The automorphism groups of certain commutant subalgebras of lattice vertex operator algebras (Algebraic combinatorics and the related areas of research)

Author(s)

Sakuma, Shinya

Citation

数理解析研究所講究録 1476: 176-181

Issue Date

2006-03

URL

http://hdl.handle.net/2433/48219

Type

Departmental Bulletin Paper

Textversion

publisher

Kyoto University
The automorphism groups of certain commutant subalgebras of lattice vertex operator algebras

佐久間伸也 (Shinya Sakuma)

東京大学数理科学研究科・学振研究員 PD
(Graduate School of Mathematical Sciences. The university of Tokyo)

1 Introduction

An element e of weight 2 of a vertex operator algebra V is called an Ising vector if the vertex subalgebra generated by e is isomorphic to the simple Virasoro VOA $L(\frac{1}{2},0)$ with central charge $\frac{1}{2}$. Any Ising vector e defines an automorphism τ_e of V with $\tau_e^2 = 1$ by using representation of $L(\frac{1}{2},0)$. In the case of the Moonshine VOA V, τ_e gives a $2A$-involution of the Monster simple group $\mathbb{M} = \text{Aut}(V)$. An Ising vector e is called σ-type if $\tau_e = 1$. An Ising vector e of σ-type defines an automorphism σ_e of V with $\sigma_e^2 = 1$. It is known that if a set E of Ising vectors of σ-type such that $\sigma_e(f) \in E$ for any $e, f \in E$, the subgroup of $\text{Aut}(V)$ generated by $\{\sigma_e | e \in E\}$ is 3-transposition group. Matsuo classified all 3-transposition groups defined by such a set E of Ising vectors of σ-type.

Let R be a root lattice. Let $V_{\sqrt{2}R}$ be the lattice vertex operator algebras associated to the lattice whose norm is twice of R's and $V_{\sqrt{2}R}^+$ the fixed point subalgebra of the lattice VOA $V_{\sqrt{2}R}$ by the lift of (-1)-isometry on R. There are a lot of Ising vectors (of σ-type) and conformal vectors in $V_{\sqrt{2}R}^+$. We consider the commutant subalgebra M_R of a conformal vector ω_R fixed by $\text{Aut}(R)$ in $V_{\sqrt{2}R}^+$. Then $\text{Aut}(R)/(-1)$ acts on M_R faithfully.

This talk is about the result obtained by a joint work with Ching Hung Lam of National Cheng Kung University in Taiwan and Hiroshi Yamauchi of the University of Tokyo. We study the classification of Ising vectors of $V_{\sqrt{2}R}^+$.
Then we apply our results to study commutant subalgebras M_R related to root lattice R. We completely classify all Ising vectors in such commutant subalgebras. Moreover, we show that M_R is generated by Ising vectors and determine their full automorphism groups.

2 Ising vectors and σ-involutions

An element $e \in V_2$ is a conformal vector with central charge $c \in \mathbb{C}$ if $L(n) := e_{(n+1)}$, $n \in \mathbb{Z}$ satisfy the Virasoro relation

$$[L_{(m)}, L_{(n)}] = (m + n)L_{(m-n)} + \delta_{m+n,0} \frac{m^3 - m}{12} c$$

for $m, n \in \mathbb{Z}$. A conformal vector e of a VOA V with central charge $\frac{1}{2}$ is called an Ising vector if the subalgebra $\text{Vir}(e)$ generated by e is isomorphic to the simple Virasoro VOA $L(\frac{1}{2}, 0)$ with central charge $\frac{1}{2}$. It is well-known that the Virasoro VOA $L(\frac{1}{2}, 0)$ is rational and has exactly three irreducible modules $L(\frac{1}{2}, 0), L(\frac{1}{2}, \frac{1}{2}), L(\frac{1}{2}, \frac{1}{16})$.

