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A NOTE ON THE BEST-CHOICE PROBLEM
RELATED TO THE WEIGHTED RANDOM
PERMUTATION

BRHAAREZE  REYEA] (MITSUSHI TAMAKI)

A1cHI UNIVERSITY

BE

A Dbest-choice problem related to the weighted random permu-
tation is considered. The optimal stopping rule will be derived in
some simple cases.

1. Introduction

A weighted random permutation of 1,2,...,n with weight Ay, Ay, ..., An
is one whose first element is j with probability A;/ > A, j=1,...,n. If
the first element in the permutation is j, then the next element is 4,4 # 7,
with probability Ai/ Yx; Ak- In general, each subsequent element of the
permutation will equal any value not yet appearing with a probability
that is equal to the weight of that value divided by the sums of the
weights of all those values that have not yet appeared in the permutation
(see Ross[4]).

Imagine a situation where a known number n of rankable applicants
appear one at a time. The arrival order of these applicants constitutes
a weighted random permutation, if the ith best applicant has her weight
Ai,1 <4 < n. The optimal stopping problem we consider here is a best-
choice problem related to this weighted random permutation based on
the relative ranks of the applicants observed. That is, if we denote by
Y;,1 < j < n, the relative rank of the jth applicant, the decision of
whether we should accept (select) or reject the kth applicant is made
based on the observed values of {Y };?:1. The objective of the best-choice
problem is to find a stopping rule which maximizes the probability of
selecting the very best.

In a special case where all the weights are the same, i.e., Ay = Ay =
..« = )\,, this problem is greatly simplified into the celebrated classical
secretary problem (see, e.g., Gilbert and Mosteller{2]), because, in this
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case, Y1,Ya,....Y, turn out to be independent random variables with
P{Y; =i} = 1/jfor 1 < i < jand 1 £ j < n. However, when
the weights are rank dependent, the problem becomes very complicated
because this will result in the sequence Y3,Ys,...,Y, being dependent
with the consequent complication of the form of the optimal stopping
rule.

In Section 2, we consider the case of n = 3 in detail. In section 3, we
treat a continuous version of the problem in a special case where A; = 1,
and ;; = A, 2<i<n.

2. Best-choice probiem for n =3

When n = 2, it is obvious that the optimal rule selects the first applicant
iff Ay > Xo. Thus we consider here the case of n = 3 as a prelude.
Let X; and Y; denote respectively the absolute and relative ranks of the
ith applicant, ¢ = 1,2, 3. Then the joint distribution of (Xi, Xs, X3) and
(Y1,Y5,Y3) are given as follows:

P{X;=1Xy=2X;=3} = P{V;=1, Y2-2Y3
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P{X1=3Xo=2Xs=1} = P{Vi=1Y,=1Y;=1}
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From this joint distribution, we can obtain the marginal and conditional
distributions of X/s and Y;'s. Some quantities of interest are as follows:
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Let v; be the optimal value when the ith applicant is a candidate, 1.e.,
relatively best applicant. Let also s; and c; be the corresponding stopping
value and the continuation value respectively, i = 1,2. If we pass over
the first two applicants, we select the last applicant irrespective of her
quality. Then,

v = IIlB,X{S.,;,Ci}, = 1, 2,
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Let T; denote the threshold rule with critical number i, i.e., a stopping
rule which starts to select a candidate from time ¢ onward. Then the
optmal stopping rule can be summarized as follows.

Theorem 1
Let o and B, functions of A; and Ay, be defined by

(A — A2) (A1 + Az)

a()\lyl\2) = ’ /\1 2> )\27
A1
M \/A% MAz(Ar + Ag)
A, Ag) = —— =4/ —= + ;AL < Al
B de) = = 4 A — M L

Then the optimal rule can be described as follows:
(i)When A; > A,

T; is optimal if A3 < a(Ar, Ag).

13 is optimal if Az > a(Aq, Ag).
(ii)When )\1 < }\2,

T; is optimal if A3 < B(A1, Ag).

