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ON THE ZEROS OF EISENSTEIN SERIES
ASSOCIATED WITH TI'5(2), I';(3), AND SOME GROUPS
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1. INTRODUCTION

Let k > 4 be an even integer, for z € H := {z € C; Im(z) > 0}, let

1
0 Ei(2) =5 > {ez+d)™*
(e,d)=1
be the Eisenstein series associated with SLy(Z). Then,

= {M 21, —% < Re(?) éO}U{le > 1,0 < Re(z) < .;.}

is a fundamental domain of SLo(Z).

In [RSD], F. X. C. Rankin and H. P. F. Swinnerton-Dyer considered the problem of locating the
zeros of Ex(z) in F. They proved that for k = 12n + s (s = 4,6,8,10,0, and 14), then n zeros are in
A={zeC; |zl =1, n/2 < Arg(z) < 27/3}. They also said in the last part of the paper, “This
method can equally well be applied to Eisenstein series associated with subgroup of the modular group.”
However, it seems unclear how widely this claim holds.

Here, we consider the same problem for Fricke groups I(2) and I'g(3)(See [K], [Q}), which are com-
mensurable groups of SLy(Z). For a fixed prime p, we define the following;

(2) T5(p) = To(p) U To(p) Wp,

where ‘ -

(3) To(p) = {(i Z) €8l3(Z);c=0 (mod p)} , Wpi= (\% _1(/)\/}—7) .
Let k > 4 be an even integer, for z € H, let

0 By o(e) = g (22 B(e) + F(2))

be the Bisenstein series associated with I'4(p). Then the next regions

FH(2) = {lzi > 1/V3, -+ < Re(z) < o}U{m > 1/v3, 0< Re(z) < %}

[ I

F*(3) := {lz! > 1/V3, -3 < Re(z) € 0}U{§z| > 1/v3, 0 < Re(?) < %}

are fundamental domains of T§(2) and T'4(3), respectively.

Define 4} = {z € C; |2| = 1/v/2, 7/2 < Arg(z) < 3r/4}, and A == {2 € C; |2} = 1/v3, n/2 <
Arg(z) < 57/6}. Then we have A3 = A3 U [i/v/3,e87/4/\/2}, and AF = A5 U {i/V3, 5/ /\/3}.

In this paper, we will apply the method of F. K. C. Rankin and H. P. F. Swinnerton-Dyer (RSD
Method) to the Fisenstein series associated with '3(2) and T'5(3). We will prove the next theorems.

Theorem 1. Let k > 4 be an even integer. Ej 5(z) has all zeros on A%,

Theorem 2. Let k = 4 be an even integer. E;,g(z) has all zeros on Aj.
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2. T§(2) (ProoF OF THEOREM]1)

2.1. Preliminaries. We give the next definition;
(5) Fio(0) = 2By, (¢/V2)

Before proving Theoreml, we consider an expansion of Ff 5(8).
By the definition of Ei(2), Ej 5(2) (cf. (1),(4)), we have

2(2k/2 + l)eik9/2EZ,2 (ew/\@)

— ok/2 Z (ce™/2 4 \/3deif/?) =k 1 h/2 Z (cet®/? 4 /Bde=3#/2)~k,
{e,d}=1 {c,d)=1

Now, we consider the case if ¢ is even. We have

2k/2 Z (Ce—i9/2+\/§d8'£0/2)—k =2k/2 Z (zcle—ie/Z_l_\/ideiS/Z)—k; (CZQC,)

(C,d)=l (c,d):l
ceven d:odd
= E (V2cde™%/2 1 deif/?)~F = _S_ (ce'®/? 4 \/2de™10/2)k,
(e,d)=1 (e,d)=1
d:odd ciodd

Thus we can write as follows;

(6) F}4(0) :% D (ce™? 4 V2de=H/%)k +% D7 (ce™ 4 Vadet/?) 7k,
(¢, d)=1 (e, d)=1
c.odd c:odd

Hence we use this expression as a definition.