Let e be an Ising vector of a VOA V. Since $\text{Vir}(e)$ is rational, V is a semisimple $\text{Vir}(e)$-module. For $h = 0, 1/2, 1/16$, denote by $V_e(h)$ the sum of all irreducible $\text{Vir}(e)$-submodules of V isomorphic to $L(\frac{1}{2}, h)$. Then we have the isotypical decomposition:

$$V = V_e(0) \oplus V_e(\frac{1}{2}) \oplus V_e(\frac{1}{16})$$

Define a linear automorphism τ_e on V by

$$\tau_e = \begin{cases}
1 & \text{on } V_e(0) \oplus V_e(\frac{1}{2}) \\
-1 & \text{on } V_e(\frac{1}{16}).
\end{cases}$$

Then, τ_e is an automorphism of V with $\tau_e^2 = 1$. On the $\langle \tau_e \rangle$-fixed point subalgebra $V^{\langle \tau_e \rangle} = V_e(0) \oplus V_e(\frac{1}{2})$, define a linear automorphism σ_e by

$$\sigma_e = \begin{cases}
1 & \text{on } V_e(0) \\
-1 & \text{on } V_e(\frac{1}{2}).
\end{cases}$$

Then, σ_e is an automorphism of $V^{\langle \tau_e \rangle}$ with $\sigma_e^2 = 1$. We will refer $\tau_e \in \text{Aut}(V)$ (resp. $\sigma_e \in \text{Aut}(V^{\langle \sigma_e \rangle})$) to as the τ-involution (resp. σ-involution). An Ising vector e of V is called of σ-type if τ_e defines identity on V i.e. $V_e(\frac{1}{16}) = 0$.

177
We consider a VOA $V = \oplus_{n=0}^{\infty} V_n$ with $V_0 = \mathbb{C}1$ and $V_1 = 0$. Then the weight two subspace V_2 equipped with the product

$$a \cdot b := a_{(1)}b, \ a, b \in V_2$$

forms a commutative algebra with an symmetric bilinear form $\langle \cdot, \cdot \rangle$ defined by

$$a_{(3)}b = \langle a, b \rangle 1, \ a, b \in V_2,$$

and satisfying

$$\langle a \cdot b, c \rangle = \langle a, b \cdot c \rangle,$$

$a, b, c \in V_2$. This algebra is called the Griess algebra of V.

If $e \in V_2$ is a conformal vector with central charge c, $\frac{1}{2}e$ is an idempotent of the Griess algebra V_2 and $\langle e, e \rangle = \frac{c}{2}$.

About σ-involutions, the following is known.

Theorem 2.1 (Miyamoto). Assume that $V_0 = \mathbb{C}1$, $V_1 = 0$ and $\langle \cdot, \cdot \rangle$ is positive-definite. If $e, f \in V_2$ are Ising vectors of σ-type and $e \neq f$, then the order of $\sigma_e \sigma_f$ is 2 or 3, and

1. If $|\sigma_e \sigma_f| = 2$, then $\langle e, f \rangle = 0$ and $e \cdot f = 0$.
2. If $|\sigma_e \sigma_f| = 3$, then $\langle e, f \rangle = \frac{1}{32}$ and $e \cdot f = \frac{1}{4}(e + f - e^{\sigma_f})$.

3 **Ising vectors of $V^+_{\sqrt{2}R}$**

Let R be a root lattice with root system $\Phi(R)$. Let ℓ be the rank of R and h the Coxeter number of R. We denote by $\sqrt{2}R$ the lattice whose norm is twice of R's. Let $V_{\sqrt{2}R}$ be a lattice VOA associated to the lattice $\sqrt{2}R$. For any isometry g on R, g is extended to a linear automorphism of $V_{\sqrt{2}R}$ by setting

$$\tilde{g}(\alpha_{(-n_1)}^{1} \ldots \alpha_{(-n_k)}^{k} e^{\sqrt{2}\alpha}) = g(\alpha^{1})_{(-n_1)} \ldots g(\alpha^{k})_{(-n_k)} e^{\sqrt{2}g(\alpha)}$$

for $\alpha^{1}, \ldots, \alpha^{k}, \alpha \in R$. This extension gives an automorphism of the VOA $V_{\sqrt{2}R}$ and \tilde{g} is called a lift of g. We consider the lift θ of (-1)-isometry on R and the fixed point subalgebra

$$V^+_{\sqrt{2}R} = \{ v \in V | \theta(v) = v \}$$
of the lattice VOA $V_{\sqrt{2}R}$. It is clear that $V_{\sqrt{2}R}^{+}$ has a grading $V_{\sqrt{2}R}^{+} = \oplus_{n \geq 0} (V_{\sqrt{2}R}^{+})_{n}$ such that $(V_{\sqrt{2}R}^{+})_0 = \mathbb{C}1$ and $(V_{\sqrt{2}R}^{+})_1 = 0$, and

$$\omega = \frac{1}{4h} \sum_{\alpha \in \Phi(R)} \alpha_{(-1)^2} 1$$

is the Virasoro vector of $V_{\sqrt{2}R}^{+}$.

