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兵庫県立大学経営学部 菊田健作 (Kensaku Kikuta)
School of Business Administration

University of Hyogo

1 Introducton

This note proposes a rendezvous-search model with examination cost and defines a
simplified strategy for it. In a discrete form of the rendezvous search problem, the
seekers move in discrete time from node to node on a finite and connected graph after
they are placed randomly on nodes of the graph. The nodes can be marked if they
have a name that both seekers can recognize when they go there; they are markable
if each seeker knows whether it has visited a node or not or they are unmarkable
if each seeker forgets whether it has visited a node or not. In a rendezvous search,
when seekers can choose different strategies, the model is called asymmetric, while it
is called symmetric if seekers must choose the same strategy (See Book II of Alpern
and Gal (2003) $)$ . In a basic model of rendezvous search, the cost consists of only the
time needed to find each other. One out of many results in Howard (1999) is that it
analyzed an asymmetric model on a linear graph in which the nodes can be marked.
He gave an optimal strategy when the probability distribution of initial placement is
nondecreasing from the left to the right. Chester and T\"ut\"unc\"u (2004) considered the
model on a linear graph in which the probability distribution is symmetric around
the center.

In our model the cost consists of the exaination cost and the cost for time, and
the nodes can be marked. In section 2, we give a rendezvous search model on a finite
graph. In Section 3 we propose a twice-examination strategy (TES). An optimal TES
gives an upper bound for the value of the original search problem. In Section 4 we
restrict our attention to TES on a linear graph. In Section 5 we consider a search
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problem on a linear graph, in which one of the two seekers does not move.

2 Search on a Finite Graph

Let $(N, E)$ be a graph where $N$ is the set of nodes with $|N|<+\infty$ and $E\underline{\subseteq}N\mathrm{x}$ $N$

is the set of edges. We assume that the graph $(N, E)$ is connected and undirected.

For each $\mathrm{i}\in N$ , $\delta\langle\acute{\iota}$ ) is the set of nodes adjacent to $\mathrm{t},\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}$ is, $\delta(i)\equiv\{j\in N$ : $(\mathrm{i},j)\in$

$E\}\cup\{\mathrm{i}\}$ . Let $Z^{+}$ be the set of all positive integers. Two players (called Players I

and $\mathrm{I}\mathrm{I}$ ) are placed on nodes with probability $p(\mathrm{i},j)$ at the Nodes $i$ and $\acute{J}$ , where

$\sum_{i,j\in N}p(\mathrm{i},j)=1,p(\mathrm{i},j)>0_{7}$
$\forall i,j\in N$.

The nodes can be marked, that is, each player can distinguish where $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ is and

also can distinguish the directions. At each step each player at the node $i\in N$ can

choose one of alternatives :

(1) move to a node in $\delta(\mathrm{i})$ and examine ;

(2) move to a node in $\delta(i)$ and does not exam $\mathrm{i}\mathrm{n}\mathrm{e}$.

Here “move to $\mathrm{i}\in\delta(\mathrm{i})$
” means he stays at the node $i$ . At the step 1, both players

stay at the nodes where they are placed, and they decide whether they examine those

nodes or not respectively. The examination at a node means that each player can

check that node and adjacent nodes simultaneously. We denote by $x_{s}$ and $y_{B}$ the nodes

where Players I and II are at the end of the step $s$ , $s\geq 1$ . So in the first step, Players

I and II are placed at $x_{1}$ and $y_{1}$ respectively with probability $p(x_{1},y_{1})$ . They can find

each other only when (i) they are either at the same node or at adjacent nodes, and

(ii) at least one of them examines. It costs $c_{i}$ when a player examines at the node

$i\in N$ , while it costs 1 for each step. For simplicity, we have the next assumption.

But it is not clear whether we could assume this without loss of generality.

Assumption 1. At every step Player II does not examine.

A path for Player I at $i\in N$ is a pair of a sequence $x^{i}$ and a subset $S^{i}\subseteq Z^{+}$ where

$x^{i}=\{x_{1}^{i}$ , $\ldots$ , $x_{s}^{i}$ , $\ldots$
$\}$ , $x_{s}^{i}\in\delta(x_{s-1}^{i})$ for $s\geq 2$ , and $x_{1}^{i}=\mathrm{i}$ ,
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and $S^{i}$ is the set of all steps where Player I examines. Let $X^{i}$ be the set of all paths

for Player I at $\mathrm{i}\in N$ . Let $\alpha(i)$ be a probability distribution on $X^{i}$ such that

$|\{(x^{i}, S^{\acute{t}}) : \alpha(\mathrm{i}, (x^{i}, S^{i}))>0\}|<+\infty$.