In the last part of this section, we compare the two series in this expression. Note that for any pair
(c,d), (ce®®/? + /2de~/%)=F and (ce=%#/? 4+ \/2de*®/2)~* are conjugates of each other. The next lemma
follows.

Lemma 2.1. Fy,(0) is real, for V6 € R.

2.2. Application of the RSD Method. We will apply the method of F. K. C. Rankin and H. P. F.
Swinnerton-Dyer (RSD Method) to the Eisenstein series associated with I'§(2). We note that N := ¢?+d2.
- Firstly, we consider the case N = 1. Because ¢ is odd, there are two cases, {¢,d) = (1,0) and
{¢,d) = (—1,0). Then

(N Fyo(0) = 2cos(k6/2) + R,

where R3 is the summation of the rest terms.

Let v(c,d, 0) 1= |ce®®/?4+/2de=/2|=% then vy(c,d,8) = 1/ (c2 + 242 + 2v/2cd cos 6
vk(—c, —-d, 9),

Now we will consider the next three cases, namely N = 2,5, and N > 10. Note that § € [x/2, 3n/4].
When N =2, ux(1,1,6) < 1, vi(1, —1,60) < (1/3)%/2. When N =5, vx(1,2,6) < (1/5)%/2, v:(1,-2,6) <
(1/3)%. When N > 10, |ce®/? & /2de™0/22 > (® + d?)/3 = N/3, and the rest of the question is
about the number of terms with ¢? + d> = N. Because ¢ is odd, || = 1,3,...,2N' — 1 < N¥/2 50 the
number of |c| is not more than (N'/2 4-1)/2. Thus the number of terms with ¢2 + d? = N is not more
than 2(NY/2 + 1) < 3NV2, for N > 5. Then we get the upper bound s (%)kﬂ.

Thus

1\ #/2 1\ #/2 INE 162 /1) */2
8 R3| < = Z - hutvindil )
8 I zi\2+2<3> +2(5) +2(3) +km3(3>
Recalling “RSD Method”, we want to show that |R3| < 2. But the right-hand side is greater than 2.
The point is the case (¢, d) = £{1,1). We will consider the expansion of the method.

)ka, and vx(c,d,8) =
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2.3. Expansion of the RSD Method (1). In the previous subsection, the point was the case (¢,d) =
+(1,1). Notice that “vi(1,1,0) < 1 & 8 < 3n/4”. So we can easily expect that we get a good bound for
0 € [x/2,3n/4 — z] for small z > 0. But if k = 8n, we need |R5| < 2 for § = 37/4 in this method. We
will consider the case when & = 8n,8 = 37 /4 in the next section.

Let k = 8n+s{n =m(k), s = 4,6,0, and10). If k < 8, then n < 1. Consequently, F} ,(6) has at least
0 zeros, which does not make sense. So we may assume that £ > 8.

The first problem is how small z should be. We consider each of the cases s = 4,6,0, and 10.

When s = 4, (2n+1)7 < k8/2 < (3n+1)w+7/2. So the last integer point{i.e. £1)is k8/2 = (3n+1)m,
then § = 3x /4 ~n/k. Similarly, when s = 6, and 10, we have § = 3n /4 —n /2k, 37 /4 37 /2k, respectively.
When s = 0, the second to the last integer point is 6 = 3x/4 — n/k.

Thus we need z £ 7/2k.

Lemma 2.2, Let k 2 8. ForV0 € |x/2,3n/4 — 2] (x = n/2k), |R}| < 2.
Before proving the above lemma, we need the following preliminaries.

Proposition 2.1.
() o<z n/2, thensine 21— cosx
(2) FO<z<nw/16, then 1 —cosz 2 64$ .