We give a classification of Ising vectors of $V_{\sqrt{2}R}^{+}$. For $\alpha \in \Phi(R)$ we set

$$\omega^\pm(\alpha) = \frac{1}{8} \alpha_{(-1)^2} 1 \pm \frac{1}{4} \left(e^{\sqrt{2}\alpha} + e^{-\sqrt{2}\alpha}\right).$$

It is easy to show that $\omega^\pm(\alpha)$, $\alpha \in \Phi(R)$, are Ising vectors of σ-type of $V_{\sqrt{2}R}^{+}$.

Set

$$s_R = \frac{2}{h+2} \sum_{\alpha \in \Phi(R)} \omega^-(\alpha)$$

$$= \frac{1}{4(h+2)} \sum_{\alpha \in \Phi(R)} \alpha_{(-1)^2} 1 - \frac{1}{h+2} \sum_{\alpha \in \Phi(R)} e^{\sqrt{2}\alpha}$$

and

$$\tilde{\omega}_R = \omega - s_R$$

$$= \frac{2}{h+2} \omega + \frac{1}{h+2} \sum_{\alpha \in \Phi(R)} e^{\sqrt{2}\alpha}.$$

Then s_R and $\tilde{\omega}_R$ are mutually orthogonal Ising vectors which are fixed under the action of $\text{Aut}(R)$. The central charge \tilde{c}_R of $\tilde{\omega}_R$ is given by the following:

<table>
<thead>
<tr>
<th>R</th>
<th>A_n</th>
<th>D_n</th>
<th>E_6</th>
<th>E_7</th>
<th>E_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{c}_R</td>
<td>$2n/(n+2)$</td>
<td>$6/7$</td>
<td>$7/10$</td>
<td>$1/2$</td>
<td></td>
</tr>
</tbody>
</table>

In particular, $\tilde{\omega}_{E_6}$ is also an Ising vector of σ-type of $V_{\sqrt{2}R}^{+}$.

For $x \in R$, define

$$\varphi_x = \exp \left(\frac{\pi \sqrt{-2} x(0)}{2} \right).$$

Then φ_x is an automorphism of $V_{\sqrt{2}R}^{+}$ with $\varphi_{2x} = 1$. We set

$$I_R = \{ \omega^\pm(\alpha) \ | \ \alpha \in \Phi(R) \},$$

$$\tilde{I}_R = \{ \varphi_x \tilde{\omega}_R \ | \ x \in R \}.$$
The inner products of these elements is given by
\[
\langle \omega^+(\alpha), \omega^-(\alpha) \rangle = 0, \\
\langle \omega^\pm(\alpha), \omega^\mp(\beta) \rangle = \langle \omega^\pm(\alpha), \omega^\mp(\beta) \rangle = \frac{1}{32} \langle \alpha, \beta \rangle^2, \\
\langle \omega^+(\alpha), \varphi_x \tilde{\omega}_{R} \rangle = \frac{1 \pm (-1)^{\langle x, \alpha \rangle}}{2(h+2)}, \\
\langle \tilde{\omega}_{R}, \varphi_x \tilde{\omega}_{R} \rangle = \begin{cases} 0 & \text{if } \langle x, x \rangle = 4 \\
\frac{1}{32} & \text{if } \langle x, x \rangle = 2 \\
\frac{1}{4} & \text{if } x \in 2E_8 \end{cases}
\]

for distinct \(\alpha, \beta \in \Phi(R) \) and \(x \in R \).

It is known that \(V_{\sqrt{2}D_{2n}}^+ \) and \(V_{\sqrt{2}E_{8}}^+ \) are code VOAs and Lam classified Ising vectors of \(\sigma \)-type of a code VOA. We denote by \(I(V) \) the set of Ising vectors of a VOA \(V \). Then, the following hold.

Theorem 3.1. we have
(1) \(I(V_{\sqrt{2}D_{2n}}^+) = I_{D_{2n}} \)
(2) \(I(V_{\sqrt{2}E_{8}}^+) = I_{E_{8}} \cup \tilde{I}_{E_{8}} \)

Since a root lattice of \(ADE \) type is contained in \(E_8 \) or \(D_{2n} \) for sufficient large \(n \), by using the above theorem, the Ising vectors of \(V_{\sqrt{2}R}^+ \) are given by the following.