A plan for Player I is defined bya $=\{\alpha(i) : i\in N\}$ . A path for Player II at $i\in N$ is
a sequence $y^{j}$ such that

$y^{j}=\{y_{1}^{j}$ , $\ldots$ , $y_{s}^{j}$ , $\ldots$
$\}$ , $y_{s}^{j}\in\delta(y_{s-1}^{\dot{7}})$ for $s\geq 2$ , and $y_{1}^{j}=j$ .

Let $Y^{j}$ be the set of all paths for Player II at $i\in N$ . Let $\beta(j)$ be a probability

distribution on $\mathrm{Y}^{j}$ such that

$|\{y^{j} : \beta(j, y^{j})>0\}|<$ -l-oo.

A plan for Player II is defined by $\beta=\{\beta(j) : j\in N\}$ . A strategy is a pair $(\alpha,\beta)$ .

We denote by $f((x^{i}, S^{i}),y^{j}$ ; $i,j$ ) the cost when Players follow paths $(x^{i}, S^{i}),y^{j}$ after
they are placed at the nodes $i,j$ initially. We denote by $f(\alpha, \beta;\mathrm{i},j)$ the expected cost
when Players adopt a strategy $(\alpha,\beta)$ and they are placed at the nodes $\mathrm{i},j$ initially

and by $f(\alpha, \beta)$ the expected cost when Players adopt a strategy $(\alpha,\beta)$ :

$f( \alpha, \beta;i,j)=\sum_{X^{t},Y^{k}}\alpha(\mathrm{i}, (x^{i}, S^{\acute{l}}))\beta(j, y^{j})f((x^{i}, S^{i}),$

$y^{j}$ ; $\mathrm{i},j$ ),

$f( \alpha, \beta)=\sum_{i\in N}\sum_{j\in N}p(i,j)f\langle\alpha,\beta_{?}.\mathrm{i},j)$
.

The problem is to find a strategy $(\alpha,\beta)$ which minimizes the expected cost $f(\alpha, \beta)$ .

We let
$v\equiv$ inf $f(\alpha, \beta)$ .

For $i,j\in N$ , let $d(i, j)$ be the minimum of the numbers of edges of paths connecting
the node $\mathrm{i}$ with the node $j$ . It is clear that both players can meet by coming to a
specified node and staying there until the other player reaches there.

Proposition 2.1
v $\leq\min_{i\in N}\{\max d(\mathrm{i},j)+c_{\dot{\mathrm{t}}}\}j\in N\backslash \{i\}$ .
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Proof; From every node, each player can reach the node $\mathrm{i}$ by at most

$\max_{j\in N\backslash \{i\}}d(i,j)$ steps and Player I can examine the node $\mathrm{i}$ where the cost

is $\max_{j\in N\backslash \{i\}}d(\mathrm{i},j)+c_{i}$ . A plan for Player I is cx $=\{\alpha(j) : j\in N\}$ where
$\alpha(j, (x^{j}, S^{j}))=1$ and $x_{d(i,j)}^{j}=i$ , $S^{j}=\{d(\mathrm{i},j)\}$ for every $j\in N$ . $\bullet$

3 twice-examination Strategy

In this section we define a special strategy and state a relation to a cooperative version

of an ambush game.

Definition. A strategy $(\alpha,\beta)$ is said to be a twice-examination strategy (TES) if

for every pair $(x^{i}, S^{i})$ and $y^{j}$ such that $\alpha(\mathrm{i}, \langle x^{l}, S^{i}))\lrcorner>0$ and $\beta(j,y^{j})>0$ ,

$|S^{i}|\leq 2$ and $\exists s\in S^{i}\mathrm{s}.\mathrm{t}$ . $y_{s}^{j}\in\delta(x_{s}^{i})$ .

In other words, a strategy is a TES if Player I examines at most twice and if they can

meet certainly.