Proof of Lemma 2.2. Let k > 8 and z = 7/2k, then 0 < z € 7/16.
[/ 1 V222 14 %mz. (Prop.2.1)
169/% 4 e 02k 31 g?éxz 14 341 2 (k> 8)
31/4) 31% 256
1,) S1-— LD g2 g XD
o (1,1,0) 1+ (31/4)z2" 31n? + 1024

Thus

31 x 512 (11')2 265 1
s (=) €2~ "5
3172 + 1024 \2k g k2
In inequality(15), replace 2 with the bound 2 — 283 L. Then

k72
IRy <2 265 1 35(1) (k> 8).

20x(1,1,6) <2 —

9 k2
Finally, we can show that 35 (%)k/ 2 < %4 So, the proof is complete. O
2.4. Expansion of the RSD Method (2). For the case “k = 8n,§ = 37/4”, we need the rext lemma.

Lemma 2.3. Let k be an integer such that k = 8n for 3n € N. If n is even, then Fy ,(3n/4) > 0. On
the other hand if n is odd, then Iy ,(3m/4) <0.

Before proving this lemma, recall that Ej(2) is the modular form of weight k for SLp(Z) for k > 4 : even.
Then

(9) Bilz+1) = Ey(2), En(~1/2) = 2" Ep(2).
Proof of Lemma 2.5. Let k = 8n (n > 1). By the definition of B} ,(2), Fj 5(2) (cf. (4),(12)), we have

e'sS(k/8)1r . —141
FF:’Z(S'TT/ZL) = W <2k/2Ek(—1+’l,)+Ek ( B )) .

By using the equations (9), Ex(—1+1) = Ex(3), Ex (-1 + 1)/2) = 2F/2E,(i). Then

ic
sz(aqr/4)~2e*(’“/3>" VT Fk(w/2)

The next question is: “Which one holds; F(r/2) < 0 or Fk(‘ﬁ/Q) > 077,

In [RSD], they showed Fy,(§) := e/*¢/2E;(8) = 2cos(k6/2)+ Ry. Then they proved | /2| <2 for k >
Moreover, for k = 8, |Ry| is not more than 1.29658... < 2. It is monotonically decreasing in k. Thus we
can show \

(10) [Ril<2  for Vk28.
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When k& = 8n,
4n
Fin a87/4) = 26" 52— Bun(n/2)
where -2—}% > 0, Fan(m/2) = 2cos(2nm) + R > 0. So the sign(x) of Fy ,(37/4) is that of e, Thus
the proof is complete. 0

2.5. Valence formula for T'§(2). In order to decide the locating of all zeros of Ej 5(z), we need the
valence formula for I'§(2):

Proposition 2.2. Let f be a modular function of weight k for T4(2), which is not identically zero. We

have
1
(1) vool 1) + 39 + o+ Y wlh) =
PETG(2N\H
p#£i/VE, pa

where v,(f) is the order of f at p, and p 1= €*™/3, and py := ¥/ /3.
Remark 1. Let k > 4 be an even integer. We have

vi/ﬁ(E‘;ﬂ) =38; {sx=0,1suchthat2sy =k (mod 4)),
Voo (B o) =tk (t = 0,1,2,3 such that — 2ty =k (mod 8)).

3. T%(3) (Proor oF THEOREM2)

3.1. Preliminaries. We give the next definition;
(12) Fg(6) = e/ B; 5 (/V3).
By the definition of Ex(2), B 5(2) (¢f (1),(4)), we have
Z(Sk/z n 1)6%9/2&:’3 (ev;e/\/g)
— 3k/2 Z (ce—w/z + \/gdeie/z}—k + 3k/2 Z (cei6/2 + \/gde—iG/Z)—k.

(e,d)=1 (e,d)=1

We consider the case if 3 is divisible by ¢. Then we can write as follows;

(13) Fi4(0) = Z (ce®®’? + V3de™/%)" Z (ce™™/ + /3de'?/?) 7.
(c d)=1 (c d)=1
3fe 3fc

The next lemma follows.

Lemma 3.1. Fy ;(6) is real, for V0 € R.