Theorem 3.2. For any root lattice \(R \), \(I(V_{\sqrt{2}R}^+) = I_{R} \cup \left(\bigcup_{K \subset R, K \simeq E_{8}} \tilde{I}_{K} \right) \)

4 Commutant subalgebras \(M_R \)

For a VOA \(V \) and a conformal vector \(e \) of \(V \), we define the commutant subalgebra \(\text{Com}_V(e) \) by
\[
\text{Com}_V(e) = \{ v \in V | e_{(0)} v = 0 \}.
\]

Let \(R \) be a root lattice and let us fix \(\gamma \in \Phi(E_8) \). We set
\[
M_{R} = \text{Com}_{V_{\sqrt{2}R}^+}(\tilde{\omega}_{R})
\]
and
\[
M'_{E_8} = \text{Com}_{V_{\sqrt{2}E_8}^+}(\tilde{\omega}_{E_8}) \cap \text{Com}_{V_{\sqrt{2}E_8}^+}(\omega^+(\gamma)).
\]
We have \(M_R \cap E = \{ e \in E \mid \langle \tilde{\omega}_R, e \rangle = 0 \} \) for a set \(E \) of Ising vectors. By Theorem 3.2 and (*), the Ising vectors of \(V_{\sqrt{2}R}^+ \) are given by the following.

Theorem 4.1. (1) \(I(M_R) = M_R \cap I(V_{\sqrt{2}R}) \) and
\[
M_R \cap I_R = \{ \omega^{-}(\alpha) \mid \alpha \in \Phi(R) \},
\]
\[
M'_{E_8} \cap \bar{I}_{E_8} = \{ \varphi_x(\tilde{\omega}_{E_8}) \mid x \in E_8, \langle x, x \rangle = 4 \}.
\]
(2) \(I(M'_{E_8}) = (M'_{E_8} \cap I_{E_8}) \cup (M'_{E_8} \cap \bar{I}_{E_8}) \) and
\[
M'_{E_8} \cap I_{E_8} = \{ \omega^{-}(\alpha) \mid \alpha \in \Phi(E_8), \langle \alpha, \gamma \rangle \in 2\mathbb{Z} \},
\]
\[
M'_{E_8} \cap \bar{I}_{E_8} = \{ \varphi_x(\tilde{\omega}_{E_8}) \mid x \in E_8, \langle x, x \rangle = 4, \langle x, \gamma \rangle \in 1 + 2\mathbb{Z} \}.
\]

For \(E \subset I(V) \) satisfying \(\sigma_e(f) \in E \) for any \(e, f \in E \), we define
\[
\text{Aut}(E, \langle \cdot, \cdot \rangle) = \{ g \in \text{Sym}_E \mid \langle g(e), g(f) \rangle = \langle e, f \rangle, e, f \in E \}.
\]

Set
\[
I_R^- = \{ \omega^{-}(\alpha) \mid \alpha \in \Phi(R) \}.
\]

Then the following hold.

Proposition 4.2. The map \(\phi : \text{Aut}(R) \rightarrow \text{Aut}(I_R^-, \langle \cdot, \cdot \rangle) \), \(g \mapsto \tilde{g}|_{I_R^-} \) is a surjective group homomorphism with \(\ker \phi = \langle -1 \rangle \). Therefore,
\[
\text{Aut}(I_R^-, \langle \cdot, \cdot \rangle) \cong \text{Aut}(R)/\langle -1 \rangle.
\]

On the other hand, we proved

Theorem 4.3. If \(R \) is a root lattice of ADE type and VOA \(V \) is \(M_R \) or \(M'_{E_8} \),
(1) \(V \) is generated by the weight 2 subspace \(V_2 \), in particular, by \(I(V) \).
(2) The map \(\text{Aut}(V) \rightarrow \text{Aut}(I(V), \langle \cdot, \cdot \rangle), \rho \mapsto \rho|_{I(V)} \) is an injective homomorphism.

By Proposition 4.2 and Theorem 4.3,

Theorem 4.4. If \(R \neq E_8 \), then \(\text{Aut}(M_R) \cong \text{Aut}(R)/\langle -1 \rangle \).

In the case that \(R = E_8 \), the following hold.

Theorem 4.5.
\[
\text{Aut}(M_{E_8}) \cong \text{Aut}(I(M_{E_8}), \langle \cdot, \cdot \rangle) \cong \text{Sp}_8(2)
\]
\[
\text{Aut}(M'_{E_8}) \cong \text{Aut}(I(M'_{E_8}), \langle \cdot, \cdot \rangle) \cong \text{O}_8^-(2)
\]