T3 is optimal if A3 > /6(/\1, )\2)

Proof By straightforward calculations.

Remark: For some given pair )\; and )3, there exist three numbers



(A <)A; < Ay < A5* such that T} is optimal for the (g, A5, As)- and
(A1, A3*, A3)-problems, whereas T3 is optimal for the (At, Aa, Az )-problem.

3. Continuous arrival time model

Consider a model in which the ith best applicant appear at time Uj,
where Uy, Us, . . ., Uy, are independent exponential random variables with
respective rates Aj, Ag, . . ., Ap. It follows from the well known memoryless
property of exponential distribution that the order in which the applica,ni:s
appear is probabilistically the same as in the original model.

We consider the best-choice problem related to this continuous model
in a special case where A; = 1 and A; = A,2 < 4 < n. Denote by (t,k)
the state in which the kth applicant, a candidate, has just arrived at
time ¢ (note that the state is not path-dependent in this case). Let py(t)
be the success probability when we choose the current applicant in state
(t,k). Two cases are distinguished in state (t,k) depending on whether
the relatively best applicant observed by time ¢ is the very best or not.
Let pi(t) be the probability that the relatively best is the best overall
and p2(t) the probability that the relatively best is not the best overall.
Then

plls(t) _ (: : 1) (1 _ e—)\t)k—l (B_At)“—k (1 _ e—t),
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On the other hand, we can show that the success probability when we
choose the next candidate to appear after leaving state (t,k) is given by

p‘z(t) (1)

a(t) = m,
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where
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Given that the best applicant appears at time s(> t) after leaving state
(t,k), the conditional probability that we can choose the best applicant

becomes

ndt k& —1)! MV (e ae\ (e BeLkd
S (o) e S (e ey ()

=0

because (k/k+j) is just the probability that no candidate appears in [¢, s),
provided that &k + 7 applicants appear before time s. Thus Equation (1)
follows.

Using the beta function

1
B(a,b) = /0 2711 — )P 1at,

we can write ¢(t) as

o tet(l— e M) Sr k) (" Bn — k- - 1+ §,5 + b
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Let G be the OLA stopping region, i.e., the set of states in which
stopping immediately is at least as good as continuing and then stopping
with the next candidate. Then

G = {{tk):p(t) > a(t)}
= {({t, k) : g(t) = G},

where

"Eln—k (m—k-1 1
Gy = —k—q— —. 1 < _
k -E_O (j+k ( j )B(n k—j 1+A,g+1), 1<k<n
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Remark: When A =1,

gt) =1,
n—k—1
11,1 1
Gi= 3 —— =gt L
DI il A R

Thus G becomes

1 1 1
G={uk:1>— IR }
(t,k) *k+k+1+ +n—-1
which gives the optimal stopping region of the classical secretary prob-
lem.

Theorem 2

When A <1, G gives the optimal stopping region. This implies that the
process stops as soon as it enters a state in G. More specifically, there
exists a decreasing sequence of critical numbers {t;}7_; such that the op-
timal rule stops in state (¢, k) iff ¢ > tx, where #; is a unique root of the
equation g(t) = Gy, for Gy > 1. Possibly, t, = 0,k > r* for some positive
integer r*.

Proof It is well known that the OLA stopping region G gives the opti;
mal stopping region if & is closed in a sense that once the process enters
G, then it stays in G for additional time (see Ross[3] or Chow, Robbins
and Siegmund [1]). To show that G is closed, it is sufficient to show that
g(t) is increasing in t and Gy is decreasing in k. ¢(t) is obviously increas-
ing. Hereafter we show the monotonicity of Gi. Let ['(a) be the gamma
function defined by

I'(a) = /Ooo e "z ldx.

This function satisfies the following properties

I'(a)T(b)

B(a,b) = m,



148
I'a+1) = al'(a).

Using these properties, we have
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implying that Gr_; — G > 0, because A < 1.
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