Under aTES, to meet certainly, both players must be at the same place or adjacent

places at some step when Player I examines. If the cost $c_{i},\mathrm{i}\in N$ is relatively small,

in comparison to the cost for each step, Player I will examine twice so that they meet

certainly at the second examination and he will do the first examination so that the

expected cost becomes as small as possible. We are interested in the step when and

where Player I does the first examination. Suppose $S^{l}=\{s_{1}, s_{2}\}$ where $s_{1}<s_{2}$ .

Then

$f((x^{\acute{l}},S^{i}),y^{j}$ ; $\mathrm{i},j$ ) $=\ovalbox{\tt\small REJECT}_{+\infty}^{s_{1}+\mathrm{c}_{x_{\Leftrightarrow 1}^{i}}}s_{\underline{9}}+,c_{x_{\epsilon_{1}}^{i}}’+c_{x_{s_{2}}^{i}}$ , $\mathrm{i}\mathrm{f}y_{s_{1}}^{j}\in\delta(x_{s_{1}}^{i});\mathrm{i}\mathrm{f}y_{s_{1}}^{j}\not\in\delta(x_{s_{1}}^{\mathrm{i}}),\mathrm{a}\mathrm{n}\mathrm{d}y_{s_{2}}^{j},\in\delta(x_{s_{2}}^{i})\mathrm{i}\mathrm{f}y_{s_{1}}^{j}\not\in\delta(x_{s_{1}}^{i}),\mathrm{a}\mathrm{n}\mathrm{d}y_{s_{\sim}}^{j}\not\in\delta(x_{s2,\vee}^{i})$

.

Remark. When we restrict our attention to TES, the model is a cooperative version

of the following non-cooperative game. There are two players (Players I and $\mathrm{I}\mathrm{I}$ ). A

strategy for Player II is to choose a plan $\beta$ . A strategy for player I is to choose a plan

$\alpha$ such that for every $i\in N$ and every $(x^{i}, S^{i})$ with $\alpha(\acute{\mathrm{z}}, (x^{i}, S^{i}))>0,1\leq|S^{i}|\leq 2$ .
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Suppose that Players I and II have chosen strategies $\alpha$ and $\beta$ respectively. The payoff

for player $\mathrm{I}\mathrm{I}$ , $g(\alpha,\beta)$ , is defined as follows. First the nature chooses two points $\mathrm{i},j\in N$

with probability $p(i,j)$ . Then both players choose $(x^{i}, S^{i})$ and $y^{j}$ with probabilities

a $(i, (x^{i}, S^{i}))$ and $\beta(j, y^{j})$ respectively. Suppose $S^{i}=\{s_{1}, s_{2}\}$ where $s_{1}<s_{2}$ . Then
$g((x^{i}, S^{i}),y^{j}$ ; $\mathrm{i},j$) $=f((x^{i}, S^{i}),$ $y^{j}$ ; $i,j$ ). Furthermore,

$g( \alpha,\beta)=\sum_{i,j\in N}p(i,j)\mathrm{I}_{j}\alpha(\mathrm{i}, (x^{i}, S^{i}))\beta(j, y^{j})g\mathrm{x}((x^{i}, S^{i}),$

$y^{j}$ ; $\mathrm{i}$ , $j$ ).

Player I is the minimizer of 9 and Player II is the maximizer. If $|N|$ is large then
player II will win certainly, i.e., $g=+\infty$ by using $y_{s}^{j}=j$ for all $s\in Z^{+}$ and all $j\in N$ .

Example. Let N $=$ {1, \ldots ,9} and

E $=\{(1,$ 3), (2, 3), (3, 4), (4, 5), (5, 6), (5, 7), (5, 8), (8,$9)\}$ .

Figure 1: A Finite Graph

Define a path $x^{i}$ for every $i\in N$ by $x_{s}^{i}=5$ for $s\geq d(\mathrm{i}, 5)+1$ and let $y^{i}=x^{i}$ for every
$i\in N$ . Let

$S^{i}=\{$
{2, 4}, if $i=1,2$ ;

{1, 3}, if $3\leq i\leq 9$ .