3.2. Application of the RSD Method. We note that N := ¢ + d?, and consider the case N = 1.
Then we can write;

(14) F{4(8) = 2c0s(k6/2) + R3. (3R} € R)

Let vg(c, d, 9) := |ce®®/24-/3de~%/2|~* Now we will consider the next cases, namely N = 2,5,10,13,17,
and N > 25. Considering 8 € [7/2,57/6], we calculate v(c,d,0) for N = 2,5,10,13,17. Furthermore,
for N > 25, we get the upper bound 352‘/— € (3 ) Thus

k
(15) |B3| < 4+ 176 (-;-)

Now, we want to show that |R}| < 2. But the right-hand side is much greater than 2. The points are
the cases {c,d) = £(1,1), £(2,1).
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3.3. Expansion of the RSD Method (1). In this subsection, we will prove following lemma.
Lemma 3.2. Let k > 8. Forv0 € {x/2,57/6 — z} (z = w/3k), |R| < 2.
Before proving the above lemma, we need the following preliminaries.

Proposition 3.1.

k
W) Fork>8, (97 <1+ (2logd) 1 +3 (2102 37" .
2 FOT}C>8 3+2\/§cos(6 %) > %t
(3) Fork > 8, and let ¢ = 7/3k, then 4+ 2v/3cos (3 — z) > (%)z/k (1‘*'2?,53;(277);11?“72)-

Proposition 3.2.
(1) Fork > 8, 3%% <1+ (2log3)% + $(21og 3)23%/* 5.
(2) Fork 28, 6+4\/‘§cos(%' - ﬁ) > Z‘/L.’a_%

(3) Fork > 8, and let x = 7/3k, then 7+ 4v/3cos (3F —z) > 32/k (1 + %xz)

Proof of Lemma 3.2. Let k > 8 and z = 7/3k, then 0 < z < 7/24.
By Proposition 3.1

‘ . 3\ /¥ 256 x 7 x 13
i6/2 ~-i6/212 5, [ 2 I Mt A Rteltyv  B .3.
[€%/2 4 \/3e~10/3 ,(2> ( +3xmka) (Prop.3.1(3))

2 107
1,1,6) € 2 — =lg?
Uk(fi) 3 8:2:

Similarly, by Proposition 3.2

- : . 256 x 7 x 13
12670/2 1 \/3e=i0/2)2 3 3%k (1 + —3&—’;2—72—?352) . (Prop.3.1(3))

1 107
< = 2
w{2,1,8) < 5~ 16

In inequality(15), replace 4 with these bounds. Then

_ 1077% 1

k
. 1
IRsl <2 - —5— k2+176(2) .

We can show that 176 (%)k < l%?;’—z%%.

O

3.4. Expansion of the RSD Method (2). For the case “k = 12n,8 = 57/6”, we need the next lemma.

Lemma 3.3. Let k be the integer such that k = 12n for 3n € N. If n is even, then Fy ,(57/6) > 0. On

the other hand, if n is odd, then Fy 4(57/6) <O0.

Proof. Tet k= 12n (n > 1). By the definition of B 5(2), Fy 3(2) (¢f. (4), (12)), we have

. £i5(k/12)m —3+ 3 ~V/3+i
Fia(57/8) = SpmoT (:WQE’“ (__2_— TE\E )

By using the equations (9), for & = 12n,
6n
36 +1

Fio, 3(57/6) = 2¢in7 Fion(27/3),

where m—l > 0, Fizn(27/3) = 2cos{dnm) + Rl > 0(cf. (10)). So the sign{£) of Fy 3(57/6) is that of

¢"7 Thus the proof is complete.

g
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3.5. Valence formula for I'3(3). _
Proposition 3.3. Let f be a modular function of weight k for T§(3), which is not identically zero. We

have

1 1 k

(16) Voo (£) + 5y va() + g+ D wlf) =5
pETG(3N\H
p#i/V3, p3

where p3 1= 65"/6/\/5.
Remark 2. Let k 2 4 be an even integer. We have
iy vi(Bia) = sk (sk =0,1 such that 25, = k {mod 4)),
Upo (B g) =tk (tk =0,1,2,3,4,5 such that — 2ty =k (mod 12)).
4. ON SOME OTHER GROUPS

