Zs.
(i) (u,N) = (2,6), G =SL(2,3), U= Z(SL{(2,3)) ~Zy.
(iv) (u,A) = (3,4), G =S5 xZs, U~Zs (anon-symmetric RDS).
(v) (u,\) = (3,4), G=(Zax Z3) x Zs, |Z(G)| =6, U =03(Z(G)).
(vi) (v, 2)=(3,4), G=As4xZs, U=1x2Z;5.
(vil) (u,A) =(3,4), G =7Zg x Lg, U ~ Z3.
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4. Construction of non-symmetric RDS’s

In this section we show the following.

Theorem 4.1. There ezists a non-symmetric (2°™3™,3,22mgm, 22mgm-—1).
(m—1)times

- ~

difference set in (S3x Zg) X (Zg X Za) X - - X (Zg x L) relative to Ux1x---x1,
where D i3 a non-symmetric (12, 3,12,4)-difference set in Sg X Zg relative to its
non-normal subgroup U of order § (see Example 3.8).

Corollary 4.2. There egists a non-symmetric TDyzmgm—1[22™3™; 3] for every
m & N,

Example 4.3,
In order to prove Theorem 4.1, we need the following lemma.

Lemma 4.4. Let L = G x H, where G be a group of order w?X and H is a
group of order uu. Let D be a (ud,u,uX, A)DS in G relative to a subgroup U of
G of order u and let C be a (up,u, up, p)DS in U x H relative to U. Then

(i) CD is a (u Ay, u, u? Ay, udp) DS in L relative to U.

(iiy CD is symmetric if and only if D is symmetric,

Proof. Let ¢;,¢3 € C and dy,dy € D and assume c1d; = cody. Then cflcg =

dldg_l cUHNG =U. Thus dy = dy and so ¢; = ¢3. Therefore CD is a subset
of L.
By assumption, the following hold.

DD = u) + MG -~ U) (5)
CCD =yu+ w(UH —U) (6)
G=UD, UC=UH (7)

Hence (CD)(CD)=Y = C(DD¢D)CED = Cu + A(G - U)CY
= uACCEYV4ACGON - ACUCHY As C,U C UHBU, CU = UC. Similarly
GC = CG. It follows that (CD)(CD)Y = ul(up+p(UH - U)+AGCCHY -
MCCHY = w?pd+upAUH —updU + AG(up+ pU H — pU) = AU (up+ pU H —~
pU) = w?p) + upA(L — U). Thus we have (i).

Since UHDU, C-UC = CCHY. Hence (CD)"VCD = DEH(CCHIND =
DY (up + uUH — ul)))D. By (7), the following holds.

(CDYVECD = upDVD 4 uphL — upAG ®)

Assume CD is symmetric. Then (CDYVCD = v?u) + up(L — V) for
a subgroup V of L of order u. By (8), upD"UD — updG = w?p) — updV.
Thus DUUD = ul 4+ A(G — V). In partucular, V is a subgroup of G of order
u and so D is symmetric. Conversely, assume D is symmetric. Then DD D =
uX +A(G — V) for a subgroup V of G of order u. Then, by (8), (CD)~VCD =
up(ud + MG — V) + wpALl — wpAG = v?pd + upA(L — V). Therefore CD is
symmetric. Thus we have (ii). O



We note that Lemma 4.4(i) is a modification of Result 2.4 of [11], where N
is assumed to be normal in G.

Proof of Theorem

Let D be a non-symmetric (12, 3,12,4)DS in M = S3 x Zg relative to a non-
normal subgroup U of M (see Example 3.8). Let H = {a) x {b)(~ Zg x Z3). We
note that an abelian group H X {¢)(~ Zg xZg x Z3) contains {12, 3,12,4)DS, say
{1,0,0?,a®,a%c,a’c,bc?, ab, abe, a®bc?, a*be, a’b}. Set G = H x M and choose
{c) as a non-normal subgroup of M. Then, applying Lemma 4.4, H x M contains
a non-symmetric (223?24, 3,223%223.4)DS in G relative to 1 x U(~ Z3) as D is
non-symmetric. Repeating this procedure again and again we have the theorem.
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