Let a $(\mathrm{i}, \langle x^{i}, S^{i}))=1$ and $\beta(j,y^{j})=1$ for every $\mathrm{i}\in N$ . Then $(\alpha,\beta)$ is a TES.
$\delta(x_{4}^{1})=\delta(x_{4}^{2})=\{4,5,6, 7, 8\}$ and $\delta(x_{3}^{i})=\{4,5,6, 7, 8\}$ for $3\leq \mathrm{i}\leq 9$ .

4 Search on a Linear Graph

In this section we restrict our attention to TES on a linear graph. We let $N=$

$\{1, \ldots , n\}$ and $E=\{(\mathrm{i},\mathrm{i}+1) : 1\leq i\leq n-1\}$ . For avoiding unnecessary complexity,
we assume that $n$ is an odd number. For the simplicity of the analysis we put
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Assumption 2. $c_{i}=c>0$ for all i $\in N$ .
Assumption 3. $p( \mathrm{i},j)=\frac{1}{n^{2}}$ for all $1\leq \mathrm{i}\leq n$ .

Proposition 4.1. Let $\alpha$ be a plan for Player I. For every $(x^{i}, S^{i})$ such that
$\alpha(\mathrm{i}, (_{\chi^{i}}, S^{i})\backslash )$ $>$ $0$ , let $S^{i}$ $=$ $\{s_{1}^{i}, s_{2}^{i}\}$ for $\mathrm{i}$

$\in$ $N$ . Then for every $i$ $\in$ $N$ ,

$s_{1}^{i} \geq\max\{x_{s_{1}^{i}}^{i}, n+1-x_{s_{1}^{\mathrm{t}}}^{i}\}-1$ or $s_{2}^{i} \geq\max\{x_{s_{2}^{i}}^{i}, n+1-x_{\epsilon_{2}^{l}}^{\dot{\mathrm{t}}}\}-1$ .
Proof: Suppose there exists $\mathrm{i}\in N$ such that $s_{1}^{i}< \max\{x_{s_{1}^{1}}^{i}, n+1-x_{\mathrm{s}_{1}^{\mathrm{i}}}^{i}\}-1$ and

$s_{2}^{i}<\mathrm{m}\mathrm{a}\mathrm{o}\mathrm{c}\{x_{s_{2}^{\mathrm{i}}}^{i}, n+1-x_{s_{2}^{i}}^{i}\}-$
$1$ . By the definition of a path, it must hold either

$x_{s_{1}^{i}}^{i}\geq s_{1}^{i}-1$ and $x_{s_{2}^{\mathrm{i}}}^{i}\geq s_{2}^{i}-1$ or $n+1-x_{s_{1}^{\mathrm{i}}}^{i}\geq s_{1}^{i}-1$ and $n+1-x_{s_{2}^{t}}^{i}\geq s_{2}^{i}-1$ . Then

Player I could not find Player II when Player II starts at the node 1 and $n$ . So the

expected cost is not finit\^e

Example. Let $n=9$ . A TES related to Howard (1999) is as follows.

$x^{1}=\{1,2,3,4,5,5, \ldots\}$ , $x^{2}=\{2,3,4,5,5, \ldots\}$ , $x^{3}=\{3, 4, 5, 6, 5, 5, \ldots\}$

$x^{4}=\{4,5,6,5,5, \ldots\}$ , $x^{5}=\{5,6,7,6,5,5, \ldots\}$ , $x^{6}=\{6,7,6, 5, 5, \ldots\}$

$x^{7}=\{7,8,7,6,5,5, \ldots\}$ , $x^{8}=\{8,7,6,5, 5, \ldots\}$ , $x^{9}=\{9,8, 7, 6, 5, 5, \ldots\}$

Let $y^{i}=x^{i}$ for every $i$ . Let $s_{2}^{i}=4$ if $\mathrm{i}$ is even, and $=5$ if $\mathrm{i}$ is odd. Let $s_{1}^{i}\leq 3$ for

every $\mathrm{i}$ . Let $\alpha(i, (x^{i}, S^{i}))=\beta(i, y^{i})=1$ for every $i$ . Then both players meet at most

in 5 steps.

step

even

Figure 2: A Strategy

5 A Search Problem on a Linear Graph

In this section we analyze a search problem on a linear graph and compare the cost

with it in the rendezvous search. Assumptions 2 and 3 are still valid in this section.