4.1. Frick group TI'§(p). For SLy(Z) and T§(p) for prime p such that 2 < p < 19, their fundamental
domains and bounds for Eisenstein series are following:

SLe(Z) —+— v —|Ri| < 1+

r5(E) ——
s (5) e (17 T £ [ RS2 . _lel=dr s 1Rk
FO(S) it e 'lz_L|=;\;7_5, : [Ry 2|€ 24 F6(7) E TE [ .lz_%[;'Q'IV? U Ry |4

2

‘ iz‘=71ﬁ' DRy, €24 . ‘ Izlz-jﬁ : |Rig, 1] €4+
o |z gl = gt B 2l€24 TE(13) z— gl 50 ¢ [Rusalg24
T ¢ R sl lz— =535 © |Rus,al<64

©lalm ke [Rir )24

. |2~§l=wlﬁ DRy 2K+ ) B
e dl= gt [Riral24
[z~ =1 : [Rural<a+

4.1.1. T§(5). We can write:

1 ik8 et k6
() e(3)

z te = 2¢0s Rss.
] l \/-5- k.5 \/5‘ ) + 5,1
1 1 ik8g gif2 1 kB

— o= Bosl—=-=]= —_
-5 5% e 2 ’“’5(2\/5 2) 2608( 5 >+R5,2.
We have 63 = 6; — n/2, and P = (—z‘)k/?eﬁ;)'.

- We consider the bound for 6; € [7/2,7 — o ~7/k] and 63 € [x/2 —~ a ~ k/2,7/2], where tana = 1/2.
It 4 4 p, then we want to show 1‘53 — 1 zeros are on the arcs. Also, if 4 | p, then we want 1;— zeros to be
there.

o
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We proved Ej 5 has almost all zeros on the arcs |2| = 1/v/5 and |z — 1/2] = 1/2V/5 for k > 12, except for
at most 2 points.

Similarly, we proved Ej} ;; has almost all zeros on the arcs |2| = 1/V/11, |2 — 1/2| = 1/2V/1], and
2 —1/3] = 1/3+/11 for k > 16, except for at most 4 points.

4.2. Congruence subgroup I'¢(p). For I'}(p) for prime p, their fundamental domains are following:

To(5) To(7)
I'3(p) has two cusps oo and 0. Thus we define Eisenstein Series for I'j(p) as follows:
00 1 —k
Er,(z) = 3 Z (cz+d)™", forcusp oo.

(e,d)=1
ple

Eg,p(:ﬂ) = % Z {cz+d)~*, for cusp 0.
(c,d)=1
pte

—-VZ 0

e 1 1 r a\\* 1 i T 8
oo (X oy f D s 7 a ¢ > 2 A
Bialg —3) ( 2 2”"(2 2)) Bra(-3 2“"'“(2 2)>

Furthermore, we have

4.2.1. Ty{2). Considering that ( V2 1/‘5) : 2+ —1— &, we have

eiO

% 1
e E,‘c’f;(—z- -~ -2-) = 2cos(kf/2) + R : real. -

However, for 8 € [x/2,0], we have |R| < oo. This problem is much more difficult than I'y(p). We proved
IRl <2 forbe€[n/2,7/6landk > 8.
We also proved

6,

|R| <2 forfe(n/2,n/12]andk 21
k 2 20.

IR| <2 forf € {n/2,n/18)and

Finally, let f = E%(z), and g = E 5(2). The locations of zeros of some linear combinations of f and
g are following:
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It is interesting question to consider the location of zeros of f + r¥g.

Remark 3. Getz]G] considered a similar problem for the zeros of extremal modular forms of SL2(Z). It
seems that similar results do not hold for estremal modular forms of T§(2) and T'3(3). We plan to look
into this in the near future.
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