Let $N=\{1, \ldots, n\}$ and $E=\{(\mathrm{i}, \mathrm{i}+1) : 1\leq i\leq n-1\}$ . Players Iand II are placed

with probability $p(i,j)= \frac{1}{\overline{n}^{7}}$ at the nodes $i$ and $j$ . Player II stays until Player I find
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$\mathrm{h}\mathrm{i}\mathrm{m}/\mathrm{h}\mathrm{e}\mathrm{r}$. The nodes can be marked, so Player I can distinguish where $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ is and

also can distinguish the directions. At each step Player I at the node $\mathrm{i}\in N$ can choose

one of alternatives : (1) move to a node in 5$(?.)$ and examine ; (2) move to a node in

$\delta(i)$ and does not examine. A path and a plan for Player I are defined in the same

way as in Section 2. A unique plan for Player II is $\beta^{w}$ where $\beta^{w}(j, y^{*j})=1$ for every
$j\in N$ and $y^{*j}$ is defined by $y_{s}^{*j}=j$ for all $s\geq 1$ . The problem here is to find a plan

for Player I which minimizes the expected cost $f(\alpha,\beta^{w})$ . Define a path $(x^{+i}, S^{+i})$ for

Player I by

$x^{+i}=\{i,\mathrm{i}+1, \ldots,n,n-1, \ldots,i, \ldots, 1\}$ , and $S^{+i}=\{1, \ldots ,n-\mathrm{i}+1,2n-2\mathrm{i}+2, \ldots ,2n-\mathrm{i}\}$ .

In the same way, define a path $(x^{-i}, S^{-i})$ for Player I by

$x^{-}’=\{i,\mathrm{i}-1, \ldots, 1, 2, \ldots,i, \ldots, n\})$ and $S^{-i}=\{1, \ldots, \mathrm{i},2\mathrm{i}, \ldots,n+\mathrm{i}-1\}$ .

Proposition 5.1. For the search problem, the following plan $\alpha=\{\alpha(i):\mathrm{i}\in N\}$ for

Player I minimizes the expected cost:

$\alpha(i, (x^{+i}, S^{+i}))=\alpha(\mathrm{i}, (x^{-i}, S^{-i}))=\frac{1}{2}$ , for every $i\in N$ .

Proof: Suppose that Player I is placed at $\mathrm{i}\in N$ . Since Player II does not move, Player

I must behave, following an optimal strategy in the search problem with traveling cost

on a tree. So Player I must take the plan a in the statement (Kikuta(1995)). $\bullet$

It is possible to calculate the expected cost $f(\alpha,\beta^{w})$ for a in the statement of Propoe

sition 5.1.

$f((x^{+i}, S^{+i}),y^{*j}$ ; $i,j$ ) $=\{$

$1+c$, if $j=i$ , $i+1,\acute{\mathrm{z}}-1$ ;
$(j-i)(1+c)$ , if $j>i+1,\cdot$

$(n-j)c+2n-i-\acute{J}$ , if $j<i-1$ .

$f((x^{-i}, S^{-i}),y^{*j}$ ; $\mathrm{i},j$) $=\{$

$1+c$ , if $j=i$ , $i+1$ , $i-1$ ;
$(i-j)(1+c)$ , if $j<i-1$ ;
$(j-1)(1+c)+i-1$, if $j>i+1$ .

Then

$f( \alpha,\beta^{w})=\frac{1}{2n^{2}}\sum_{i,j\in N}\{f((x^{+i}, S^{+i}), y^{*j}; i,j)+f((x^{-\acute{\iota}}, S^{-i}),y^{*j}; \mathrm{i},j)\}$.
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It is interesting to see that $\vec{\frac{f\mathrm{t}^{\alpha\beta^{w}}}{n}}$ may converge as $n$ becomes large.

Remark, A study on a search game with examination cost suggests that ifwe remove

Assumption 2 then an optimal plan would become very complex.

6 Final Remark

In this report we proposed a rendezvous-search model with examination cost on a

finite graph. Furthermore, we proposed a simplified strategy (called TES in this

report). It is known that it is very difficult to solve a search game with examination

cost when the underlying graph has a cycle. This suggests us that we must first study

a rendezvous-search problem on a tree. So to find an optimal strategy, or more simply,

to find an optimal TES is a problem to be solved when the graph is a linear graph.
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